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Background: Socioeconomic status (SES) is a potent environmental determinant
of health. To our knowledge, no assessment of genotype-environment interaction
has been conducted to consider the joint effects of socioeconomic status and
genetics on risk for cardiovascular disease (CVD). We analyzed Mexican American
Family Studies (MAFS) data to evaluate the hypothesis that genotype-by-
environment interaction (GxE) is an important determinant of variation in CVD
risk factors.

Methods: We employed a linear mixed model to investigate GxE in Mexican
American extended families. We studied two proxies for CVD [Pooled Cohort
Equation Risk Scores/Framingham Risk Scores (FRS/PCRS) and carotid artery
intima-media thickness (CA-IMT)] in relation to socioeconomic status as
determined by Duncan’s Socioeconomic Index (SEI), years of education, and
household income.

Results: We calculated heritability for FRS/PCRS and carotid artery intima-media
thickness. There was evidence of GxE due to additive genetic variance
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heterogeneity and genetic correlation for FRS, PCRS, and CA-IMT measures for
education (environment) but not for household income or SEI.

Conclusion: The genetic effects underlying CVD are dynamically modulated at the
lower end of the SES spectrum. There is a significant change in the genetic
architecture underlying the major components of CVD in response to changes
in education.

KEYWORDS

GxE, CVD (cardio vascular disease), Duncan’s SEI, SES, Mexican Americans, Framingham
10-year general cardiovascular disease risk, linear mixed model

Introduction

Cardiovascular disease (Tsao et al., 2022) (CVD) is a significant
cause of mortality globally (Barquera et al., 2015; Joseph et al., 2017;
Roth et al., 2020) and is the leading cause of mortality in the
United States (US) (Ahmad and Anderson, 2021; Murphy et al.,
2021; Tsao et al., 2022). The stall and even decline in US life
expectancy since 2010 is primarily due to CVD mortality (Roth
et al., 2018; Mehta et al., 2020). A study of high-income countries,
including Austria, Belgium, Germany, Italy, Netherlands, Sweden,
Switzerland, and the United Kingdom, similarly implicated CVD
mortality as a leading cause of life expectancy decline (Ho and
Hendi, 2018).

Results from the Whitehall I Study, conducted over 4 decades
ago, and the Whitehall II study, conducted 2 decades later,
demonstrate a social gradient describing an inverse relationship
between mortality (particularly CVD mortality) and morbidity, and
socioeconomic status (SES) (Mar et al., 1978; Rose and Marmot,
1981; Marmot, 1982; Marmot and Wilkinson, 1986; Marmot, 1989)
The pattern of an inverse relationship between mortality and
morbidity outcomes and socioeconomic status (SES)
determinants has since been substantiated across numerous
studies. (Marmot et al., 1991; Marmot and Bartley, 2002;
Marmot, 2003; de Mestral and Stringhini, 2017; Tillmann et al.,
2017; Schultz et al., 2018; Carter et al., 2019; Rosengren et al., 2019;
Yusuf et al., 2020; Powell-Wiley et al., 2022). The disparities in
mortality and obesity-related health issues by SES are increasing,
worsening the social gradient (Bosworth, 2018) particularly
prevalent in Mexican Americans (Hazuda et al., 1988; Hazuda
et al., 1991).

We conducted a statistical genetic investigation of the potential
role of genotype-by-environment interaction (GxE) inmediating the
social gradient related to CVD. SES is a composite environment that
dynamically modulates the genetic architecture underlying CVD
mortality andmorbidity phenotypes. Our approach tests predictions
derived from the general hypothesis that the complex genotype-
phenotype map governing CVD outcomes is dependent upon or a
function of the SES environment. Using three measures of SES
[household income (INC), education years (EDU), and Duncan’s
socioeconomic index (SEI)], we assessed the evidence for genotype
by socioeconomic status in the Mexican American Family Studies
(MAFS). We investigate potential genotype-by-SES interaction
(GSI) influencing several atherosclerosis or CVD risk measures.
Since there are no specific risk-scores for Mexican Americans, we
used the established Framingham Risk Score (FRS-08), which was
developed initially as a 10-year atherosclerosis risk assessment

(Wilson et al., 1998) and later revised in 2008 as a more general
CVD risk prediction algorithm; (D’Agostino et al., 2008); and the
American College of Cardiology/American Heart Association (ACC/
AHA) atherosclerotic CVD risk score, (Goff et al., 2014), which is a
10-year risk of atherosclerosis score (Pooled Cohort Equation Risk
Score) developed for African Americans (PCE-AA) and Caucasian
Americans (PCE-CA) (Boateng et al., 2018; Topel et al., 2018; Wang
et al., 2018; Rospleszcz et al., 2019; Ko et al., 2020; Wekesah et al.,
2020). Our measures of CVD risk (based on research published by
our research team) include quantitative measures of carotid intima-
media thickness (IMT), including the common carotid artery IMT
(CCAIMT), common carotid artery far-wall IMT (CCAFIMT),
internal carotid artery IMT (ICAIMT), and internal carotid artery
far-wall IMT (ICAFIMT). (Tsao et al., 2022; Centurión, 2016; Polak
and O’Leary, 2016; Melton et al., 2013).

