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Enhancers play a crucial role in controlling gene transcription and expression.
Therefore, bioinformatics puts many emphases on predicting enhancers and their
strength. It is vital to create quick and accurate calculating techniques because
conventional biomedical tests take too long time and are too expensive. This
paper proposed a new predictor called iEnhancer-DCSV built on a modified
densely connected convolutional network (DenseNet) and an improved
convolutional block attention module (CBAM). Coding was performed using
one-hot and nucleotide chemical property (NCP). DenseNet was used to
extract advanced features from raw coding. The channel attention and spatial
attentionmodules were used to evaluate the significance of the advanced features
and then input into a fully connected neural network to yield the prediction
probabilities. Finally, ensemble learning was employed on the final categorization
findings via voting. According to the experimental results on the test set, the first
layer of enhancer recognition achieved an accuracy of 78.95%, and the Matthews
correlation coefficient value was 0.5809. The second layer of enhancer strength
prediction achieved an accuracy of 80.70%, and the Matthews correlation
coefficient value was 0.6609. The iEnhancer-DCSV method can be found at
https://github.com/leirufeng/iEnhancer-DCSV. It is easy to obtain the desired
results without using the complex mathematical formulas involved.
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1 Introduction

Genes are functional areas of an organism’s DNA (Dai et al., 2018; Kong et al., 2020) that
hold genetic information. The gene is transferred to the protein through a sequence of
transcription (Maston et al., 2006) and translation (Xiao et al., 2016), and proteins control
the organism’s exterior phenotypic shape (Buccitelli and Selbach, 2020). Transcription is one
of the most crucial aspects of gene expression. The enhancer and promoter (Cvetesic and
Lenhard, 2017) are the most significant sequence regions for transcriptional activity. An
enhancer is a brief non-coding DNA fragment on DNA (Kim et al., 2010) and controls rapid
and slow gene expression (Shrinivas et al., 2019). According to previous studies, several
illnesses (Yang et al., 2022) are produced as a result of enhancer mutations and deletions
(Emison et al., 2005; Liu G. et al., 2018; Boyd et al., 2018; Wu et al., 2019). In terms of the
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activities they express, the enhancers may be categorized into
groups, such as strong and weak enhancers, closed (balanced)
enhancers, and latent enhancers (Shlyueva et al., 2014).
Therefore, understanding and recognizing these specific gene
sequence segments is an urgent problem (Pennacchio et al., 2013).

Traditional medical experimental methods (Yang et al., 2020) in
bioinformatics are costly and time-consuming. Therefore, it is
crucial to develop computational techniques and derive some
excellent predictors (Firpi et al., 2010; Fernández and Miranda-
Saavedra, 2012; Erwin et al., 2014; Ghandi et al., 2014; Kleftogiannis
et al., 2015; Lu et al., 2015; Bu et al., 2017; Yang et al., 2017).
However, these techniques have limitations in the prediction of
strong and weak enhancers. Liu et al. (2015) developed a predictor
called iEnhancer-2L based on the support vector machine (SVM)
algorithm and used the sequence pseudo-K-tuple nucleotide
composition (PseKNC) approach to encode features. Afterward,
machine learning-based methods were applied to the prediction of
enhancers, such as SVM (Jia and He, 2016; He and Jia, 2017), RF
(Singh et al., 2013;Wang et al., 2021), and XGBoost (Cai et al., 2021),
and many excellent predictors have been created. However, a single
machine learning classifier has obvious performance drawbacks. A
predictor based on an ensemble learning model (Liu B. et al., 2018)
was developed to address this problem, which generally has a
significantly better performance. The ensemble learning model
has diversity and complexity in feature processing. For instance,
Wang C. et al. (2022) developed a predictor called Enhancer-FRL,
which used 10 feature methods for feature coding. The manual
creation of feature coding is a relatively difficult problem, and the
presence of many complex feature coding types can lead to
dimensional disasters. Furthermore, the effectiveness of
conventional machine learning models depends on the extracted
complex features. Consequently, the development of a predictor that
requires only simple features is crucial.

