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Meteorus Haliday, 1835 is a cosmopolitan genus within Braconidae
(Hymenoptera). They are koinobiont endoparasitoids of Coleoptera or
Lepidoptera larvae. Only one mitogenome of this genus was available. Here,
we sequenced and annotated threemitogenomes ofMeteorus species, and found
that the tRNA gene rearrangements in these mitogenomes were rich and diverse.
Compared with the ancestral organization, only seven tRNAs (trnW, trnY, trnL2,
trnH, trnT, trnP and trnV) were conserved and trnG had its own unique location in
the four mitogenomes. This dramatic tRNA rearrangement was not observed in
mitogenomes of other insect groups before. In addition, the tRNA cluster (trnA-
trnR-trnN-trnS1-trnE-trnF) between nad3 and nad5 was rearranged into two
patterns, i.e., trnE-trnA-trnR-trnN-trnS1 and trnA-trnR-trnS1-trnE-trnF-trnN.
The phylogenetic results showed that the Meteorus species formed a clade
within the subfamily Euphorinae, and were close to Zele (Hymenoptera,
Braconidae, Euphorinae). In the Meteorus, two clades were reconstructed: M.
sp. USNM andMeteorus pulchricornis forming one clade while the remaining two
species forming another clade. This phylogenetic relationship also matched the
tRNA rearrangement patterns. The diverse and phylogenetic signal of tRNA
rearrangements within one genus provided insights into tRNA rearrangements
of the mitochondrial genome at genus/species levels in insects.
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1 Introduction

Braconidae is one of the most species-rich families of Hymenoptera, including
42 subfamilies represented by over 1,100 genera and more than 21,220 known species
(Chen and van Achterberg, 2019). Meteorus Haliday, 1835 is a cosmopolitan genus within
Euphorinae and more than 300 species have been described (Fujie et al., 2021). They are
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koinobiont endoparasitoids of Coleoptera or Lepidoptera larvae,
and some of their hosts are considered pest insects, including some
major pests such as Agrotis ipsilon,Helicoverpa armigera, Lymantria
dispar and Spodoptera frugiperda (Yu et al., 2016). Several final-
instar larvae of Meteorus can produce cocoons suspended by a
common cable, and the cocoon architecture is one of the key
characters for identifying these species (Fujie et al., 2021).

The mitochondrial genomes show extremely high rates of gene
rearrangements in Hymenoptera compared with other orders in the
Hexapoda (Wei et al., 2010; Li et al., 2016). Gene arrangements in the
mitochondrial genome can be divided into two types: major
rearrangements involving protein-coding genes (PCGs) and rRNAs
and minor rearrangements involving tRNAs only based on gene type
(Chen et al., 2016). The PCGs rearrangements have been found in
Aculeata, Ceraphronoidea, Chalcidoidea, Cynipoidea, Gasteruptiidae,
Ichneumonoidea and Trigonaloidea, while the tRNAs rearrangements
occur in each family in Hymenoptera (Tang et al., 2019). In addition,
rearrangements of the rRNAs have been found in Cynipoidea,
Chrysidoidea and Megalyroidea (Tang et al., 2019; Zheng et al.,
2021; Shu et al., 2022). In Braconidae, PCGs order is relatively
conservative, while tRNA rearrangement patterns within subfamilies
have a better taxon representation (Li et al., 2016; Jasso-Martinez et al.,
2022a). Such tRNA rearrangement patterns are typically restricted to
specific lineages, which can help with phylogenetic reconstruction in
Braconidae at the subfamily level (Li et al., 2016).

Here, we re-sequenced the mitogenome of Meteorus
pulchricornis and newly obtained two other Meteorus
mitogenomes by next-generation sequencing. We further
analyzed the main features of the three mitogenomes. Then we
compared gene rearrangements of four known mitogenomes within
the genusMeteorus. Finally, we confirmed the phylogenetic position
of Meteorus within Braconidae based on mitogenome data.

2 Methods

2.1 Sample collection and DNA extraction

M. pulchricornis, M. sp. 1 and M. sp. 2 were all collected in the
Chinese provinces of Zhejiang (Ningbo city), Guizhou (Guiyang
city), and Hebei (Shijiazhuang city), respectively. The specimens
were morphologically identified by Prof. Cornelis van Achterberg
(Zhejiang University, China). All specimens were initially preserved
in 100% ethanol and then stored at 4 °C before DNA extraction.
Whole genomic DNA was extracted from every sample using the
DNeasy tissue kit (Qiagen, Hilden, Germany).

