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Septic shock as a subset of sepsis, has a much higher mortality, while the
mechanism is still elusive. This study was aimed at identifying core
mechanisms associated with septic shock and its high mortality by
investigating transcriptome data. We screened 72 septic-shock-associated
genes (SSAGs) with differential expression between septic shock and sepsis in
the discovery dataset. Further gene set enrichment analysis identified upregulated
neutrophil activation and impaired T-cell activation in septic shock. Co-
expression analysis revealed nine co-expressed gene modules. In addition, we
determined twenty-one prognostic SSAGs using cox regression analysis in an
independent dataset. Moreover, protein–protein interaction (PPI) network
revealed two clusters. Among these neutrophil activation was enriched in the
most positively-related modules and the cluster2 PPI network, while T-cell
activation was enriched in both the most negatively-related module and one
of the most positively-related modules as well as the cluster1 PPI network. ELANE,
LCN2 and IFI44 were identified as hub genes with CytoHubba methods and
semantic similarity analysis. Notably, ELANEwas the only prognostic gene andwas
further validated in an external dataset. Blood neutrophil count was demonstrated
to increase in septic shock and be a risky factor of prognosis based on clinical data.
In conclusions, septic shock is associated with upregulated neutrophil activation
and dysregulated T-cell activation. Three hub genes might have potentials as
sensitive markers for the further translational research and ELANE could be a
robust prognostic biomarker and effective therapeutic target.
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1 Introduction

Sepsis is known as life-threatening organ dysfunction due to a
dysregulated host response to infection (Singer et al., 2016), which
has been a major global health concern because of high mortality
and unacceptable hospital costs (Reinhart et al., 2017). A recent
study reported a total of 11.0 million sepsis-related deaths in an
estimated 48.9 million incident cases of sepsis worldwide in 2017
(Rudd et al., 2020). More importantly, the incidence of sepsis has
still steadily increased over the past several decades (Esposito et al.,
2017). Meanwhile, sepsis has been the most expensive condition for
hospital stays in the United States, and the costs continue to increase
(Liang et al., 2006; Torio and Andrews, 2006; Torio and Moore,
2006). In particular, septic shock, as a subset of sepsis with
underlying circulatory and cellular/metabolic abnormalities
(Singer et al., 2016), has a much higher mortality approaching
40%–60% than 10% of sepsis (Cecconi et al., 2018; Napolitano,
2018).

However, the significant biological and clinical heterogeneity of
sepsis remains a major challenge, which has led to the failure of
clinical sepsis trials of immunotherapy (Rubio et al., 2019). The
understanding of sepsis and septic shock is still limited and keeps
evolving over time. The Third International Consensus Definitions
for Sepsis and Septic Shock (Sepsis-3) was developed in 2016 (Singer
et al., 2016), reflecting improved knowledge on the pathophysiology
of sepsis and septic shock. Importantly, Sepsis-3 led to the new
definition of septic shock by a more restrictive and unambiguous
criteria that the criteria of sepsis and vasopressor therapy needed to
elevate mean arterial pressure ≥65 mmHg and lactate >2 mmol/L
(18 mg/dL) despite adequate fluid resuscitation (Shankar-Hari et al.,
2016; Singer et al., 2016; Napolitano, 2018), which means
distinguishing septic shock from sepsis more clearly than ever
before. In this context, it could be necessary to determine core
mechanisms under the new definition for a more accurate
interpretation of septic shock.

Previous studies of septic shock based on different definitions
have shown several important mechanisms. Tissue hypoxia has been
discussed as an important pathophysiological mechanism under the
action of microbial endotoxins during septic shock (Pavez et al.,
2020). From an immunological perspective, the activation of
monocytes, macrophages and neutrophils was considered to
participate in the intimate mechanism of septic shock (Gorecki
et al., 2021). In particular, polymorphonuclear neutrophils (PMNs)
have been shown to lose their direct antimicrobial functions and
acquire an immunosuppressive action and participate in the
generation of disseminated intravascular coagulation (DIC) when
septic shock develops (Stiel et al., 2018). However, few studies have
focused on the difference between septic shock and sepsis without
shock syndromes. The mechanism of septic shock is not yet fully
understood, and the identification of the core mechanism is still
needed.