We propose that SES acts at the cellular and molecular levels to
modify gene expression regarding the risk of CVD and that this can
be captured by GSI modeling.

Materials and methods

The Institutional Review Board at the University of Texas Health
Science Center at San Antonio approved the MAFS study protocols.
All study participants provided written informed consent.

Study population

As described by our team in earlier publications, the MAFS
population (1431) comprises large Mexican American extended
families (42) randomly ascertained with respect to CVD or
comorbidities (Hazuda et al., 1988; Hazuda et al., 1991; Mitchell
et al., 1996; MacCluer et al., 1999). The probands were recruited
from a single census tract of a low-income San Antonio, Texas
neighborhood. Inclusion criteria included the proband age between
40 years and 60 years, a spouse willing to participate in the study,
and at least six relatives [first-, second-, and third-degree relatives of
the proband (≥16 years) and of the probands spouse] available to
participate in the study. Surveys determined social, behavioral, and
lifestyle factors (past medical history, educational background,
household income level, reproductive history, and smoking and
alcohol use) related to cardiovascular risk. Established
questionnaires accessed physical activity and food frequency
(physical activity measured in units of metabolic-equivalent-tasks
(METs), Stanford 7-Day Physical Activity Recall Instrument, and
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data on dietary intake variables (food frequency questionnaire
developed specifically for the Mexican American population of
San Antonio) (Hazuda et al., 1991).

Phenotypic assessments

Traditional MS risk factors [fasting glucose (mg/d), fasting insulin
(u/mL), 2-h glucose (mg/dL), leptin (ng/mL), high-density lipoprotein-
cholesterol (mmol/L), triglycerides (mmol/L), total serum cholesterol
(mmol/L), 2-h insulin (u/mL), body mass index (kg/m2), waist
circumference (cm), systolic blood pressure (mmHg), diastolic blood
pressure (mmHg) were collected on all participants (Mitchell et al.,
1996;MacCluer et al., 1999).We excluded 291 individuals with diabetes,
diabetes medications, hypertension, or dyslipidemia to account for the
impact of altered metabolism due to disease or medication (Final
sample size = 1140 individuals).

Interview data

We collected DM status, DM medications, HTN medications,
dyslipidemia medications, smoking history, leisure time, physical
activity-work, total physical activity, diet intake-protein (g/d), carb
(g/d), saturated fat (g/d), monosaturated fat (g/d), polyunsaturated
fat (g/d), cholesterol (g/d), sucrose (g/d), alcohol (g/d)]. Our SES
variables obtained at interview were INC, and EDU where SEI was
computed following the method in (Hazuda et al., 1988; Hazuda
et al., 1991). This variable was used as our index of the SES
environment in all our GxE analyses.

Heart disease risk and carotid artery intima-
media thickness

The 10-year atherosclerosis scores were computed by applying the
appropriate formulas to the requisite MAFS data for the FRS, PCE-AA,
and PCE-CA (D’Agostino et al., 2008; Goff et al., 2014). The PCE scores
were also race-specific. All three risk scores used age, total cholesterol
(TC), high-density lipoprotein-cholesterol (HDL-C), systolic blood
pressure (SBP), diabetes status, and smoking status as predictors. The
PCE algorithms variably modeled interactions (depending on their
statistical significance) between age and the other main predictors,
whereas the FRS algorithm did not. The protocol for measuring the
intima-media thicknesses is reported by Melton et al. (2013).

Statistical analysis

The polygenic model

Our statistical genetic approach is a linear mixed model, where
for a generic phenotype vector y we write:

y � Xβ + g + e,

where X is a matrix of covariates augmented at the left by a column
of 1s, β is a vector of the intercept parameter and corresponding

regression coefficients, and g and e are unobserved random genetic
and environmental effects, respectively. (Blangero et al., 2013; Diego
et al., 2015a) The phenotypic covariance matrix, denoted by Σ, is
given as:

Σ � Kσ2g + Iσ2e ,

where K and I respectively, give genetic relationship and identity
matrices, and σ2g and σ

2
e are correspondingly the additive genetic and

environmental variance components. We report the heritability (h2)
of each trait under this “polygenic”model, defined as the ratio of the
additive genetic variance to the total phenotypic variance,
h2 � σ2g

σ2g+σ2e �
σ2g
σ2p
. This is a coarse measure of the extent of genetic

effects underlying a trait (Blangero et al., 2013; Diego et al., 2015a).
Each phenotype was regressed against age, sex, age-squared, sex-by-
age, and sex-by-age-squared, and then the regression residuals
derived for each trait were normalized using a normal inverse
transformation (Blangero et al., 2013). There were no sex-specific
effects following the genotype-by-sex-interaction model (Diego
et al., 2015b).

