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Ferroptosis is a new type of cell death characterized by damage to the intracellular
microenvironment, which causes the accumulation of lipid hydroperoxide and
reactive oxygen species to cause cytotoxicity and regulated cell death. Non-
coding RNAs (ncRNAs) play an important role in gene expression at the epigenetic,
transcriptional, and post-transcriptional levels through interactions with different
DNAs, RNAs, or proteins. Increasing evidence has shown that ferroptosis-related
ncRNAs are closely related to the occurrence and progression of several diseases,
including urological malignancies. Recently, the role of ferroptosis-associated
ncRNAs (long non-coding RNAs, micro RNAs, and circular RNAs) in the
occurrence, drug resistance, and prognosis of urological malignancies has
attracted widespread attention. However, this has not yet been addressed
systematically. In this review, we discuss this issue as much as possible to
expand the knowledge and understanding of urological malignancies to
provide new ideas for exploring the diagnosis and treatment of urological
malignancies in the future. Furthermore, we propose some challenges in the
clinical application of ferroptosis-associated ncRNAs.
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1 Introduction

In 2018, the Nomenclature Committee on Cell Death categorized cell death mechanisms
into regulated cell death (RCD) and accidental cell death (Galluzzi et al., 2018). RCD is an
autonomous and orderly cell death strictly regulated by genes that maintain homeostasis of
the internal environment, which is essential for the growth and development of the body,
maintenance of homeostasis, and development of disease (Koren and Fuchs, 2021; Peng
et al., 2022). The abnormal proliferation of tumor cells and evasion of cell death are
important biological features of malignant tumors. These features plausibly explain the
lethality, aggressive metastasis, and treatment resistance of tumors (Hanahan andWeinberg,
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2011). Ferroptosis is a new form of RCD characterized by the
accumulation of reactive oxygen species (ROS) and depletion of
polyunsaturated fatty acids in the plasma membrane when the
intracellular environment is specifically disturbed, ultimately
leading to iron-dependent oxidative cell death. Its morphological,
genetic, and biochemical manifestations differ from those of
autophagy, apoptosis, necrosis, and pyroptosis (Dixon et al.,
2012; Yang and Stockwell, 2016; Stockwell et al., 2017; Sun et al.,
2022a).

Non-coding RNAs (ncRNAs) can be roughly classified into
microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular
RNAs (circRNAs) according to their length and morphology
(Adams et al., 2017; Yan and Bu, 2021). With the widespread
application of high-throughput sequencing technology, many
ncRNAs have been found to be involved in the
pathophysiological processes of multiple diseases, and previously
unappreciated ncRNAs have been revitalized (ENCODE Project
Consortium, 2012; Djebali et al., 2012). Furthermore, ncRNAs have
been found to play significant roles in various diseases, including
tumors (Slack and Chinnaiyan, 2019; Zhang et al., 2020a; Wen et al.,
2020). Generally, miRNAs are endogenous single-stranded small
molecule RNAs comprising approximately 22 nucleotide sequences.
Extracellular miRNAs are transported to recipient cells through
exosomes, small vesicles, apoptotic bodies, and base pairs with the
3′untranslated region of the target mRNA to inhibit its transcription
and translation (Bartel, 2004; Ha and Kim, 2014; Saliminejad et al.,
2019). LncRNA is a molecule longer than 200 nucleotides that does
not encode protein (Kopp and Mendell, 2018; Nair et al., 2020).
Recent studies have found that lncRNAs participate in biological
processes, such as the proliferation and differentiation of tumor
cells, by regulating transcription and translation (Gao et al., 2020;
Neve et al., 2021; Statello et al., 2021). lncRNAs regulate tumor
development by exerting competing endogenous RNA actions
through sponge miRNAs (Xu et al., 2018; Logotheti et al., 2020;
Wan et al., 2020). Because circRNAs are stable and unaffected by
exonucleases, they are more suitable diagnostic and prognostic
markers than lncRNAs and miRNAs. Moreover, circRNAs have
other biological functions; for example, in the nucleus, they can
participate in transcriptional regulation and regulate gene
expression. In the cytoplasm, they can be adsorbed by sponges
and interact with RNA-binding proteins to promote or suppress
tumors (Patop et al., 2019).