In this study, we analyzed the gene expression profiles of patients
between septic shock and sepsis from public databases to identify
core mechanisms associated with septic shock and its high mortality.
Weighted gene co-expression network analysis (WGCNA) was
conducted to identify septic-shock-associated gene modules.
Prognostic genes among septic-shock-associated genes (SSAGs)
were identified to explain the higher mortality at the molecular

level. Combining the protein–protein interaction (PPI) network and
semantic similarity network based on gene annotation, hub genes
were identified with the most connectivity among SSAGs. The main
goal of the present study was to better understand the molecular
changes and screen core mechanisms responsible for the
development from sepsis to septic shock under the new Sepsis-3
definition. For more accurate interpretation, the “sepsis” declared
after in this study refers specifically to sepsis without shock
diagnosis.

2 Materials and methods

2.1 Data source

The included transcriptome data were downloaded from gene
expression omnibus (GEO) databases (http://www.ncbi.nlm.nih.
gov/geo/) (Barrett et al., 2013). Only peripheral blood samples
collected within 24 h of diagnosis or ICU admission were
included. The RNA sequencing data of 91 adult samples
(including 19 septic shock, 20 sepsis, 12 uncomplicated infection
and 40 healthy controls) in the GSE154918 dataset, which were pre-
processed using the DESeq2 package by the contributors (Love et al.,
2014; Herwanto et al., 2021), were used as discovery dataset to
explore genes, modules and mechanisms associated with septic
shock. Additionally, the array data and survival information of
479 adult sepsis samples with a 28-day cumulative death rate
about 23.80% in the GSE65682 dataset were read in R language
to determine the prognostic significance of interested genes in sepsis
patients. The gene expression profiles of GSE65682 were
background-subtracted and normalized by a robust multi-array
average algorithm using the affy package. The row count matrix
of 345 adult sepsis samples including 52 dead and 293 survival
samples in the GSE185263 dataset was downloaded to validate
survival significance of the hub gene.

Clinical blood laboratory examinations data of sepsis and septic
shock patients were extracted from the MIMIC-IV (version 2.0)
database in the physionet (https://physionet.org/content/mimiciv/2.
0/) for the further validation (Goldberger et al., 2000; Johnson et al.,
2022). One of the authors who has finished the required
Collaborative Institutional Training Initiative examination
(Certification number 53459610 for Zhao) can access the
database. The adult ICU stay samples meeting the sepsis-3
definition at the first day of ICU admission were included
(Singer et al., 2016). The patients’ parameters including absolute
neutrophil count, absolute CD3 count (i.e., T cell count), absolute
CD4 count and absolute CD8 count from blood specimens and
survival data were extracted for further analysis. Specifically, we
extracted the max values of neutrophil counts of each ICU stay
within 6 h before ICU admission and 24 h after; while the chart time
requirements of the other three items were limited to 6 h before ICU
admission and 48 h after, concerning their more time costs waiting
for the reports. In our study, the data about neutrophil counts of
8250 ICU stays containing 40.5% septic shock samples and with a
28-day cumulative mortality rate (CMR) about 22.3% were
extracted. However, among them only 69 had the time-limited
data about CD3 counts and 68 had desirable CD4 counts and
CD8 counts due to their less clinical applications. More details
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were shown in Supplementary Table S1. The code used for data
extraction can be available on GitHub (https://github.com/MIT-
LCP/mimic-iv).

2.2 Differential gene expression analysis

Differential expression analysis was conducted using moderated
t-test by the limma R package (Ritchie et al., 2015). The differential
expression cutoff values were set to |log2 fold change (logFC)|≥
1 and adjusted p-value (adj.P) < 0.05. p values were adjusted by the
Benjamini–Hochberg (BH) method.

2.3 Functional enrichment analysis

Functional enrichment analysis was conducted using the
clusterProfiler R package (Yu et al., 2012). Gene set enrichment
analysis (GSEA) based on the rankings of logFC of all genes and
over-representation analysis was utilized to determine enriched
biological process (BP) GO terms and KEGG pathways. The
cutoff of the adjusted p-value by the BH method was set to 0.05.

2.4 Weighted gene co-expression network
analysis (WGCNA)

The weighted co-expression network was constructed using the
WGCNApackage (Zhang andHorvath, 2005; Langfelder andHorvath,
2008). The minimum module size was set to 30, the dendrogram cut
height for module merging was set to 0.2 and the desired minimum
scale free topology fitting index R2 was set to 0.8 to screen optimal soft-
thresholding power. Module eigengene (ME) was defined as the first
principal component of the gene expression matrix of the
corresponding module. The relationships between model eigengenes
and phenotypes were assessed using the Spearman correlation.