Modeling genotype-by-environment
interaction for continuous environments

The polygenic model is used to obtain estimates of trait
heritabilities and as a model reference point upon which more
complex models can be elaborated. For a sample of related
individuals, assuming fully uncorrelated genetic and
environmental effects, the polygenic model posits that the
phenotypic covariance is decomposable into additive genetic and
residual environmental variance components and that inter-
individual covariances will be given strictly by the additive
genetic variance weighted by the genetic relatedness coefficient.
The latter feature of the polygenic model makes two implicit
assumptions regarding the genetic covariance: that the pairwise
genetic correlation is unity, and that the additive genetic variance
is homogeneous.

Under the general GxE model, we relax these assumptions by
expressing both the additive genetic variance and genetic
correlations as continuous functions of a specific environment to
capture any potential interaction between the genetic effects (i.e., the
additive genetic variance and/or genetic correlation) and the specific
environment. The null hypothesis under this extension is that the
expression of the aggregate of all genotypes underlying a phenotype
(polygenotype) is independent of the specific environment.
Rejection of this null implies that the genotype-phenotype map
for the trait in question depends on a specific environment or, in
other words, is a function of the specific environment. We propose
that the extent to which the genotype-phenotype interaction
depends on a function of the environment can be captured by
modeling the GxE variance. For the simplest case of contrasting two
different SES environments, for example, high versus low levels of
income, the GxE variance is zero if the following two conditions are
simultaneously true: homogeneity in the additive genetic variance:
σ2g1 � σ2g2 � σ2g, where σ

2
g1 and σ

2
g2 are the additive genetic variances

in environments 1 and 2 (low and high-income levels in the current
example), respectively; the genetic correlation (ρg) is one across
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environments: ρg � 1. Denoting the GxE variance as σ2gΔ, we have
the expression:

σ2gΔ � σ2g1 + σ2g2 − ρgσg1σg2 ∀σ2g1 ≠ σ2g2
2σ2g 1 − ρg( ) ∀σ2g1 � σ2g2 � σ2g

{
There is GxE evidence if either null hypothesis is rejected (Diego

et al., 2003; Diego et al., 2007; Santos et al., 2014; Arya et al., 2018;
Manusov et al., 2022). Rejection of either or both is evidence that the
phenotypic response to the environment has a genetic basis.

We now extend this theory to a spectrum of such measures to
model GxE for continuous SES environments as opposed to two
levels of the SES variable. To this end, we employ variance and
correlation functions (Diego et al., 2003; Diego et al., 2007; Santos
et al., 2014; Arya et al., 2018; Manusov et al., 2022), which we now
define as:

σ2
g � exp αg + γg qi − �q( )[ ], and ρg � exp −λg qi − qj

∣∣∣∣ ∣∣∣∣( ),
where the additive genetic variance is re-parameterized as an
exponential function of the value of the environmental variable q
for the ith individual, qi, scaled against the sample mean, �q, and
where the genetic correlation is re-parameterized as an exponential
decay function of the difference of environmental variables for any
pair of individuals i and j, and where αg, γg, and λg are parameters
to be estimated. These functions can be interpreted as the variance
and correlation functions of a Gaussian stationary stochastic
process, (Kirkpatrick and Heckman, 1989; Pletcher and Geyer,
1999; Jaffrézic and Pletcher, 2000; Pletcher and Jaffrézic, 2002;
Diego et al., 2003; Meyer and Kirkpatrick, 2005) where the index
variable of the process is one of the three quantitative SES variables.
The statistical null hypotheses under the re-parameterizations is
defined by variance homogeneity and genetic correlation
stationarity at unity, respectively, is for γg � 0 and λg � 0. To
guard against model misspecification bias, we also model the
residual environmental variance as a function of the environment
in the same way as the additive genetic variance. We now define a
genetic covariance matrix Ψ � ψij{ }, with elements given by the
variance and covariance functions of a Gaussian stationary
stochastic process:

ψij �
σ2g ∀i � j; qi � qj
σ iσjρg ∀i ≠ j; qi ≠ qj

{

�
exp αg + γg qi − �q( )[ ] ∀i � j; qi � qj

exp αg + γg qi − �q( )[ ]{ } 1
2 exp αg + γg qj − �q( )[ ]{ } 1

2

exp −λg qi − qj
∣∣∣∣ ∣∣∣∣( ) ∀i ≠ j; qi ≠ qj.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�
exp αg + γg qi − �q( )[ ] ∀i � j; qi � qj

exp αg + 1
2 γg qi + qj − 2�q( ) − λg qi − qj

∣∣∣∣ ∣∣∣∣[ ] ∀i ≠ j; qi ≠ qj.