Nowadays, deep learning is becoming increasingly popular.
Nguyen et al. (2019) proposed the iEnhancer-ECNN model based
on convolutional neural networks (CNNs). Niu et al. (2021)
proposed a model called the iEnhancer-EBLSTM based on bi-
directional long short-term memory (Bi-LSTM). They used one-
hot and K-mers coding techniques to encode the enhancer
sequences and then fed these features into the deep learning
network to get relatively good prediction results. For example, in
the iEnhancer-ECNN model, the ACC and MCC of enhancer
recognition results were 0.769 and 0.537, and the ACC and MCC
of enhancer strength prediction results were 0.678 and 0.368,
respectively. However, there is a wide gap in prediction precision
using a better deep learning model.

In deep learning networks, CNNs with more convolutional
layers extract more advanced local features but lead to the
problem of gradient disappearance and network degradation. To
solve this problem, the residual neural network (ResNet) (Li et al.,
2022) uses a short-circuit connection structure, which allows the
convolutional layers to be connected several layers apart and can
solve the problem of network degradation to some extent. However,
the densely connected convolutional network (DenseNet) (Huang
et al., 2010) has been enhanced based on ResNet. DenseNet extracts
richer feature information by reusing the features of each previous
layer, and it is more effective than ResNet. The attention model is
also increasingly used, and the essence of the attention model is to

focus on more useful feature information and suppress useless
feature information. Convolutional block attention module
(CBAM) (Zhang et al., 2022) can focus on more useful feature
information from channel and spatial dimensions. The current
computational method has the disadvantages of poor
performance and complex features. For this purpose, we
developed a new predictor called iEnhancer-DCSV. The predictor
is conducted using a modified DenseNet and an improved CBAM
attention module. The DenseNet framework makes it easier to
extract more advanced features. Experimental results show that
our model outperforms the existing models. The iEnhancer-
DCSV model is currently the optimal choice for predicting
enhancers and their strengths.

2 Materials and methods

2.1 Benchmark dataset

The benchmark dataset was created by Liu et al. (2015). They
took the enhancer fragments from nine cell lines, removed 80% of
the redundant sequences with the CD-HIT (Huang et al., 2010) and
then calculated the ideal fragment length of 200 bp for each
enhancer sequence to create the final dataset. The dataset is split
into two sections: a training dataset for the model’s training and an
independent test dataset for model testing. The independent test
dataset is made up of 200 enhancer samples (with 100 strongly and
100 weakly enhancer samples) and 200 non-enhancer samples,
whereas the training dataset is made up of 1,484 enhancer
samples (with 742 strongly and 742 weakly enhancer samples)
and 1,484 non-enhancer samples. All enhancer samples in the
independent test dataset were different from the training dataset
to guarantee that the samples are independent. The benchmark
dataset is described in Table 1 and may be downloaded conveniently
from the website: https://github.com/leirufeng/iEnhancer-DCSV.

2.2 Feature coding schemes

Two simple and effective coding techniques are used in this
study: one-hot and NCP. Notably, these two coding techniques
produce columns with a dimension of 200, so they can be feature-
combined. For instance, an enhancer sequence with a length of
200 bp can obtain a 4 × 200 feature matrix and a 3 × 200 feature

TABLE 1 Specifics of the benchmark dataset.

Layer Original
dataset

Enhancer Non-enhancer

First layer Training dataset 1,484 1,484

Testing dataset 200 200

Original
dataset

Strong
enhancers

Weak
enhancers

Second
layer

Training dataset 742 742

Testing dataset 100 100
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matrix after one-hot and NCP coding, respectively. Finally,
combining these two matrices through feature fusion can yield a
7 × 200 feature matrix. In this study, the enhancer sequence is
considered a gray image by the feature coding matrix. The 7 ×
200 matrix is directly used as the original feature input.