2.5 Survival analysis

A univariate Cox proportional hazard regression model was
conducted by the survival R package to screen prognostic factors
from septic-shock-associated DEGs in an independent dataset
(GSE65682), and p values were corrected by the BH method.

2.6 Protein-protein interaction (PPI) network
analysis

The PPI network were constructed based on the DEGs of septic
shock online in the STRING database (http://string-db.org/) (version
11.5) (Szklarczyk et al., 2021). Specifically, the gene list was input into
the multiple protein mode with default parameters. The credibility
was set to 0.40. Disconnected nodes were hidden. Then, the output
table was input into Cytoscape software. CytoHubba, a Cytoscape
plugin, was used to screen potential hub genes by providing
12 topological analysis algorithms (i.e., MCC, DMNC, MNC,
Degree, EPC, Bottleneck, Eccentricity, Closeness, Radiality,

Betweenness, Stress, and Clustering Coefficient) (Chin et al., 2014).
In this research, genes appearing at least 5 times in the top 10 results of
each algorithm were considered as potential hub genes.

2.7 Semantic similarity analysis

Semantic similarities were measured using the GOSemSim
package (Yu et al., 2010; Yu, 2020). The pairwise semantic
similarities were calculated by Wang’s measure algorithm (Wang
et al., 2007) from three aspects, including biological processes (BP),
molecular function (MF) and cellular component (CC). The final
adjacency matrix of semantic similarities between genes was
identified as the geometric means of the similarities from these
three aspects. The candidate hub genes were screened according to
the decreasing order of average semantic similarities of each gene.

2.8 Immune cell correlation estimation

To estimate the immune cell fractions, CIBERSORTx, a suite of
machine learning tools (https://cibersortx.stanford.edu/), was used
to perform a deconvolution algorithm based on bulk expression
profiles (Newman et al., 2019). The correlation between hub genes
and cell fractions in the GSE65682 dataset was estimated using the
Spearman rank correlation coefficient.

2.9 Clinical investigation of neutrophil and
T-cell counts

To further validate the associations of neutrophils and T-cells with
septic shock, the differences of the neutrophil counts, CD3 counts,
CD4 counts and CD8 counts between septic shock and sepsis were
accessed using two-sample Wilcoxon rank sum test, where the criteria
of the statistical significance was set to p < 0.05 (two-sided). The
prognostic associations were accessed using the univariate Cox
proportional hazard regression model by the survival R package.
Kaplan-Meier (KM) curves were further performed by the
survminer R package to evaluate prognostic association in different
subgroups of sepsis. The optimized cut-off values of each group were
identified using X-tile tool respectively (Camp et al., 2004).

2.10 Software and version

R (version x64 3.6.2) and Cytoscape (version 3.8.2) were used
through the analysis. The artworks were created by Adobe Illustrator
CC (version 64-bit 22.1).

3 Results

3.1 Identification of differentially expressed
genes

As shown in the flowchart in Figure 1, we first analyzed genes
differentially expressed between septic shock (n = 19) and sepsis (n =
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20) groups in the discovery (GSE154918) dataset. A total of
72 septic-shock-associated DEGs were identified as septic-shock-
associated genes (SSAGs) with |logFC>1| and adj.p < 0.05
(Figure 2A), among which 47 genes were upregulated and
25 genes were downregulated in septic shock. The heatmap
showed the overall trend among the course from healthy to
septic shock of the top 25 upregulated and 25 downregulated
genes (Figure 2B). Of note, most of the DEGs showed significant
increases from healthy to infection group, reflecting their possible
participation in the infection-driven mechanisms.

3.2 Septic shock showed excessive
neutrophil activation and impaired T Cell
activation

To explore the mechanism of the development of septic shock,
gene set enrichment analysis (GSEA) was used to provide global
insight to assess the gene expression patterns of septic shock
(Figures 2C, D).

Compared with sepsis group, we found that in septic shock,
significant upregulation of the biological processed related to
neutrophil activation, and those related to T cell activation were
significantly downregulated (Figure 2C). Pathways related to energy
metabolism were significantly upregulated, while the pathways
including antigen presentation, T cell receptor (TCR) signaling
pathways and NK cell mediated cytotoxity were downregulated
(Figure 2D). Excessive neutrophil activation and impaired T cell
activation could be the major characteristics of septic shock.