⎧⎪⎨⎪⎩
We then posit a diagonal matrix Δ � diag δii{ } with diagonal

elements containing the residual environmental variance function,
δii � exp[αe + γe(qi − �q)]. The covariance matrix for this GxEmodel
for continuous environments is now given as follows:

Σ � K ⊙ Ψ + Δ,

where ⊙ denotes the Hadamard matrix multiplication operator. The
continuous environment (i.e., the index of the Gaussian stationary

stochastic process) analyzed under this model is INC, EDU, or SEI
taken one at a time.

To ensure that we are highlighting the potential for SES environments
to modulate the genotype-phenotype map, we employ Best Linear
Unbiased Prediction (BLUP) methods to extract any associated
additive genetic effects influencing EDU, INC, and SEI. (Quillen et al.,
2014; Diego et al., 2015a; Porto et al., 2018). BLUP accounts for additive
genetic and environmental covariances among relatives based on known
pedigree structure (Diego et al., 2015a). We then subtracted the BLUP
genetic values from the original SES variable to get a BLUP-computed
version of that variable that reflects primarily environmental effects (Diego
et al., 2015a; Manusov et al., 2022). This lattermost variable is our GXE
models’ focal (genetically corrected) environment.

Statistical inferential theory

For the basic polygenic model, denote the parameter vector by
θ � [β, σ2g, σ2s , σ2e]′ and the residuals vector by r � (y − Xβ). On
assuming multivariate normality of the phenotype vector, the log-
likelihood function is:

lnL θ
∣∣∣∣y,X( ) � −1

2
Nln2π + ln Σ| | + r′Σ−1r[ ].

The statistical genetics package SOLAR (http://solar-eclipse-
genetics.org/brief-overview.html) was used to obtain the model
likelihoods, maximum likelihood estimates (MLEs) of model
parameters, and their standard errors (SEs) (Almasy and
Blangero, 1998). Hypothesis tests were performed by way of the
likelihood ratio test (LRT) statistic, denoted as Λ:

Λ � −2 lnL θN( ) − lnL θ̂( )[ ],
where θN denotes the parameter vector where a single parameter of
interest is constrained to 0, all other parameters are unconstrained
or free to be estimated at their MLEs for that model, and θ̂ denotes
the fully unconstrained parameter vector where all parameters are
estimated at their MLEs. As detailed above, this likelihood-based
inferential procedure is extended to the GEI model by specifying the
covariance matrix, Σ, and modifying the parameter vector, θ.

We adopted a two-stage hypothesis testing approach that our
team has implemented to analyze GxE models of biomedically
significant trait-environment dyads (Santos et al., 2014; Arya
et al., 2018; Manusov et al., 2022). In the first stage, we examined
if the overall GxE model provided a better fit to the data when
compared with the polygenic model by the LRT. It is important to
note that the polygenic model is nested within the full GxE model
and that relative to the polygenic model, the GxE model has three
additional parameters (γg, γe, and λg; where αg and αe are re-
parameterized versions of the variances). The LRT statistic for this
comparison is distributed as a 50:50 mixture of chi-squares with
2 and 3 degrees of freedom (df) (Diego et al., 2003; Diego et al., 2007;
Santos et al., 2014; Arya et al., 2018; Manusov et al., 2022).

In the second stage, we examined themore specificGxE hypotheses.
The full GxE model with all parameters estimated was compared with
models when either γg or λg was constrained to 0 to test the hypotheses
of additive genetic variance homogeneity and a genetic correlation equal
to one. The distributions of the LRT statistics are a chi-square with 1 df
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and a 50:50 mixture of a chi-square with a point mass at 0 and a chi-
square with 1 df. (Diego et al., 2003; Diego et al., 2007; Santos et al.,
2014; Arya et al., 2018; Manusov et al., 2022) Regarding the residual
environmental variance function, γe was constrained to 0 to test for
homogeneity, where the LRT for this test is distributed as a chi-square
with 1 df. As part of this stage, we determined if each of the three
additional parameters in the full GEI model (γg, γe, and λg) should be
included by comparing its MLE to its SE A parameter is likely
significant if its MLE is greater than twice its SE based on likelihood
theory (Kirkpatrick and Heckman, 1989; Almasy and Blangero, 1998;
Pletcher and Geyer, 1999; Jaffrézic and Pletcher, 2000; Pawitan, 2001;
Pletcher and Jaffrézic, 2002; Meyer and Kirkpatrick, 2005; Quillen et al.,
2014; Porto et al., 2018). Therefore, if a parameter SE was greater than
its MLE, we judged that parameter to be statistically unimportant.
Further, the additional parameters were formally tested by the tests
mentioned above. If any of the three additional parameters were found
to have SEs greater than their MLEs and if these were found to be
formally insignificant, we then used a reduced version of the GxE
model, where the parameter judged to be unimportant and found
formally to be non-significant was constrained to 0, to perform the
more specific hypothesis tests of the remaining parameters of interest.