2.2.1 One-hot coding
In the field of bioinformatics, one-hot coding is one of the most

used coding techniques. The advantages of this coding technique are

its feasibility, efficiency, and ability to assure that each nucleotide
letter is coded independently. The method is effective in avoiding the
expression of interdependencies. This coding technique is
particularly popular in bioinformatics. The double helix structure
(Sinden et al., 1998) of DNA is widely known, and it is made up of
four nucleotides: A (adenine deoxyribonucleotide), C (cytosine
deoxyribonucleotide), G (guanine deoxyribonucleotide), and T
(thymine deoxyribonucleotide) (Chou, 1984). The enhancer
sequences are DNA sequences designated “0,1,2,3” in the order

FIGURE 1
Overview of the iEnhancer-DCSV model. (A) Feature coding. One-hot and NCP are used to encode the enhancer sequence, and a 7 × 200matrix is
produced. (B) Framework of the iEnhancer-DCSVmodel. The original features are input directly to the modified DenseNet structure (which includes four
dense blocks, normalized layers, and transition layers), and the improved structure is used to extract advanced features. Modules for spatial and channel
attention are introduced to assess the extracted advanced features’ importance. The two evaluated advanced feature maps are multiplied together
at the corresponding positions. The fully connected neural network is used to output the prediction probabilities. (C) Ensemble model. The model uses
fivefold cross-validation, where each fold is tested using an independent test set, each test enhancer sequence generates five prediction probabilities, and
the final classification is voted using ensemble learning.
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“ACGT.” The nucleotides in the sequences are then coded, and the
coding length is four nucleotides. The coding elements are 0 and 1.
The position corresponding to the nucleotide letter marker is coded
as 1, and the other positions are coded as 0. For instance, “A” is
coded as (1,0,0,0), “C” is coded as (0,1,0,0), “G” is coded as (0,0,1,0),
and “T” is coded as (0,0,0,1) (Zhang et al., 2022). The one-hot coding
is shown in Figure 1A.

2.2.2 NCP coding
The four DNA nucleotides are structurally different from each

other and have different chemical molecular structures (Zhang et al.,
2022). For instance, C and T contain one loop each, whereas A andG
have two loops between the four nucleotides. G and T may be
classified as ketone groups from the standpoint of chemical
composition, whereas A and C can be classified as amino groups.
A and T have two hydrogen bonds, but C and G have three hydrogen
bonds. The strength between C and G is more powerful than that
between A and T. The specific chemical properties between
nucleotides are shown in Table 2.

Then, coding is performed based on the chemical characteristics.
The nucleotide Ni is located in position i in the sequence. Three
chemical characteristics of nucleotide Ni are “ring structure,”
“functional group,” and “hydrogen bond strength” (Xiao et al.,
2019). The vector representation of Ni � (xi, yi, zi), xi, yi, zi is
expressed as ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

xi � 1, ifNi ∈ A,G{ },
0, ifNi ∈ C, T{ },{

yi � 1, ifNi ∈ A,C{ },
0, ifNi ∈ G, T{ },{

zi � 1, ifNi ∈ A, T{ },
0, ifNi ∈ C,G{ }.{

(1)

A, C, G, and T may be encoded using this approach as (1,1,1),
(0,1,0), (1,0,0), and (0,0,1). NCP coding is shown in Figure 1A.

2.3 Model construction

In this study, we constructed a network framework to
automatically learn advanced features called iEnhancer-DCSV.
The framework of iEnhancer-DCSV is divided into three parts:
(A) feature coding, (B) framework of iEnhancer-DCSV model, and
(C) ensemble model. The details are shown in Figure 1.

2.3.1 DenseNet
In this study, we modified the initial DenseNet structure. The

original DenseNet consists of a convolutional layer, a dense block
layer, and a transition layer. First, convolution is applied to the
original features. Then, the convolution features are processed by the
dense block and transition layers. The dense block layer is a dense
connection of all the preceding layers to the following layers. In
particular, each layer accepts all its preceding layers as its additional
input, enabling feature reuse. The transition layer, which mainly
connects two adjacent dense blocks, reduces the feature map size.
Instead, we deleted the first convolutional layer and added a batch
normalization layer between the dense block layer and the transition
layer. This processing method can extract better-quality feature
information and reduce the risk of overfitting.