3.3 Identification of septic-shock-
associated co-expression gene module

After excluding two outliers and setting soft-thresholding power
to 14 (Figures 3A, B), a total of nine co-expression modules were
identified based on the expression profiles of 5,000 genes with most
median absolute deviation (Figure 3C). Correlational analysis
between modules and phenotypes revealed positive correlations
with septic shock of M4, M5, M6 and M7 and negative
correlations of M1, M2 and M3. Moreover, M4 and M6 were
shown to be the most positively related module to septic shock,
while M2 showed the most negative correlation (Figure 3D).

Further over-representation analysis showed M4 and
M6 enriched in processes and pathways about neutrophil
activation while M2 and M6 enriched in those about T cell
activation, suggesting the activation of neutrophil and T cell
activation as key mechanism of septic shock (Figures 3E, F). In
addition, M5 and M7, which showed nearly the highest positive
correlations, were enriched in cell-division-related processes and
RNA-metabolism-related processes, respectively.

Of note, we found modules correlated with neutrophil and T cell
activation in part showed different trend among the step course
from healthy to septic shock (Figure 3D), especially M2 related to
T cell activation showed the most negative correlation with septic
shock and infection as well as the most positive correlation with
sepsis, meanwhile M6 both related to neutrophil and T cell
activation as one of the most positively correlated modules with
septic shock and infection showed the most negative correlation
with sepsis. M4 module, which was related to neutrophil activation
especially neutrophil extracellular trap (NET) formation, showed
positive correlation with infection and septic shock while
unsignificant correlation with sepsis. These findings further
validate the specific transcriptomic changes from sepsis to septic
shock.

However, T-cell-related modules were observed more
perplexing associations that M6 was positively related and
M2 was negatively related to septic shock, meanwhile M6 was
also related to neutrophil activation. To further understand the
functions of M6 in T cell activation, the gene-concept networks were
constructed based on the enrichment analysis of M6 genes and their
gene significances for septic shock (Supplementary Figures S1, S2).
We found neutrophil-related genes showing highly consistent up-
regulations while T-cell-related genes showed correlations in
different directions and no obvious distribution tendency was
observed. Interestingly, several HLA (Human leukocyte antigen)
Class-II molecules, specifically HLA-DPA1 (Major
Histocompatibility Complex, Class II, DP Alpha 1), HLA-DQA1
(Major Histocompatibility Complex, Class II, DQ Alpha 1), HLA-
DRB1 (Major Histocompatibility Complex, Class II, DR Beta 1),
HLA-DMB1 (Major Histocompatibility Complex, Class II, DM Beta
1) and HLA-DPB1 (Major Histocompatibility Complex, Class II, DP
Beta 1), were all downregulated. On the other hand, the
downregulated TCR signalling pathway were inferred based on
the results of GSEA and the enrichment analysis for M2 genes
(Figures 2C, D; Figure 3F). Combining these two findings, the
suppression of the interaction of TCR and HLA-II might be an
important part of the mechanism. Beyond that, the mechanism of
dysregulation of T cell activation was still seemed more complicated.

FIGURE 1
Study workflow. Bioinformatics analysis to screen core
molecular mechanisms associated with septic shock and its high
mortality. PPI, protein-protein interaction networks; GSEA, gene set
enrichment analysis; WGCNA, weighted gene co-expression
network analysis; DEG, Differential expressed gene; PG, prognostic
gene.
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3.4 Identification of septic-shock-
associated prognostic genes

To identify important genes associated with high mortality of
septic shock. Septic-shock-associated DEGs with adjusted
p-value <0.05 using univariate Cox analysis were further screened
as septic-shock-associated prognostic genes. As a result, 21 genes
were screened with significant correlations with 28-day cumulative
death (Figure 4). Among them, 18 genes were identified as risky
factors (log2HR > 0) and three genes were identified as protective
factors. Notably, most of the risky factors belonged to M2, M4 and

M6, which were identified as modules mainly related to neutrophil
and T cell activation. Moreover, M2 showed the most negative
correlation, and M4/M6 were two of the most positively correlated
modules, reflecting their major association with septic shock and its
high mortality.