Results

Genetic factors and socioeconomic
measures

Our analysis reveals that genetic factors play a significant role in
shaping the phenotypic response to various socioeconomic (SES)

measures. The heritability estimates indicate that genetic factors
account for a substantial portion of the variation in these traits,
ranging from 41% to 51%. Table 1 provides an overview of the
heritabilities and demographic data (EDU-h2 = 0.41, INC-h2 = 0.43,
and SEI-H2 = 0.51 p < 1.0 s 10–5 for each).

Comparison of genotype-by-
socioeconomic status interaction (GSI)
model

In the initial stage of our analysis, we compared the performance
of the genotype-by-socioeconomic status interaction (GSI) model to
that of the polygenic model. We showed a significant improvement
of the GSI model over the polygenic model only when EDU, and not
INC or SEI, served as the environmental index Table 2.

Further Analysis: Additive Genetic Variance Homogeneity, Genetic
Correlation, and Residual Environmental variance homogeneity,
specifically for the genotype-by-EDU interaction (GEdI) models.

Moving to the second stage, we focused on more specific
hypotheses related to additive genetic variance homogeneity, a
genetic correlation of 1, and residual environmental variance
homogeneity, specifically for the genotype-by-EDU interaction
(GEdI) model.

FRS-08

For FRS-08, we found that the GSE (genetic correlation) was not
significantly different from 1. Under a reduced GEdI model

TABLE 1 Descriptive statistics and heritabilities of variables.

Variables Total Males Females h2 (SE.)

Mean (SD.) N Mean (SD.) N Mean (SD.) N

Environments (before BLUP)

EDU 10.16 (3.92) 1232 10.26 (4.82) 506 10.08 (3.14) 726 0.41 (0.04)

INC 9.87 (3.01) 1067 9.95 (3.08) 418 9.82 (2.98) 649 0.43 (0.07)

SEI 29.73 (14.41) 1195 29.25 (14.42) 493 30.08 (14.4) 702 0.51 (0.06)

Risk Scores

FRS 08 0.096 (0.147) 1241 0.097 (0.148) 506 0.094 (0.146) 735 0.28 (0.05)

PCE-AA 0.176 (0.274) 1241 0.184 (0.283) 506 0.171 (0.268) 735 0.23 (0.06)

PCE-CA 0.143 (0.22) 1241 0.152 (0.228) 506 0.137 (0.214) 735 0.17 (0.05)

Carotid Intima Media Thickness Measures

CCAIMT 0.68 (0.16) 681 0.7 (0.19) 263 0.66 (0.14) 418 0.28 (0.08)

CCAFIMT 0.67 (0.19) 677 0.71 (0.23) 260 0.65 (0.16) 417 0.24 (0.08)

ICAIMT 0.83 (0.4) 657 0.88 (0.46) 256 0.8 (0.35) 401 0.32 (0.07)

ICAFIMT 0.83 (0.42) 610 0.89 (0.5) 243 0.79 (0.35) 367 0.21 (0.08)

Other

Age (years) 37.59 (16.24) 1292 37.14 (16.88) 528 37.89 (15.79) 764 NA

Education is measured in years. Income is separated in >5 categories and therefore treated as continuous. SEI, is an index.
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TABLE 2 Polygenic model vs. full genotype-by-socioeconomic status interaction (GSI) model.