2.2 High throughput sequencing and
assembly

The libraries were prepared for each DNA sample using the
VAHTS® Universal DNA Library Prep Kit. All constructed libraries
were then sequenced as 150 bp paired-end on a full run (2 × 150 PE)
using MGISEQ2000 platform. FastQC v0.11.9 (Andrews, 2015) was
used to check the data quality, and fastp v0.23.1 (Chen et al., 2018) was
used to trim adaptors and remove low quality reads with default
parameters. More than 5 GB of clean data for each sample was used

in de novo assembly. The mitogenomes were assembled using MitoZ
v2.3 (Meng et al., 2019), IDBA v1.1.3 (Peng et al., 2012) and SPAdes
v3.13.0 (Bankevich et al., 2012) with default parameters, respectively.
Subsequently, to verify the accuracy of de novo assembly, one fragment
in the cox1-cox2 junction was amplified with primers (C1-J-2195: 5’-
TGATTTTTTGGGCATCCTGAAGT-3’, C2-N-3665: 5’-CCACAA
ATTTCAGAACATTGACC-3’) for three species by polymerase
chain reaction (PCR) and was then Sanger-sequenced. Finally, all
assemblies were then integrated with GENEIOUS v2020.0.5
(Biomatters Ltd. San Diego, CA, United States).

2.3 Mitochondrial genome annotation and
analysis

Three assembled mitogenomes were annotated using MITOS
web server (http://mitos.bioinf.uni-leipzig.de/index.py; accessed on
15 November 2022) (Bernt et al., 2013). The start and stop positions
of 13 PCGs were manually adjusted and corrected by aligning
published data of the Braconidae species in GenBank. tRNAScan-
SE (Chan et al., 2021) was used to verify the results of putative tRNA
genes. Nucleotide composition, codon usage, and relative
synonymous codon usage (RSCU) values were estimated using
MEGA 11 (Tamura et al., 2021). The bias of nucleotide
composition was measured as AT-skew = (A − T)/(A + T) and
GC-skew = (G − C)/(G + C) (Perna and Kocher, 1995). The gene
rearrangements in Meteorus mitogenomes were analyzed by
comparison with the ancestral insect mitogenomes (Boore, 1999).

2.4 Phylogenetic analysis

A total of 21 Braconidae mitogenomes were used for phylogenetic
analyses, including three newly obtained mitogenomes. Two
Ichneumonidae species, Euceros kiushuensis and Diadegma
semiclausum, were used as outgroups (Supplementary Table S1). The
PCGs were aligned using MAFFT v7.464 (Katoh and Standley, 2013)
with the default algorithm, and the best partition schemes and
substitution models (Supplementary Table S2) for the datasets were
analyzed by PartitionFinder v1.1.1 (Lanfear et al., 2012). Bayesian
inference (BI) and maximum likelihood (ML) were selected to
reconstruct the phylogenetic trees. For BI analysis, MrBayes v3.2.7a
(Ronquist and Huelsenbeck, 2003) was used to run four independent
Markov chains for 100million generations, with tree sampling occurring
every 1,000 generations and a burn-in of 25% of the trees. The
stationarity of the run was assessed by Tracer v1.7. (ESS values >200)
(Rambaut et al., 2018). Maximum likelihood (ML) analysis was
performed with RAxML-HPC2 v8.2.12 (Stamatakis, 2014) under the
GTRGAMMA model. A total of 200 runs for different individual
partitions were conducted with 1,000 bootstrap replicates.

3 Results and discussion

3.1 Mitochondrial genome organization

The mitogenomes of three Meteorus species were successfully
obtained, and the newly sequenced mitogenomes were submitted to
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GenBank (accession numbers: OP832526 - OP832528)
(Supplementary Table S1). All sequences were nearly complete
mitogenomes, measuring 15,590 bp for M. pulchricornis,
15,799 bp for M. sp. 1, and 16,639 bp for M. sp. 2. In all
assembled mitogenomes, all 13 protein-coding genes (PCGs),
22 tRNA genes, and two rRNA genes were found (Figure 1).
Non-etheless, the A-T control region was incomplete in all
genomes due to the high A+ T content in the Hymenoptera
mitogenomes (Zheng et al., 2021; Jasso-Martinez et al., 2022a).