2.3.1.1 Dense block
The traditional CNN network does not perform very well in

extracting feature information. A convolutional structure called
dense convolutional block extracts richer feature information by
reusing previous features. Experimentally, the dense convolutional
network feature extraction is proven better than traditional CNN.
The structure diagram is shown in Figure 2.

In the dense block, the input of layer i is related to not only the
output of layer i − 1, but the output of all the previous layers. TheXl

level is represented as follows:

Xl � Hl X0, X1, X2, . . . , Xl−1[ ]( ), (2)
where is denoted as layers X0 to Xl−1 stitched together by the
dimension of the channel. H is a non-linear combinatorial function.
It is a combination of batch normalization, ReLU activation
function, and convolution (3 × 3).

In this study, we used four dense blocks, each containing three
layers of convolution. The final extraction of features was X(seq).

2.3.1.2 Transition layer
The l-1 layers in front of the dense block are combined by

channel dimension. As the number of channels in the l-layer
becomes larger, it leads to an explosion of parameters, along with
a slow training speed.We can improve the efficiency by connecting a
transition layer with the dense block layer. The transition layer

TABLE 2 Nucleotide chemical property.

Chemical property Category Nucleotide

Ring structure Purine A, G

Pyrimidine C, T

Functional group Amino A, C

Keto G, T

Hydrogen bonding Strong C, G

Weak A, T

FIGURE 2
Structure of a dense block.
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consists of a 1 × 1 convolution and a 2 × 2 average pooling. It is a
function of reducing the number of channels and parameters in the
dense block layer by downsampling to compress the model.

2.3.2 Batch normalization
Gradient explosion and gradient disappearance are serious

problems in deep learning training, and this phenomenon tends
to occur more likely in the deeper network structure. If the shallow
parameters are changed, their fluctuations during backpropagation
may be significant, resulting in significant variable shifts in the
deeper network. Batch normalization (Min et al., 2016) has been
shown to improve the generalization ability of the model. The batch
normalization is expressed as follows:

x̃i � xi − μ�����
σ2 − ϵ

√ , (3)
yi � γx̃i + β, (4)

whereA is the set of the feature dataset [x1, x2, . . . , xi], μ is the mean
of datasetA, and σ2 is the variance of datasetA. γ and β are trainable
parameters.

2.3.3 Improved CBAM attention module
The CBAM attention module comprises channel attention and

spatial attention modules (Chen et al., 2017). First, we use the
channel attention module to evaluate the original features. Second,
we take the feature map output from the channel attention module
and feed it back into the spatial attention module. Finally, we output
the final feature maps from the spatial attention module. This serial
connection of CBAM attention modules has the disadvantage that
the attention modules are all computed in a specific way, and the
computation of weights destroys the feature shape of the input. This
leads to inaccurate weight calculation of the spatial attention
modules and loss of channel weighting information in the final
feature map. We change the original serial approach in the CBAM
attention module to a parallel method. The principle is to input the
original features into the channel attention module and the spatial
attention module and let the output features be multiplied by their
corresponding positions. By this method, the effect of each attention
model after evaluation can be maximally preserved and the
expressiveness of the features can be improved.

2.3.3.1 Channel attention module
In deep learning, the degree of importance varies between

different feature map channels, so we use the channel attention
module to calculate different weights for each channel. By weighting
each channel of the feature map, the model automatically pays
attention to the more useful channel information to achieve the
fixation of channel dimension and compression of spatial
dimension. The channel attention module comprises the max
pooling layer, the average pooling layer, the MLP module, and
the sigmoid activation function. The CBAM’s channel attention
module structure is shown in Figure 3.