Trait Environment Models Ln likelihood Likelihood ratio test p-value

FRS-08 EDU Polygenic −547.8467 10.303 0.01

GSI −542.6951

FRS-08 INC Polygenic −470.1946 3.2985 0.27

GSI −468.5453

FRS-08 SEI Polygenic −531.3359 0.5744 0.83

GSI −531.0487

PCE-AA EDU Polygenic −544.9318 20.6511 7.9E-05

GSI −534.6063

PCE-AA INC Polygenic −475.9489 5.1319 0.11

GSI −473.3829

PCE-AA SEI Polygenic −535.4172 0.9728 0.71

GSI −534.9308

PCE-CA EDU Polygenic −558.9761 9.3361 0.02

GSI −554.3081

PCE-CA INC Polygenic −493.6883 1.5337 0.46

GSI −492.9215

PCE-CA SEI Polygenic −549.9187 1.7724 0.52

GSI −549.0324

CCA-IMT EDU Polygenic −272.8105 22.7900 2.8E-05

GSI −261.4156

CCA-IMT INC Polygenic −261.2915 4.3797 0.17

GSI −259.1017

CCA-IMT SEI Polygenic −269.7903 2.1078 0.45

GSI −268.7363

CCA-FIMT EDU Polygenic −276.8565 8.9098 0.02

GSI −272.4017

CCA-FIMT INC Polygenic −258.6960 4.7978 0.14

GSI −256.2971

CCA-FIMT SEI Polygenic −270.5050 2.1992 0.43

GSI −269.4054

ICA-IMT EDU Polygenic −265.9061 23.4829 2.0E-05

GSI −254.1646

ICA-IMT INC Polygenic −256.1566 0.6870 0.79

GSI −255.8131

ICA-IMT SEI Polygenic −261.3151 1.0533 0.69

GSI −260.7885

ICA-FIMT EDU Polygenic −254.5134 35.1676 6.8E-08

GSI −236.9297

(Continued on following page)
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(where the gamma-G parameter was always constrained to 0), we
discovered significant evidence of GEdI. This was indicated by a
genetic correlation function that declined significantly away from 1
(Table 3; Figures 1C, 2A), as well as significant heterogeneity in the
residual environmental variance (Table 3; Figures 1B, 2A). Notably,
the residual environmental variance decreased as EDU values
increased. All other traits were analyzed under the full GEdI
model because the parameter standard errors were always less
than their MLEs.

PCE-AA

In the case of PCE-AA, we found evidence of GEdI through
significant heterogeneity in additive genetic variance (Table 3;
Figures 1A, 2B), which increased with higher levels of EDU.
Additionally, we observed a significant decrease in the residual
environmental variance as EDU values increased (Table 3;
Figures 1A, 2B). It is important to note that whenever there was
evidence of significant additive genetic variance heterogeneity for all
traits, it was consistently increasing. Similarly, significant residual
environmental variance heterogeneity was consistently decreasing.
These two functions were independent under our model and free to
increase or decrease. This is an important point because the
observed pattern is not an artifact or constraint of the model.

PCE-CA

For PCE-CA., we identified significant GEdI due to a genetic
correlation function declining away from 1 with increasing
differences in the EDU index (Table 3; Figure 1C).

CCA-IMT

Our analysis of CCA-IMT revealed evidence of GEdI, as
indicated by a genetic correlation function declining away from
1 and significant heterogeneity in the residual environmental
variance (decreasing) (Table 3; Figures 1B, C, 2C).

CCA-FIMT

There was no evidence of GEdI or residual environmental
variance heterogeneity for CCA-FIMT (Table 3). The p-values
were slightly above the nominal significance level (p•0.05). It is
worth noting that this trait had the smallest sample size among the

variables examined (Table 1), suggesting a potential lack of statistical
power rather than an absolute absence of an effect.

For both ICA-IMT and ICA-FIMT, there was evidence of GEdI
for both mechanisms of additive genetic variance heterogeneity and
a genetic correlation not equal to 1 and evidence of residual
environmental variance heterogeneity (Table 3; Figures
1A–C, 2D,E).

Discussion

There is evidence of an interaction of genes and obesity related to
CVD in Mexican Americans (Mitchell et al., 1996; MacCluer et al.,
1999; Diego et al., 2007).MexicanAmericans, likeMexicans, are carriers
of risk alleles related to chronic disease, especially CVD and Lipid
metabolism, and adversely respond to obesogenic Westernized diets
(Hazuda et al., 1988; Hazuda et al., 1991). The current report makes
several key additional contributions. Firstly, education influences the
genotype-phenotype map underlying CVD risk variables. We observed
an increase in additive genetic variance with higher levels of education,
implying the expression of different sets of genes at different ends of the
education spectrum.While social determinants of health are undeniably
important for CVD and overall health outcomes, our findings
emphasize that of the three considered SES variables education plays
a predominant role. For several traits (PCE-AA, ICA-IMT, and ICA-
FIMT), increasing educations levels were associated with higher
additive genetic variance and reduced residual environmental
variance. Additionally, for four traits (FRS-08, CCA-IMT, ICA-IM,
and ICA-FIMT), the genetic correlations function deviated from 1,
indicating the expression of different sets of genes across varying
environmental conditions. It is important to note that a genetic
correlation of less than 1 across environmental differences does not
imply diminishing genetic effects, rather the dynamic nature of genetic
effects in response to varying levels of education, while the influence of
residual environmental factors becomes less prominent. Our findings
highlight that genetic effects become increasingly crucial with higher
levels of education.