Bladder, prostate, and kidney cancers are the three most
common malignancies of the urological system. A statistical
analysis of Globocan 2008 and Global Cancer Statistics 2018 with
a 10-year difference found that prostate and bladder cancers were
among the top 10 cancers worldwide, with a high growth rate
of >35% (Ferlay et al., 2010; Bray et al., 2018). Although several
treatment strategies are available, patients with advanced disease
usually have poor prognosis and low survival rate because of
treatment insensitivity and susceptibility to recurrence. Therefore,
it is necessary to develop novel diagnostic and therapeutic methods.

In recent years, the role of ncRNAs in human malignancies has
been extensively studied. However, the role of ferroptosis-associated
ncRNAs in common urological tumors has not been systematically
described. This article reviews the latest progress in ncRNAs in
common urological tumors, especially the regulation of ferroptosis

by ncRNAs, which affects the occurrence, progression, treatment,
drug resistance, and prognosis of tumors.

2 Overview of ferroptosis

In 2012, Dixon proposed a mode of cell death that is
morphologically, biochemically, and genetically distinct from
apoptosis, necrosis, autophagy (Dixon et al., 2012). This form of
cell death is referred to as ferroptosis, according to its characteristics:
iron- and ROS-dependent cell death (Figure 1). Ferroptosis is
typically characterized by an increase in the intracellular free
Fe2+ content, which generates large amounts of ROS through the
Fenton reaction. When ROS accumulation exceeds the reduction
capacity of glutathione (GSH) or glutathione peroxidase (especially
GPX4), it causes peroxidation of polyunsaturated fatty acids in the
lipid membrane and disruption of cell membrane or plasma
membrane structure and function, triggering ferroptosis (Yang
et al., 2014; Kagan et al., 2017). Microscopically, mitochondrial
wrinkling can be observed, mitochondrial cristae are reduced or
disappear, and the mitochondrial membrane density increases (Gao
et al., 2019; Gan, 2021). However, no cytoplasmic shrinkage or
nuclear fragmentation is observed (Galluzzi et al., 2018).

3 Ferroptosis-associated ncRNAs and
urological tumors

In recent years, an increasing number of studies have shown that
ferroptosis-related ncRNAs play an important role in lung cancer
(Song et al., 2021), gastrointestinal tumors (Zhang et al., 2020b; Zhu
et al., 2020), liver cancer (Bai et al., 2020), breast cancer (Zhang et al.,
2021a), glioma (Yang et al., 2021), acute leukemia (Wang et al.,
2021) and other malignancies and may be potential diagnostic
markers or therapeutic targets for tumors. Therefore, in this
review, we describe the regulatory roles of ferroptosis-associated
ncRNAs in common urological malignancies (Table 1). Moreover,
we propose some challenges in the clinical applications of
ferroptosis-associated ncRNAs. In our opinion, a systematic
discussion of the regulatory patterns of ferroptosis-related
ncRNAs in urological malignancies is extremely beneficial for
exploring the prospects of tumor therapy, overcoming resistance
to malignancy treatment, and improving patients’ quality of life.

3.1 Ferroptosis-associated ncRNAs and
bladder cancer

Extensive evidence suggests that ncRNAs are involved in
regulating multiple processes in bladder cancer, particularly the
tumor microenvironment (TME), drug resistance, and ferroptosis.

3.1.1 NcRNAs and bladder cancer
Bladder cancer has one of the highest mutation rates among

urological malignancies (Alexandrov et al., 2013; Tran et al., 2021).
According to the 2020 global cancer statistics survey, new patients
with bladder cancer account for approximately 3.0% of all patients
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with tumor, and the mortality rate is approximately 2.1% (Kaufman
et al., 2009; Sung et al., 2021).

A close correlation between ncRNAs and cancer was observed in
2002, when Calin et al. found that deletion or downregulation of
miR15 and miR16 genes, located on chromosome 13q14, were
present in approximately 68% of chronic lymphocytic leukemia
(CLL)cases (Calin et al., 2002). In 2007, it was discovered that

10 miRNAs, including miR-223 and miR-26b, were significantly
upregulated in bladder cancer compared to normal tissues (Gottardo
et al., 2007). Similarly, in 2009, Lin et al. found not only elevated
miRNAs but also the downregulation of 38 miRNAs, including
miRNA-143, miRNA-145, miRNA-125a, in bladder cancer tissues
(Lin et al., 2009). With further research, there is evidence that
abnormal expression of ncRNAs in tumors is associated with tumor

FIGURE 1
Regulatory substances and molecular mechanisms of ferroptosis The solute transporter protein SLC7A11 and transmembrane glycoprotein
SLC3A2 form the cystine/glutamate transporter system (system XC-), which is embedded on the surface of the cell membrane and mediates the reverse
exchange of cystine and glutamate. Cysteine is a key substrate for GSH synthesis. WhenGSH is depleted, GPX4 activity reduces, and the ROS generated by
Fe through the Fenton reaction cannot be reduced, causing lipid peroxidation and oxidative stress, which leads to ferroptosis.