3.5 Construction of PPI network

The PPI network based on 72 DEGs was distinctly separated into
two clusters, and each of them showed high consistency of the trend

FIGURE 2
Differential gene expression between septic shock and sepsis patients. (A) Differently expressed genes in septic shock (n = 19) vs. sepsis (n = 20)
group. (B) The expression heatmap of 25 top upregulated DEGs and 25 top downregulated DEGs. Hlty, healthy control; ucInf, uncomplicated infection;
Seps, sepsis; Shock, septic shock. (C) Biological processes enriched in septic shock vs sepsis groups. (D) KEGG pathways enriched in septic shock vs.
sepsis groups.
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of expression differences (Figure 5). All of the cluster1 genes were
downregulated in septic shock, while almost all of the cluster2 genes
were upregulated. Interestingly, most of the prognostic genes were
concentrated in cluster2. We also found that most cluster1 genes did

not show significant difference compared with healthy
group. Functional over-representation analysis revealed the
significant enrichment of response to virus and NOD-like
receptor signaling pathway for the cluster1 genes, while

FIGURE 3
Co-expression network construction. (A) Hierarchical clustering dendrogram of adopted samples to detect outliers. (B) Determination of optimal
soft-thresholding power. (C) Hierarchical clustering dendrogram and corresponding modules of involved genes. (D) Correlation heatmap of module
eigengenes and phenotypes. The color of the squares gradually from blue to red represents the Spearman correlation coefficients. (E) Biological
processes enriched in eachmodule, the color and the size of the dots corresponded to the significance of enrichment and the ratio of enriched gene
numbers in the corresponding terms respectively. (F) KEGG pathways enriched in each module, the color and the size of the dots corresponded to the
significance of enrichment and the ratio of enriched gene numbers in the corresponding terms respectively.
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neutrophil-related processes and pathways such as neutrophil
degranulation process and neutrophil extracellular trap (NET)
formation pathway enriched in the cluster2 genes.

3.6 Identification of septic-shock-
associated hub genes

Combining the results of 12 algorithms of cytoHubba app, a
total of nine hub genes, including DEFA4 (Defensin Alpha 4),
IFIT1 (Interferon Induced Protein With Tetratricopeptide
Repeats 1), MMP8 (Matrix Metallopeptidase 8), MPO
(Myeloperoxidase), MX1 (MX Dynamin Like GTPase 1),
RSAD2 (Radical S-Adenosyl Methionine Domain Containing
2), ELANE (Elastase, Neutrophil Expressed), IFI44 (Interferon
Induced Protein 44) and LCN2 (Lipocalin 2), were identified with
at least five appearances in the top 10 results of each algorithm
(Figure 6A).

On the other hand, based on the functional similarity among
SSAGs calculated by the GOSemSim method, the hub genes
including ELANE, IFI44, LCN2, S100A12 (S100 Calcium
Binding Protein A12), CTSG (Cathepsin G), PRTN3
(Proteinase 3), OAS3 (2′-5′-Oligoadenylate Synthetase 3),
IFIT3 (Interferon Induced Protein With Tetratricopeptide
Repeats 3), AZU1 (Azurocidin 1) and GBP1 (Guanylate
Binding Protein 1) with top 10 highest average semantic
similarities were screened (Figure 6A).

We then considered the intersection of the two results above,
specifically ELANE, IFI44 and LCN2, as hub genes with higher
credibility (Figure 6A). ELANE and LCN2 were involved in
neutrophil activation and IFI44 was involved in the response to

the virus (Figure 5). Besides, ELANE and LCN2 showed persistent
increase except for the period from uncomplicated infection to
sepsis and were associated with increased classical monocyte as
well as decreased neutrophils and memory T cells, while IFI44 was
only downregulated in septic shock and showed roughly the
opposite correlations with immune cell fractions (Figures 6B, C).
We noticed ELANE was the only prognostic gene therein, and
further validate its correlation with worse prognosis in an external
dataset (GSE185263) (Figure 6D). According to the results of GSEA,
upregulated neutrophil-related processes were enriched in ELANE-high
group (Figure 6E). Meanwhile, downregulated TCR signaling pathway,
NK cell mediated cytotoxicity and TLR signaling pathway were
enriched (Figures 6E, F).

3.7 Neutrophil count was associated with
septic shock and prognosis

A significant difference of neutrophil counts between septic
shock and sepsis patients was validated (Figure 7A). Neutrophil
counts were higher in septic shock than sepsis (13.70 vs. 10.80,
p < 0.001). Further univariate Cox analysis demonstrated the
prognostic significance of neutrophil count (Figure 7B).
Moreover, KM curves showed the prognostic associations of
neutrophil counts as a risky factor were not only significant for
overall sepsis, but also significant for septic shock and non-shock
sepsis (Figures 7C–E). However, we did not obtain any statistically
different distribution or prognostic association of CD3 count,
CD4 count and CD8 count (Figures 7A, B), which could be
explained by the complicated mechanism of T cell activation or
might be affected by the smaller sample sizes.