The role of social determinants of health, particularly
socioeconomic status (SES), in the development of cardiovascular
disease in Mexican Americans has also garnered significant attention
from various disciplines. (de Mestral and Stringhini, 2017; Tillmann
et al., 2017; Schultz et al., 2018; Carter et al., 2019; Rosengren et al., 2019;
Yusuf et al., 2020; Powell-Wiley et al., 2022). Rosengren et al. (2019)
reported results consistent with ours---at the same time that there was a
significant inverse relationship between education levels and CVD
outcomes, there was, at best, a weak inverse relationship and, at
worst, no relationship between income levels and CVD outcomes.
We found consistent evidence of GXE effects for education, but not for

TABLE 2 (Continued) Polygenic model vs. full genotype-by-socioeconomic status interaction (GSI) model.

Trait Environment Models Ln likelihood Likelihood ratio test p-value

ICA-FIMT INC Polygenic −243.4058 0.3634 0.89

GSI −243.2240

ICA-FIMT SEI Polygenic −249.0360 0.5691 0.83

GSI −248.7515

Frontiers in Genetics frontiersin.org07

Diego et al. 10.3389/fgene.2023.1132110

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1132110


TABLE 3 Genotype-by-education interaction (GEdI) effects on heart disease risk variablesa.

Trait Function Model (null vs. alternative)c Ln likelihood Likelihood ratio test p-value

FRS-08b Genetic correlation Null: λg � 0 −544.5313 3.2609 0.0355

Alt: ~θ −542.9009

Environmental variance Null: γe � 0 −546.3321 6.8624 0.0088

Alt: ~θ −542.9009

PCE-AA Genetic variance Null: γg � 0 −538.4800 7.7474 0.0054

Alt: θ̂ −534.6063

Genetic correlation Null: λg � 0 −535.8287 2.4448 0.0590

Alt: θ̂ −534.6063

Environmental variance Null: γe � 0 −539.1379 9.0632 0.0026

Alt: θ̂ −534.6063

PCE-CA Genetic variance Null: γg � 0 −554.3091 0.0021 0.9633

Alt: θ̂ −554.3081

Genetic correlation Null: λg � 0 −557.7770 6.9378 0.0042

Alt: θ̂ −554.3081

Environmental variance Null: γe � 0 −554.5175 0.4188 0.5175

Alt: θ̂ −554.3081

CCA-IMT Genetic variance Null: γg � 0 −261.5265 0.2219 0.6376

Alt: θ̂ −261.4156

Genetic correlation Null: λg � 0 −270.2954 17.7596 1.3E-05

Alt: θ̂ −261.4156

Environmental variance Null: γe � 0 −264.1498 5.4686 0.0194

Alt: θ̂ −261.4156

CCA-FIMT Genetic variance Null: γg � 0 −274.2249 3.6466 0.0562

Alt: θ̂ −272.4017

Genetic correlation Null: λg � 0 −273.5546 2.3059 0.0644

Alt: θ̂ −272.4017

Environmental variance Null: γe � 0 −274.1815 3.5597 0.0592

Alt: θ̂ −272.4017

ICA-IMT Genetic variance Null: γg � 0 −257.9995 7.6697 0.0056

Alt: θ̂ −254.1646

Genetic correlation Null: λg � 0 −256.3332 4.3370 0.0186

Alt: θ̂ −254.1646

Environmental variance Null: γe � 0 −262.0594 15.7894 7.1E-05

Alt: θ̂ −254.1646

ICA-FIMT Genetic variance Null: γg � 0 −243.8484 13.8375 0.0002

Alt: θ̂ −236.9297

Genetic correlation Null: λg � 0 −240.0164 6.17357 0.0065

Alt: θ̂ −236.9297

(Continued on following page)
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household income or SEI. Using aMendelian randomization approach,
Tillmann et al. (2017) reported that education levels mediated increased
genetic predisposition to CVD. Carter et al. (2019) demonstrated that
while certain factors such as body mass index, systolic blood pressure,
and smoking mediated some of the inverse relationships between
education and CVD outcomes, a significant portion of the protective
effect of education remains unexplained. Our results indicate that a
substantial proportion of this unexplained effect may be attributed to
genotype-by-education (GEdI) effects. By explicitly modeling GEdI, we
account for effects beyond additive genetic effects and capture the effects
triggered in response to the educational environment.

Recognizing education to be crucially important in the genesis
of the social gradient, Marmot hypothesized that SDoH in general
(Marmot, 2003; Marmot, 2006a; Marmot, 2006b) and education in
particular (Marmot, 2015a; Marmot, 2015b) might directly
translate to greater degrees of empowerment, autonomy, and
control. Our findings suggest that the effects of education arise
at the genetic level, not primarily at the socioeconomic level, as
Marmot hypothesized. The potential of education to modulate
genetic factors underlying disease phenotypes may be the
foundational factor to consider in the role of SDoH in the
genesis of the social gradient. How genes and environment
interact at a molecular level remains a mystery, although recent
evidence suggests that inflammatory pathways may be involved
(Hartiala et al., 2021).