The channel attention module starts with the feature map
passing through two parallel max pooling and average pooling
layers, which are input into the fully connected neural network
(MLP) module separately. Second, the two results of theMLP output
are summed element by element, and the channel attention module
weights are obtained using the sigmoid activation function. Finally,
these weights are multiplied by the feature map to obtain the feature
map of the channel attention model weighting. The CBAM’s
channel attention model is expressed as follows:

Mc F( ) � σ MLP AvgPool F( )( ) +MLP MaxPool F( )( )( ), (5)
F � Fscale F,Mc F( )( ) � Mc F( ) · F, (6)

where pooling here is the global max pooling and the global average
pooling. Fscale(F,Mc(F)) denotes each channel-specific value of F
multiplied by the weight Mc(F).

2.3.3.2 Spatial attention module
In deep learning, different receptive fields have different

degrees of value to the feature map, so we use a spatial
attention model to calculate the weights between receptive
fields. By weighting the receptive fields, we allow the model to
focus on the more useful target location information to achieve a
constant spatial dimension and a compressed channel
dimension. The spatial attention model is implemented
through a max pooling layer, an average pooling layer, a CNN
module, and a sigmoid activation function. The CBAM’s spatial
attention module structure is shown in Figure 4.

The spatial attentionmodel first passes the feature maps through
two parallel max pooling and average pooling layers and performs a

FIGURE 3
CBAM’s channel attention module structure.
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stitching operation on the two pooling feature maps. Then, the
newly obtained features are input into the CNN module to be
transformed into a feature map with channel number 1, and the
spatial attention module weights are obtained by the sigmoid
activation function. Finally, this weight is multiplied by the
feature map to obtain the weighted feature map of the spatial
attention model. The CBAM’s spatial attention model is
expressed as follows:

Ms F( ) � σ f7×7 AvgPool F( );MaxPool F( )[ ]( )( ), (7)
F � Fscale F,Ms F( )( ) � Ms F( ) · F. (8)

Pooling here is the global max pooling and global average
pooling. The size of the convolutional kernel used in the CNN
module is 7 × 7. Finally, Fscale(F,Mc(F)) denotes each receptive
field of F multiplied by the weight Mc(F).

2.3.4 Fully connected neural network
We used a fully connected neural network (Wang. et al.,

2022b) to predict the enhancers and their strength. After we
extracted the advanced features, the size of the advanced features
was reduced using a pooling layer. Then, these features are
flattened into vectors, which are later input into the fully
connected neural network. Finally, the softmax function is
used to calculate the predicted probability of the enhancers.
The softmax formula is expressed as

P y � i
∣∣∣∣x( ) � eW

s
i pX

∑C

j�1e
Ws

jpX
, (9)

where Ws
i and Ws

j denote the weights in the fully connected
neural network, X denotes the sample, and C is the number of
categories. P(y � i|x) denotes the probability that x is predicted
to be i. This is a dichotomous problem, i = 0 or i = 1.

2.3.5 Ensemble model
There is an ensemble method called bagging (Bauer and Kohavi,

1999). It is accomplished by training several different models,
allowing independent test data to calculate the predicted results
using different models and then averaging them. This ensemble
learning approach is called model averaging. The advantage of
model averaging is that different models do not usually produce
the same error on the test data, and it is a very powerful method for
reducing generalization errors.

In this study, we used a fivefold cross-validation method (Shang
et al., 2022). The training dataset was divided into five parts: four for
training and one for validation. We used an independent test set put
into each fold in cross-validation, by which five predictions are
obtained. Finally, the final prediction results are obtained by the
voting method. The ensemble method is shown in Figure 1C.