TABLE 1 Overview of the role of ferroptosis-associated ncRNAs in urological malignancies.

Cancer type Ferroptosis-associated ncRNA Target Influence to Target Potential clinical application Ref

Prostate cancer miR-15A GPX4 Down Treatment and Prognosis Xu et al. (2022)

LncRNA OIP5-AS1 SLC7A11 Up Treatment and Prognosis Zhang et al. (2021b)

LncRNA PCAT1 SLC7A11 Up Drug resistance Jiang et al. (2022)

Bladder cancer LncRNA RP11-89 Prom Up Development Luo et al. (2021)

CircRNA-ST6GALNAC6 HSBP1 Down Development and Treatment Wang et al. (2022)

Kidney cancer miR-4735-3p SLC40A1 Down Development, treatment and prognostic Zhu et al. (2022)

miR-324-3p GPX4 Down Treatment Yu et al. (2022)

LncRNA SLC16A1-AS1 SLC7A11 Up Treatment Li et al. (2022)
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progression, metastasis, and recurrence (Du et al., 2013; Iyer et al.,
2015; Vo et al., 2019). For example, high expression of circRIP2 in
bladder cancer is negatively correlated with the stage, grade,
metastasis, and prognosis of bladder cancer. Further studies
found that circRIP2 can increase Tgf-β2 levels in bladder cancer
tissues by sponging miR-1305 and inducing tumor progression and
epithelial–mesenchymal transition through the Tgf-β2/
smad3 pathway (Su et al., 2020).

3.1.1.1 Regulation of ncRNAs on TME in bladder cancer
The TME plays an important role in tumor migration and

invasion, immunosuppression, and tumor drug resistance (Vitale
et al., 2019). Tumor-associated macrophages (TAMs) are invaluable
components of the TME. Bladder cancer-derived exosomal
microRNA 21 (miR21) enhances STAT3 expression by inhibiting
phosphatase activation in the PI3K/AKT signaling pathway and
promotes M2 phenotype polarization in macrophages (Lin et al.,
2020). This suggests that exosomal miR21 can promote bladder
cancer migration and invasion by polarizing TAMs.

3.1.1.2 Regulation of bladder cancer by ncRNAs
In addition, some ncRNAs act as tumor suppressors to inhibit

tumor proliferation and invasion by regulating complex signaling
networks. MicroRNA-139-5p, a mesenchymal stem cell-derived
exosome, can promote bladder cancer cell apoptosis by silencing
polycomb repressive complex 1 (PRC1) in bladder cancer, thereby
inhibiting tumor cell proliferation and migration (Jia et al., 2021).
The tumor suppressive effect of miRNA-139-5p may be a novel
direction for tumor therapy. Similarly, miRNA-143 transfected into
T24 and EJ cells was shown to inhibit tumor cell proliferation,
suggesting that miRNA-143 may be an important tumor suppressor
in bladder cancer (Lin et al., 2009).

3.1.1.3 Immunotherapy for bladder cancer
Immunotherapy for bladder cancer has been performed since

the 1970’s, from intracavitary infusion of Bacillus Calmette-Guerin
to immune checkpoint inhibitors in recent years. A history of over
50 years suffices to demonstrate the importance of the immune
microenvironment in the treatment of bladder cancer. A recent
clinical study demonstrated the safety and feasibility of a
combination of Cabozantinib and Programmed Death Receptor-1
(CaboNivo) in the treatment of bladder cancer (Apolo et al., 2020).
Although there are various treatments for bladder cancer, the high
recurrence rate and susceptibility to metastasis of bladder cancer are
still challenging issues. Therefore, it is important to search for more
effective treatment methods to improve the prognosis of bladder
cancer and ultimately improve the quality of life of patients.