The mitogenome of M. pulchricornis contained 19 non-coding
regions ranging in size from 1 to 67 bp, with a total length of
407 bp. The nucleotides from 8 overlap regions were up to 22 bp in
total. The maximum overlap length was 7 bp, located at two
junctions (atp8-atp6, nad4-nad4l), while the minimum overlap

length was 1 bp and occurred at four junctions (atp6-cox3, trnA-
trnR-trnN, trnT-trnP). M. sp. 1 had 18 non-coding regions with
lengths ranging from 1 to 83 bp, for a total of 303 bp. The
nucleotides from 5 overlap regions amounted to 18 bp in total.
Two junctions (atp8-atp6, nad4-nad4l) had overlaps of 7 bp in
length. M. sp. 2 possessed 23 non-coding regions ranging from
1 to 465 bp in length and a total length of 1,138 bp, which had the
longest intergenic nucleotides among the three Meteorus
mitogenomes. It had 3 overlap regions with a total of 12 bp in
length. Three junctions (nad4-nad4l, atp8-atp6, and trnE-trnF) had
overlaps of 7 bp, 4 bp and 1 bp in length, respectively. The length of
overlap (4 bp) at the junction atp8-atp6 in the mitogenomes of M.
sp. 2 was unusually short compared to that of other wasps, which
was typically 7 bp (Zhu et al., 2018; Tang et al., 2019).

FIGURE 1
Mitochondrial maps of three Meteorus species.

FIGURE 2
Relative synonymous codon usage (RSCU) of three Meteorus species. Codon families are provided on the X-axis along with the different
combinations of synonymous codons that code for that amino acid. RSCU is defined on the Y-axis. MP,Meteorus pulchricornis; M1,Meteorus sp. 1; M2,
Meteorus sp. 2.
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3.2 Nucleotide composition

The A + T content for the sequenced region of the mitogenomes
was 84.41% (M. pulchricornis), 82.70% (M. sp. 1) and 84.31% (M. sp.2)
(Supplementary Table S3), which was similar to other wasp species
(Tang et al., 2019). All 13 PCGs were detected in the newly generated
mitogenomes, with sizes ranging from 11,063 bp (M. sp. 1) to 11,120 bp
(M. sp. 2). The entire A + T content of all the PCGs was from 80.48%
(M. sp. 1) to 83.37% (M. pulchricornis) (Supplementary Table S3). The
size of the PCGs in the three mitochondrial genomes was similar to
other wasps (Zheng et al., 2021; Shu et al., 2022; Zheng et al., 2022).
The AT-skew in three Meteorus mitogenomes was negative
(−0.1574 to −0.1479), and the GC-skew was positive

(0.0662–0.1088) (Supplementary Table S3). All 22 typical tRNA
genes were found in three mitogenomes. The size of all tRNA genes
identified ranged from 57 bp to 72 bp (Supplementary Table S4). Two
rRNA genes (rrnS and rrnL) were identified in all mitogenomes. The
length of rrnS was 764 bp (M. pulchricornis), 735 bp (M. sp. 1) and
790 bp (M. sp. 2), and the size of rrnL was 1,253 bp, 1,325 bp and
1,347 bp, respectively (Supplementary Table S3).

3.3 Protein-coding genes and codon usage

The majority of the protein-coding genes used ATN (ATG,
ATT, or ATA), except ATC, as an initiation codon. Although most

FIGURE 3
Mitochondrial gene order inMeteorus genus and ancestral insect. Genes are transcribed from left to right except those underlined, which have the
opposite transcriptional orientation.

FIGURE 4
Phylogenetic analyses of Braconidae based on nucleotide datasets of 13 PCGs. The scale bar corresponds to the estimated number of substitutions
per site. Numbers separated by a slash on the node are posterior probability (PP) and bootstrap value (BV).
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PCGs terminated with the conventional TAA and TAG as stop
codons, some of them have incomplete stop codons (T or TA) in
some PCGs (Supplementary Table S5). The start and stop codons
were typical of insect mitogenomes (Li et al., 2021; Ge et al., 2022).
Relative synonymous codon usage (RSCU) values of threeMeteorus
species were analyzed (Figure 2; Supplementary Table S6). The total
codon number of these three species was 3,689, 3,677 and 3,695,
respectively. The codon GCG was not detected in all species, while
codons UGC, CGC, AGC and GGC appeared in some species.
Meanwhile, the five most frequently used codons UUA, AUU, UUU,
AUA and AAUwere observed in the mitogenomes due to the high A
+ T content in the mitogenomes. These results are consistent with
other published wasp mitogenomes (Zhu et al., 2018; Zheng et al.,
2022).