FIGURE 4
Prognostic SSAGs. The forest plots of prognostic SSAGs with adjusted p-value less than 0.05 by univariate cox analysis in the GSE65682 dataset. Red
forest plots represent risky factors and green forest plots represent protective factors.
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4 Discussion

Sepsis causes life-threatening organ dysfunction (Singer et al.,
2016), which places a great burden on human society (Fleischmann
et al., 2016). Septic shock, as a subtype of sepsis, has a much higher
mortality approaching 40%–60% than 10% of sepsis alone (Singer
et al., 2016; Cecconi et al., 2018; Napolitano, 2018). It remains a big
challenge to improve early and effective detection and management
as well as the understanding of the mechanisms of septic shock. As
Sepsis-3 revised in 2016 prompted new interests in sepsis
immunobiology (Bermejo-Martin et al., 2016; Singer et al., 2016),
further exploration of related molecular changes and underlying
mechanisms could be helpful for better understanding and targeted
therapy of septic shock. Most of the previous peripheral blood
studies of sepsis were focused on identifying potential

biomarkers, signatures, or endotypes (Scicluna et al., 2017;
Baghela et al., 2022). However, since septic shock is characterized
by circulatory and cellular metabolism abnormalities (Singer et al.,
2016), peripheral leukocytes could be responsible for the
development of septic shock.

Therefore, in the present study, we analyzed differences at the
transcriptome level of peripheral blood between septic shock and
sepsis. We found a significantly upregulated neutrophil activation
and a dysregulated T cell activation at septic shock. The former was
more likely to be associated with hyperinflammation and the latter
could partially be related to suppressed interaction process of TCR
and HLA-II. Interestingly, it could be inferred from the trends of
module eigengenes among the step course from healthy to septic
shock that neutrophils were activated when initially stimulated by
infection, partially suppressed when sepsis (organ dysfunction)

FIGURE 5
PPI network construction and over-representation analysis of cluster genes. PPI network constructed by SSAGs from STRING database, were clearly
divided into 2 clusters. The color of gene nodes indicated log2 fold change. V-shape represented the prognostic genes. The diamond shaped nodes and
the triangle shaped nodes represented enriched biological processes and KEGG pathways correspondingly.
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FIGURE 6
The identification of hub genes in SSAGs. (A) The genes appearing at least 5 times in top 10 results of each algorithmusing cytoHubbawere extracted
(marked in red) and shown in the upset plot, below the SSAGs with top 10 functional similarities estimated by Semantic similarity analysis were shown in
box plots. Three genes were identified as hub genes by overlapping the two results. The gene namesmarkedwith an asterisk indicated them as prognostic
genes. (B) Correlations between hub genes and immune cell fractions. (C) Expression values of hub genes among the course from healthy to septic
shock. (D) ELANEwas significantly upregulated in death (n = 52) vs. survival (n = 293) group of the GSE185263 dataset. (E) Biological processes enriched in
ELANE-high group. (F) KEGG pathways enriched in ELANE-high group.

Frontiers in Genetics frontiersin.org09

Zhao et al. 10.3389/fgene.2023.1132361

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1132361


FIGURE 7
Associations of neutrophils and T cells with septic shock and prognosis of overall sepsis. (A)Comparisons using two-sample Wilcoxon rank sum test
of neutrophil counts between sepsis (n = 4,905) and septic shock (n = 3,345) samples, CD3 count between sepsis (n = 46) and septic shock (n = 23)
samples, CD4 and CD8 counts between sepsis (n = 46) and septic shock (n = 22) samples. ns, non-sense; ****, p < 0.0001. (B) The forrest plots of 4 cell
counts for overall sepsis samples (n = 8,250 for neutrophil count, n = 69 for CD3 count and n = 68 for CD4 and CD8 count). Red forest plots
represent risky factors and green forest plots represent protective factors. (C) The KM curves accessing the prognostic association of absolute neutrophil
count (ANC) in overall sepsis samples. Samples with ANC>18.35 K/uL (n = 1,301) had higher 28-day cumulativemortality than samples with ANC≤18.35 K/
µL (n = 6,949) (31.59% vs. 20.56%, p < 0.0001). (D) The KM curves accessing the prognostic association of ANC in septic shock samples. Samples with
ANC>19.55 K/µL (n = 640) had higher 28-day cumulativemortality than samples with ANC≤19.55 K/µL (n = 2,705) (39.38% vs. 26.84%, p < 0.0001). (E) The
KM curves accessing the prognostic association of ANC in non-shock sepsis samples. Samples with ANC>11.41 K/µL (n = 1827) had higher 28-day
cumulative mortality than samples with ANC≤11.41 K/µL (n = 3,078) (20.63% vs 15.76%, p < 0.0001).
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develops and finally abnormally reactivated involving the NETs
formation under the situation of septic shock, while T cell activation
showed more complicated changes involving modules with different
trends. These could explain the phenotypic change patterns of these
2 cells at the different status from healthy to septic shock. A
retrospective cross-sectional study has identified the neutrophil
lymphocyte ratio (NLR) as a predictor of mortality and antibiotic
responsiveness in ICU patients with septic shock and sepsis (Sari
et al., 2019), suggesting both disorders as an important part of the
mechanism of septic shock.