3.1.2 Regulation of ferroptosis in bladder cancer by
ncRNAs

Ferroptosis is a novel iron-dependent form of RCD caused by
ROS accumulation and lipid peroxidation of lipid membranes,
leading to cell death (Dixon et al., 2012; Sun et al., 2022a).
ncRNAs play an important role in gene expression at the
epigenetic, transcriptional, and post-transcriptional levels through
interaction with different DNAs, RNAs, or proteins. With
advancements in research, the induction of ferroptosis in tumor
cells has become an effective and feasible treatment, especially for

malignant tumors that are not sensitive to conventional treatments
(Hassannia et al., 2019; Liang et al., 2019; Sui et al., 2022). This
section provides a systematic description of the role of ferroptosis-
related ncRNAs in bladder cancer, hoping that it will be useful in the
diagnosis and treatment of bladder cancer.

Recent studies on ferroptosis-related ncRNAs in bladder cancer
may help explore the pathogenesis and therapeutic strategies of
human malignancies. MicroRNA-129-5P (miR-129-5P) is a key
regulatory gene in malignancies of the urinary system. For
example, overexpression of miR-129-5P in clear cell renal cell
carcinoma (CCRCC) inhibits the function of sialophorin, which
eliminates the promotion effect of SPN on cell proliferation and
invasion, while simultaneously inducing the cell cycle arrest of
tumor cells in G0/G1 phase (Gao et al., 2021). Similarly, high
expression of miR-129-5P in prostate cancer downregulates the
level of a serine/threonine-specific protein kinase (CAMK2N1), and
targeting miR-129-5P sensitizes patients with prostate cancer to the
chemotherapy drug docetaxel (Wu et al., 2020). Furthermore, miR-
129-5p is sponged by the highly expressed lncRNA RP11-89 in
bladder cancer cells, which induces proliferation and metastasis of
bladder cancer cells and inhibits cell cycle arrest (Luo et al., 2021).
Meanwhile, lncRNA RP11-89 can upregulate prom2 expression
level through the prominin2-multivesicular body (MVB)-
exosome-ferritin pathway, resulting in increased resistance to
ferroptosis in bladder cancer (Brown et al., 2019; Luo et al.,
2021). The mechanism is that prominin2 protein can transport
iron out of cells through the MVB/exosome pathway, reducing the
accumulation of intracellular iron and preventing ferroptosis. This
discovery suggests that lncRNA RP11-89 may be a key gene for the
proliferation and metastasis of bladder cancer, and the regulation of
ferroptosis by targeting ncRNAs can aid in the development of
different therapeutic directions for bladder cancer.

In addition, recent studies have shown that circular RNA can
influence tumor proliferation and invasion (Memczak et al., 2013;
Lei et al., 2020; Zang et al., 2022). For example, overexpression of
circRNA-ST6GALNAC6 can promote ferroptosis in bladder cancer
cells (Wang et al., 2022). CircRNA-ST6GALNAC6 binds to the
N-terminal phosphorylation site (SER-15) of the heat shock protein
family member HSBP1. It leads to the downregulation of
HSPB1 phosphorylation, inhibits the activation of the HSPB1/
p38 MAPK signaling pathway, and increases the susceptibility of
tumor cells to ferroptosis.

Furthermore, ferroptosis-related ncRNAs participate in the
regulation of tumor drug resistance. Cisplatin is a common
clinical treatment for tumors, including bladder cancer; however,
deriving benefit from it is often difficult for many patients with
cancer because of its drug resistance (Galluzzi et al., 2012; Browning
et al., 2017). Recent studies have shown that the solute transporter
family member SLC7A11 is not only a key component of the cystine/
glutamate antiporter (XC system) but also an important regulator of
bladder cancer resistance to cisplatin (Lo et al., 2008; Lewerenz et al.,
2013). Overexpression of miR-27a can negatively regulate
SLC7A11 protein and intracellular GSH levels, which leads to the
re-sensitization of drug-resistant tumor cells (Drayton et al., 2014).
Similar results have also been observed in ovarian cancer. Notably, a
certain dose of sulfasalazine can eliminate the cisplatin resistance of
SLC7A11-induced bladder cancer. In addition, Hou et al. reported
that bioinformatics was used to screen 11 lncRNAs associated with
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poor prognosis of bladder cancer and to construct a prognostic
model that may improve the treatment of patients with bladder
cancer (Hou et al., 2022). In summary, the application of ferroptosis-
related ncRNAs in bladder cancer has promising prospects.