3.4 Gene rearrangement

The order of PCGs was relatively conservative in the
mitogenomes of Braconidae. So far, only Stenocorse bruchivora
(Doryctinae), two Chelonus spp. (Cheloninae), and two Cotesia
spp. (Microgastrinae) were found PCGs rearrangement in
mitogenomes (Wei et al., 2010; Jasso-Martinez et al., 2022a;
Yuan et al., 2022). In contrast, tRNA rearrangements occurred
in all known Braconidae mitogenomes (Li et al., 2016; Jasso-
Martinez et al., 2022a). PCG rearrangements did not occur in any
of the four Meteorus mitogenomes studied, but tRNA
rearrangements varied (Figure 3). Only seven tRNAs (trnW,
trnY, trnL2, trnH, trnT, trnP and trnV) were conserved and
trnG had different locations in each of the four mitogenomes.
trnL1 and trnS2 were inverted and exchanged. Furthermore, trnC
was translocated from nad2-cox1 junction to cox3-nad3 junction.
The tRNA cluster (trnA-trnR-trnN-trnS1-trnE-trnF) between
nad3 to nad5 exhibited two distinct patterns. In M. sp. USNM
andM. pulchricornis, trnE was translocated upstream of trnA, and
trnF was rearranged to cox3-nad3 junction, which reduced one
tRNA in the tRNA cluster. InM. sp. 1 andM. sp. 2, the number of
tRNAs between nad3 to nad5 remained at six, and trnN was
translocated downstream of trnF. In addition, the positions of
trnA and trnR were interchanged in M. sp. 2. Interestingly, trnI
and trnM, which were usually conservative in Braconidae
mitogenomes, were translocated from upstream of nad2 to the
nad1-rrnL junction, and trnL2 was duplicated into the nad1-rrnL
junction as well in M. sp. USNM. In summary, the pattern of
tRNAs suggested that M. sp. USNM and M. pulchricornis were
more closely related than the other two species.

The rich and diverse rearrangements presented by the tRNAs in
the genus Meteorus were the first to be found in the Braconidae.
tRNA rearrangements are usually conserved in the same genus in
Hymenoptera (Jasso-Martinez et al., 2022a). Although different
rearrangement of tRNAs within the same genus in Hymenoptera
has been reported in Aphelinidae, Chrysididae and Ichneumonidae
(Zhu et al., 2018; Zheng et al., 2021; Zheng et al., 2022), the tRNA
rearrangements withinMeteorus in Braconidae were more dramatic
than in the aforementioned families, which exhibited only one or
two different tRNA rearrangements in the same genus. To our
knowledge, the various tRNA rearrangement patterns within the
same genus had not been found in the other insects.

3.5 Phylogenetic analysis

In this study, a phylogenetic analysis based on 13 PCGs was
constructed using maximum likelihood and Bayesian methods, in
order to validate the phylogenetic position of Meteorus within
Braconidae (Figure 4). The consensus tree derived from the above
two inferencemethods generated the congruent results.Most nodes had
significantly supported bootstrap and posterior probability values. The
tree recovered the well-accepted major lineages within the family and
supported the division of Braconidae into cyclostomes and non-
cyclostomes as generally accepted (Jasso-Martinez et al., 2022a;
Jasso-Martinez et al., 2022b). Meanwhile, consistent with previous
studies, within the non-cyclostomes, Euphorinae was recovered as a
sister clade to the remaining non-cyclostomes (Jasso-Martinez et al.,
2022b). The four Meteorus species formed a clade within Euphorinae,
and were close to Zele chlorophthalmus rather than Dinocampus
coccinellae. In the Meteorus, the species were clustered in two clades:
one comprised ofM. sp. USNMandM. pulchricorniswhileM. sp. 1 and
M. sp. 2 grouped together in the second clade. This structure matched
the tRNA rearrangement result presented above.

4 Conclusion

In this study, three Meteorus mitogenomes were newly acquired
using next-generation sequencing method, which expanded the data of
mitochondrial genomes in the subfamily Euphorinae. Three
mitogenomes of Meteorus spp. shared similar A + T content, AT-
and GC-skew, and codon usage of PCGs, however,M. sp. 2 had longer
intergenic nucleotides. Each mitogenome among the Meteorus
spp. displayed dramatic divergent gene rearrangements within the
same genus that had not previously been reported. The pattern of
tRNAs between nad3 to nad5 had two types, trnE-trnA-trnR-trnN-
trnS1 and trnA-trnR-trnS1-trnE-trnF-trnN. The BI and ML analyses
showed consistent topology, Meteorus species formed a clade within
Euphorinae, and were close to Zele. Two clades were reconstructed for
theMeteorus, which matched the tRNA rearrangement patterns. In the
future, more mitochondrial genomes from the same genus are needed
to display further details of tRNA rearrangements. The diverse and
phylogenetic signal of tRNA rearrangements within one genus may
provide insights into the potential mechanism of tRNA rearrangements
in the same genus and the phylogenetic relationships of taxa at the
genus level.
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