Neutrophils has been considered to play important and central
roles during the early development of septic shock (Stiel et al., 2018).
Neutrophils are known to acquire an immunosuppressive action
during septic shock and participate in the generation of DIC where
NETs exceed the regulatory and take an essential part (McDonald
et al., 2017; Stiel et al., 2018). On the other hand, neutrophil
activation was also significantly enriched in upregulated DEGs of
septic shock compared with non-septic shock (Martinez-Paz et al.,
2021), indicating the specific participation of excessive neutrophil
activation in septic shock. We further demonstrated its most
correlation with septic shock at the transcriptome level, and we
found most of the prognostic SSAGs were concentrated in the
neutrophil-related modules and cluster, which further revealed
the major association of neutrophil with the high mortality of
septic shock. Moreover, we validated the association of
neutrophil count with the development and prognosis of septic
shock based on the clinical data, indicating the great potential of
neutrophil to help recognizing high-risk patients, and the prospect
as an important line of the further target therapy research.

Septic shock is a time-dependent disease (Peltan et al., 2017).
Early recognition of septic shock and effective targeted therapy in
time could make sense to the practice of precision medicine thus
is helpful to decrease the mortality of septic shock patients.
Therefore, we identified ELANE, IFI44 and LCN2 as hub genes
with the most connectivity, which have the potential to be more
sensitive biomarkers for the detection of septic shock. ELANE
and LCN2 were enriched in neutrophil related processes, while
IFI44 was involved in adaptive-immune-response-related PPI
cluster. As one of the prognostic genes, we noticed that
ELANE was included in M4, enriched in the NET formation
pathway and significantly correlated with neutrophil fractions,
which could be the core part responsible for the high mortality. It
encodes neutrophil elastase (NE), which is a serine protease and
plays a critical role in innate host defense such as microbial killing
(Horwitz et al., 1999; Voynow and Shinbashi, 2021). Under
pathological conditions, NE, as one of the components of
NETs, is released out of control during septic shock and has
been proven to participate in multiple important mechanisms,
such as chromatin decondensation and fibrinogenesis promotion
(Massberg et al., 2010; Papayannopoulos et al., 2010). Besides,
ELANE has been discussed to be involved specifically in the
pyroptosis of neutrophil through mediating the cleavage and
activation of GSDMD (Kambara et al., 2018), consistent with
our findings about the correlation of upregulated ELANE with
increased neutrophil activation and decreased neutrophil
fraction. It has been proven that inhibition of NE synthesis
can inhibit NET formation, reduce lipopolysaccharide (LPS)-
induced acute lung injury in rats (Hagiwara et al., 2008; Okeke

et al., 2020) and can significantly improve the survival rate of
post-CLP septic rats (Kitamura et al., 1994), suggesting the great
translational potential of ELANE as an important therapeutic
target of septic shock. Moreover, previous transcriptomic studies
have been published about identifying ELANE as an important
signature related to the severity (SOFA score) (Baghela et al.,
2022), and prognosis (Ding et al., 2022; Zhang et al., 2022), of
sepsis patients. We further demonstrated the correlation of
ELANE with septic shock and its vital participation in the core
mechanism of septic shock. As for the other two, LCN2 encodes a
secreted protein called neutrophil gelatinase-associated lipocalin
(NGAL). It can be stimulated by Toll-like receptors and is pivotal
in the innate immune response to bacterial infection through
binding bacterial siderophores (Flo et al., 2004). LCN2 has been
proven to differentially expressed between septic shock and sepsis
in surgical patients (Martin-Fernandez et al., 2020), and has been
reported as a potential biomarker of septic-shock-associated
acute kidney injury (Tang et al., 2021). IFI44 is an interferon-
alpha inducible protein associated with infection by several
viruses (Power et al., 2015). The downregulation of
IFI44 could in a way represent the suppressed adaptive
immune response in septic shock. The specific roles of
IFI44 in septic shock have not been defined yet. In summary,
ELANE and LCN2 were enriched in neutrophil activation and
correlated with infection and septic shock, especially ELANE as
the only prognostic gene could participate through NETs
formation and pyroptosis pathways. IFI44 was associated with
adaptive immune response and specifically downregulated in
septic shock. All three hub genes did not show any significant
change between sepsis and uncomplicated infection.