With an in-depth study of the disease, more molecular
mechanisms of its pathogenesis and key regulatory proteins have
been understood. These findings are beneficial for the individualized
treatment of patients with cancer and to improve their quality of life.

3.2 Ferroptosis-associated ncRNAs and
prostate cancer

The incidence of prostate cancer is second only to lung cancer
among male malignant tumors, with an estimated annual death rate
of approximately 374,000 people (Sung et al., 2021). Although the
treatment strategy for prostate cancer has changed from single
surgery, androgen deprivation therapy, to the combined
application of chemotherapy, endocrine therapy, and
immunotherapy, the survival and prognosis of patients are still
not optimistic (Karantanos et al., 2015; Roubaud et al., 2017; Teo
et al., 2019). Therefore, identification of novel diagnostic markers
and therapeutic strategies is necessary.

Some studies have shown that ferroptosis-related ncRNAs may
be potential therapeutic targets or diagnostic markers. For example,
a recent study showed that the combined application of ferroptosis
inhibitors and second-generation anti-androgens could significantly
inhibit the growth andmigration of prostate cancer cells, providing a
novel strategy for the treatment of prostate cancer (Ghoochani et al.,
2021). Likewise, ncRNAs in prostate cancer tissue or serum have
received considerable attention in recent years as potential
biomarkers of tumors. The lncRNA PCAT1 in prostate cancer
upregulates androgen-responsive gene levels through the
recruitment of androgen receptor and lysine-specific demethylase
1, leading to the growth and proliferation of prostate cancer cells
(Guo et al., 2016). In addition, many differentially expressed
ncRNAs, which are the best candidates for non-invasive
biomarkers, were found in the plasma or urine of patients, which
are the best candidates for non-invasive biomarkers (Hua et al.,
2019).

Numerous studies have suggested that multiple signaling
pathways, including vascular endothelial growth factor, TGF-β,
and JAK/STAT, are involved in the development of prostate
cancer and may be regulated tightly by ncRNAs. The
transforming growth factor (TGF)-β signaling pathway is one of
the most widely studied signaling networks and plays an important
regulatory role in biological behaviors, such as growth and
development, invasion, and metastasis of tumor cells. When
TGF-β initiates the Smad signaling pathway, TGF-β first binds to
TGF-β receptor 2 (TβRII) on the cell membrane and recruits TGF-β
receptor 1 to form a complex of TGF-β-TβRII-TβRI type receptors.
Subsequently, TβRI in the complex undergoes a conformational
change and phosphorylates Smad2 and Smad3 proteins. Activated
Smad2 and Smad3 combine with Smad4 to translocate to the
nucleus to bind DNA and regulate the expression of target genes
(Guo and Kyprianou, 1998). The expression of the TGF-β signaling
pathway in prostate cancer has a dual role. In the early stage of the
disease, it is a tumor suppressor that resists tumor proliferation; in

the late stage, not only is its tumorigenic effect enhanced, but it also
promotes tumor metastasis (Ware, 1993; Lee et al., 1999). Therefore,
intervention in the TGF-β/Smad signaling pathway at the early stage
of the disease can help improve the prognosis and therapeutic effect
of the disease. MicroRNA-15A (mi15A) has multiple roles in
prostate cancer cells. On the one hand, as a tumor suppressor,
miR-15A binds to the 3′non-coding end (3′-UTR) of Smad3 and
inhibits its activity. Ultimately, miR-15A affects the TGF-β signaling
pathway and inhibits the invasion and metastasis of prostate cancer
cells (Bonci et al., 2008; Jin et al., 2018). On the other hand, recent
studies have shown that miR-15A can interact with the 3′-UTR of
GPX4, a key protein in iron death, to influence GPX4 protein
expression. Moreover, transfection of prostate cancer cells with
miR-15A mimics or Si-GPX4 resulted in a significant increase in
intracellular Fe+ and ROS levels. These findings suggest that
targeting miR-15A can induce ferroptosis in prostate cancer cells
by downregulating GPX4 protein levels (Xu et al., 2022).