Our study is unique in several ways. Firstly, this is a family-based
design ofMexicanAmerican families and is useful for combined linkage
and association analysis. The increased genetic relationship among
relatives allows the implementation of genetic variance decomposition
methods (Blangero et al., 2013). Family-based studies can identify rare
variants (Laird and Lange, 2006; Benyamin et al., 2009). Our
environmental decomposition methods approach allows for isolation
of gene and environmental interaction. It is important to note that
family-based studies have a smaller sample size compared to
population-based studies but serve to provide important information
from a group (Mexican Americans) that historically has not been
included in genetic studies.

Limitations

The Framingham Risk Score could overestimate/underestimate
risk in US-Hispanic populations as the magnitude of associations
between risk factors differs between race/ethnic groups (Gijsberts

TABLE 3 (Continued) Genotype-by-education interaction (GEdI) effects on heart disease risk variablesa.

Trait Function Model (null vs. alternative)c Ln likelihood Likelihood ratio test p-value

Environmental variance Null: γe � 0 −248.9148 23.9702 9.8E-07

Alt: θ̂ −236.9297

aTest for the residual environmental variance function are included here.
bThis is only trait-environment dyad where it was reasonable to exclude a parameter, in this case the gammaG parameter because its SE, was greater than its MLE, and the formal test showed it to

be non-significant (see text).
cThe alternative (Alt) models are specified either by the parameter vector of the reduced GEdI model, given as ~θ � [αg, γg � 0, λg, αe, γe]′, or by the parameter vector of the full GEdI model,

given as θ̂ � [αg, γg, λg, αe, γe]′. The null models have the same parameter configuration but with the tested parameter constrained to 0, as indicated.

FIGURE 1
Variance and correlation functions under the genotype-by-
education interaction model. (A) Additive genetic variance functions.
(B) Residual environmental variance functions. (C)Genetic correlation
functions.
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FIGURE 2
Phenotypic covariance functions. (A) Framingham risk score, 2008. The sum of the additive genetic and residual environmental variances increases
along the “Education years” (Edu) axis whereas the genetic correlation function decreases away from 1with increasing differences along the “Difference in
education years” (Diff) axis. (B) Pooled cohort equations (PCE) for African Americans (PCE-AA). The additive genetic variance (Vg) increases for increasing
values along the Edu axis whereas the residual environmental variance decreases for increasing Edu axis values. (C) Common carotid artery (CCA)
Intima-media thickness (IMT). Axes as in (A). However, as also depicted in Figure 2B, the residual environmental variance is in fact decreasing but at a
relatively slower rate (but still statistically significant). (D) Internal carotid artery (ICA) IMT. Axes as in (A). The phenotypic covariance is increasing overall as
a function of increasing additive genetic variance, decreasing residual environmental variance, and a genetic correlation significantly declining away from
1. (E) ICA FIMT. Axes as in (A). Interpretation as in (D).
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et al., 2015). The findings are theoretical and may not extrapolate to
gene expression and regulation. The statistics provide valuable
insight, however, future gene evaluations, such as mRNA
sequencing, will provide helpful information on genes and
pathways involved. In addition to education, income, and SEI,
other SES candidates that offer a better resolution of
socioeconomic determinants of health include measures of
individual endowments, such as asset and human capital, as well
as the measure of external constraint from family and culture
assimilation, such as family, community, society, and the systems
of governance.

Implications for research

Since education significantly affects genetic factors
underlying CVD risk variables, future studies should prioritize
education as the critical socioeconomic determinant when
investigating gene-environment interactions for CVD risk.
Future studies should investigate how education may directly
affect genetic factors underlying CVD risk and the mechanisms
through which it may exert its influence. We can also examine
the genetic correlation across different education levels---the
genetic correlation of CVD risk variables was found to decline
with increasing differences in education levels. This suggests
different genes may be involved in CVD risk at different
education levels. Future studies should further examine this
relationship and the specific genetic variants that may be
involved. Researchers can consider the interplay between
genetic and environmental factors. Our findings suggest that
genetic and residual environmental factors significantly
influence CVD risk variables, with environmental factors
becoming less important as education levels increase. Future
research should continue to investigate this complex interplay
and how genetic and environmental factors interact to impact
CVD risk across varying education levels.

The next step in this research is to determine the genes involved
in the genotype by education interaction. Once identified,
established canonical pathways and molecular expression can
provide intervention targets and a better understanding of how
genes interact with environments to modify genetic expression in
health and illness.

Conclusion

We examined potential GxE interaction using likelihood-based
statistical inference in the phenotypical expression of CVD. We
assessed Social Determinants of Health (SDoH), specifically
measurements of socioeconomic level, and identified significant
GxE interactions for CVD and education. These findings provide
evidence that genetic factors interact with the level of education to
influence CVD. Future directions will focus on the specific genes
involved and the nature of the interactions.
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