Our study is the first in our knowledge to focus on the
mechanisms about the contribution of peripheral leukocyte to
the development of septic shock under the new Sepsis-3 definition
since 2016. The roles of neutrophil activation and NETs in septic
shock have been reported in previous studies. We further
demonstrated their most correlation with septic shock
combining the WGCNA and PPI network analysis. We
highlighted septic shock as a subset of sepsis with much
higher mortality showing different expression profiles in
peripheral blood. The distinct distribution bias that most of
the septic-shock-associated prognostic genes were concentrated
in neutrophil-related modules and PPI cluster may be worthy of
note. However, there are still some limitations of the study. The
relatively small sample size of GSE154918 could partially limit the
universal implication of our findings, however the consistency
between the results of co-expression network and PPI network
analysis could up to a point improve the credibility and represent
an important endotype of septic shock. More importantly, the
specific phenotypic changes of neutrophil and T cells, for
example, whether ELANE was actually or only upregulated in
neutrophil, and whether or how ELANE-mediated pyroptosis of
neutrophil take part in were still unclear. The underlying cellular
heterogenicity might partially reduce the credibility of our
findings and the further well-designed research with directed
focus is still needed.

Overall, septic shock showed an excessive neutrophil
activation and a dysregulated T cell activation, of which the
former was associated with hyperinflammation and the latter

Frontiers in Genetics frontiersin.org11

Zhao et al. 10.3389/fgene.2023.1132361

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1132361


could partially be related to suppressed interaction process
of TCR and HLA-II. Neutrophil activation may play a core
role during septic shock. ELANE, LCN2 and
IFI44 were identified as hub genes during septic shock, among
which ELANE as a neutrophil-related gene might have the
greatest potential to be a clinical biomarker and therapeutic
target. This study highlighted an important perspective about
septic shock under the new definition and would help in
designing further translational research to improve diagnosis
and treatment.
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Glossary
DEG Differentially expressed gene

SSAG Septic-shock-associated gene

BH Benjamini–Hochberg method

WGCNA weighted gene co-expression network analysis

PPI protein–protein interaction network

CMR cumulative mortality rate

adj.P adjusted p-value

BH Benjamini–Hochberg method

GSEA gene set enrichment analysis

GEO gene expression omnibus

logFC log2 fold change

BP biological process

TCR T cell receptor

HLA Human leukocyte antigen

HLA-DPA1 Major Histocompatibility Complex, Class II, DP
Alpha 1

HLA-DQA1Major Histocompatibility Complex, Class II, DQAlpha 1)

HLA-DRB1Major Histocompatibility Complex, Class II, DR Beta 1

HLA-DMB1Major Histocompatibility Complex, Class II, DMBeta 1

HLA-DPB1 Major Histocompatibility Complex, Class II, DP Beta

ELANE Elastase, Neutrophil Expressed

IFI44 Interferon Induced Protein 44

LCN2 Lipocalin 2

DEFA4 Defensin Alpha 4

IFIT1 Interferon Induced Protein With Tetratricopeptide Repeats 1

MMP8 Matrix Metallopeptidase 8

MPO Myeloperoxidase

MX1 MX Dynamin Like GTPase 1

RSAD2 Radical S-Adenosyl Methionine Domain Containing 2

S100A12 S100 Calcium Binding Protein A12

CTSG Cathepsin G

PRTN3 Proteinase 3

OAS3 2′-5′-Oligoadenylate Synthetase 3

IFIT3 Interferon Induced Protein With Tetratricopeptide Repeats 3

AZU1 Azurocidin 1

GBP1 Guanylate Binding Protein 1

DIC disseminated intravascular coagulation

NET neutrophil extracellular trap

NE neutrophil elastase.
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