Although the precise cause of prostate cancer development is not
yet thoroughly understood, current research indicates that genetic
and environmental factors induce prostate cancer development
(Deutsch et al., 2004). Bordini et al. found that iron accelerates
oxidative stress and cell death in prostate cancer cells and
contributes to the efficacy of anti-androgen therapy (Bordini
et al., 2020). In addition, a recent study showed that long-term
exposure to Cd promotes cancer cell growth and inhibits ferroptosis
(Zhang et al., 2021b). Mechanistically, lncRNA OIP5-AS1
suppressed ferroptosis in cadmium-exposed tumor cells by
competitively binding to miR-128-3P and increasing the
expression level of SLC7A11, a critical protein for ferroptosis.

Resistance to the chemotherapy drug docetaxel (DTX) in
patients with prostate cancer is one of the major causes of poor
survival in most patients (Virgo et al., 2021). Recent studies have
shown that ferroptosis-associated ncRNAs are also involved in the
mechanism of drug resistance in prostate cancer. For example,
lncRNA PCAT1, activated by the transcription factor ap-2γ,
activates the expression of SLC7A11 by interacting with the
oncogene myc/miR-25-3p, which blocks DTX-induced ferroptosis
and enhances chemotherapy resistance (Jiang et al., 2022). In
addition, some predictive models suggest that ferroptosis-related
lncRNAs are associated with biochemical recurrence, immune
invasion, and the TME in prostate cancer (Liu et al., 2022a; Feng
et al., 2022).

Ferroptosis-related ncRNAs act as pivotal regulators at different
stages of various diseases, including cancer. Research on ferroptosis-
related ncRNAs as prostate cancer biomarkers, drug resistance, and
treatment strategies is still at an early stage but has shown great
research value and broad application prospects.

3.3 Ferroptosis-associated ncRNAs and
kidney cancer

Kidney cancer, a malignant tumor originating in the renal
parenchyma, is a major disease that poses a serious threat to
human health. Despite the availability of multiple therapeutic
strategies, it is still necessary to explore novel therapeutic
approaches and tumor markers. Recent studies have shown that
tumor cells are more sensitive to ferroptosis than normal cells,
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particularly renal cancer cells (Yang et al., 2014; Zou et al., 2019;
Green et al., 2022). Therefore, in-depth studies on the role of
ferroptosis-associated ncRNAs in kidney cancer may be
meaningful for the discovery of novel tumor diagnostic markers
and potential therapeutic strategies (Zhang et al., 2019; Lei et al.,
2022; Li et al., 2022; Zhu et al., 2022).

Abnormal expression of some ncRNAs in cancer is closely
related to cell proliferation, invasion or chemotherapy resistance.
Li et al. (2021) discovered that the upregulation of microRNA-153-
5p is closely related to the poor prognosis and metastasis of CCRCC,
and the knockdown of the miR-153-5p gene can significantly inhibit
the proliferation and invasion of tumor cells. Furthermore, miRNA-
424-5p inhibits the proliferation and metastasis of CCRCC cells and
reduces cell viability (Kalantzakos et al., 2021). Similarly, ectopic
expression of MicroRNA-200b inhibits invasion and metastasis of
CCRCC (Li et al., 2019). Aberrant expression of some ncRNAs, such
as miR-223-3p, miR-543, miR-186, and lncHILAR, has also been
observed in CCRCC and is closely associated with disease
progression and prognosis (Chen et al., 2018; Xiao et al., 2019;
Guo et al., 2020; Hu et al., 2021).

Recently, the role of ferroptosis-associated ncRNAs in kidney
cancer has attracted considerable interest from researchers. For
example, ncRNAs can affect ferroptosis by regulating the
expression of SLC40A1. As a member of the solute transporter
(SLC) family, SLC40A1 is currently the only key protein that
regulates iron transport in mammals and plays an important role
in maintaining the balance of iron in and out of cells (Hentze et al.,
2010). Mechanistically, miR-4735-3p binds to the 3′-terminal

non-coding region (3′-UTR) of SLC40A1 to repress its expression,
leading to increased levels of intracellular iron loading, ROS, and lipid
peroxidation (Zhu et al., 2022). This, in turn, leads to ferroptosis and
tumor suppression in renal cancer cells.

Additionally, ferroptosis-related ncRNAs explain the
mechanism of traditional Chinese medicine in the treatment of
kidney cancer. Icariside II (ICS-II) is a flavonoid extracted from the
Chinese herb Epimedium that has attracted considerable attention
because of its anti-tumor activity (Liu et al., 2020; Atanasov et al.,
2021).

This study found that after ICS-II treatment, the expression of
miR-324-3p was upregulated, which inhibited the expression of
GPX4 protein and induced ferroptosis in renal cancer cells.
Interestingly, normal cells are not affected (Yu et al., 2022). ICS
II downregulates GPX4 levels in a p53-independent manner to
induce ferroptosis in tumor cells, which highlights the potential
value of traditional Chinese medicine in the treatment of tumors.
Not only are miRNAs important regulatory genes in the occurrence
and metastasis of kidney cancer, lncRNAs are also critical for the
treatment of kidney cancer. Researchers have found that the lncRNA
SLC16A1-AS1 forms an RNA–protein complex with transcription
factor E2F1, which enhances metabolic reprogramming and
invasiveness of bladder cancer by promoting the expression of
SLC16A1/MCT1 (Logotheti et al., 2020). In contrast, the highly
expressed lncRNA SLC16A1-AS1 in CCRCC inhibits ferroptosis by
sponge-adsorbing the tumor suppressor gene miR-143-3P and
upregulating the expression of the key protein of ferroptosis-
SLC7A11 (Li et al., 2022). In conclusion, the above study

FIGURE 2
Ferroptosis-related ncRNAs participate in the regulation of urological malignancies.
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provides a novel perspective for the treatment of kidney cancer,
i.e., silencing SLC16A1-AS1 induces ferroptosis in tumor cells by
increasing miR-143-3P levels.

In addition, bioinformatics analyses offer guidelines to effectively
investigate the role of ferroptosis-related ncRNAs in kidney cancer in
the future. For example, risk assessment and diagnostic models based
on five ferroptosis-associated lncRNAs by Shu et al. may help in the
prognosis and diagnosis of kidney cancer (Shu et al., 2021).
Furthermore, there are additional predictive models showing that
ferroptosis-related lncRNAs are associated with changes in drug
resistance, the TME, immune infiltration, immune escape, and TME
in kidney cancer, which may help individualize treatment for patients
(Bai et al., 2022; Liu et al., 2022b; Sun et al., 2022b; Chen et al., 2022;
Yang et al., 2022; Zhou et al., 2022).

Targeting ncRNAs to regulate ferroptosis could be a novel
strategy for the treatment of human malignancies, allowing for
improved individualized treatment for patients with cancer.

4 Conclusion

As a new mode of regulatory cell death, ferroptosis plays a vital
role in the occurrence, development, treatment, and prognosis of
common malignant tumors in the urinary system. The role of
ferroptosis-associated ncRNAs in urological malignancies has
progressed. With advancements in research, a deep
understanding of the pathogenesis of human malignancies has
been obtained. Furthermore, ncRNAs have been shown to
regulate urological malignancies through the ferroptosis pathway
(Figure 2). Non-coding RNAs, marginal molecules that have been
neglected in the past, are expected to affect biological behaviors, such
as proliferation, differentiation, and metastasis, of tumor cells by
regulating gene expression and become therapeutic targets and
diagnostic markers for urinary system malignancies.

The divergent expression of ncRNAs in different urological
tumors provides a theoretical basis for precise individualized
treatment of patients with tumor. However, many challenges
remain in the clinical application of ferroptosis-associated
ncRNAs in urological malignancies. First, the specific regulatory
mechanisms of ferroptosis-related ncRNAs in urological
malignancies are not yet fully understood. Therefore, in-depth
studies are required to determine its clinical application. Second,
there is also a crucial issue that ncRNAs regulate cell death in a
variety of ways, including ferroptosis, apoptosis, necrosis, and
autophagy. Further investigation of the correlations between
ncRNAs and ferroptosis, necrosis, and autophagy could deepen

our understanding of the relationship between gene expression
and cell death. However, the role of ferroptosis-associated
ncRNAs in urological malignancies remains largely unexplored.
This will undoubtedly be one of the key directions for future
research.

We systematically described the roles of several ferroptosis-
associated ncRNAs in common urological malignancies. These
findings not only deepen our understanding of ncRNAs in
urological malignancies but also highlight the prospects of
ferroptosis-related ncRNAs in the development and treatment of
urological malignancies. Overall, targeting ncRNAs to regulate
ferroptosis may help develop novel therapeutic strategies to
overcome the current dilemma in the treatment of urological
malignancies.
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