2.4 Performance evaluation

Scientific evaluation metrics are a measure of model
performance. In this study, the evaluation of model performance
contains four metrics: sensitivity (Sn), specificity (Sp), accuracy
(Acc), and Mathew’s correlation coefficient (MCC) (Sokolova and
Lapalme, 2009). The specific calculation formula is shown as follows:

Sp � TN

TN + FP
,

Sn � TP

TP + FN
,

Acc � TP + TN

TP + TN + FP + FN
,

MCC � TP × TN − FP × FN��������������������������������������������
TP + FP( ) × TP + FN( ) × TN + FP( ) × TN + FN( )√ ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(10)

FIGURE 4
CBAM’s spatial attention module structure.
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where TP, TN, FP, and FN are the four metrics in the confusion
matrix, representing true positive, true negative, false positive, and
false negative, respectively (Niu et al., 2021). In addition, we added
the ROC curve area AUC metric (Vacic et al., 2006) to evaluate the
model, and higher values of these metrics indicate better model
performance.

3 Results and discussion

3.1 Construction of the first layer (enhancer
recognition) model

The recognition of enhancers in the first layer is very important
to complete the prediction mission. For the first layer of enhancer
recognition, we used the iEnhancer-DCSV network framework. The
advanced feature extraction and weight assignment are performed
automatically by the model’s iEnhancer-DCSV network framework.
First, the enhancer sequences are encoded using the one-hot and
NCP methods, and then feature coding is fed into the DenseNet to
extract advanced features. These advanced features are input into the
channel attention module and the spatial attention module,
respectively. The two evaluated advanced feature maps are
multiplied at the corresponding positions, and then the pooling
layer is used to compress the feature size. Finally, a fully connected
neural network is used to derive the predicted probabilities. We
validate the model by putting independent test sets into each fold of
the fivefold cross-validation. The aforementioned five-time results
are passed through a soft voting mechanism to arrive at the final
prediction. The whole process was cycled 10 times to verify the
stability of the model, and the obtained individual performance

metrics were averaged. The experimental results for SN, SP, Acc, and
MCC were 80.25%, 77.65%, 78.95%, and 0.5809, respectively.

3.2 Construction of the second layer (strong
and weak enhancer prediction) model

On the basis of the correct identification of enhancers in the first
layer, the second layer predicts the strengths and weaknesses of
enhancers. As the second layer has less training data and the complex
network structure can lead to overfitting, we removed the attention
module from the iEnhancer-DCSV network framework and used the
same training as the first layer, with experimental results of 99.10%,
62.30%, 80.70%, and 0.6609 for SN, SP, Acc, and MCC, respectively.

3.3 Comparison of different codingmethods

Currently, feature engineering has been a very important part of
the process because building a model and using a simple and
efficient coding method is crucial. In this study, we compared the
one-hot + NCP coding, one-hot coding, and NCP coding to
determine the final coding method. We input the three encoding
methods into the two network frameworks, layer 1 and layer 2,
respectively, and the results of the experiment are shown in Table 3.
In the first layer (enhancer recognition), the one-hot + NCP coding
was slightly better than the one-hot coding and better than the NCP
coding. In the second layer (strong and weak enhancer prediction),
the one-hot + NCP coding was much better than these two coding
types. Therefore, we adopted one-hot + NCP coding as the final
coding method in this study.

TABLE 3 Comparison results of different coding schemes.

Layer Coding SN (%) SP (%) Acc (%) MCC AUC

First layer One-hot 81.70 75.50 78.60 0.5737 0.8275

NCP 83.25 70.50 76.88 0.5428 0.8168

One-hot + NCP 80.25 77.65 78.95 0.5809 0.8527

Second layer One-hot 60.30 72.80 66.55 0.3418 0.7491

NCP 90.50 53.40 71.95 0.4780 0.7666

One-hot + NCP 99.10 62.30 80.70 0.6609 0.8686

TABLE 4 Comparison with different architecture methods at layer 1 (enhancer recognition).

Model framework SN (%) SP (%) Acc (%) MCC AUC

ResNet 69.80 77.90 73.85 0.4927 0.8211

DenseNet 83.10 68.50 75.80 0.5219 0.8108

DenseNet + channel attention 78.20 78.35 78.27 0.5686 0.8316

DenseNet + spatial attention 78.75 78.20 78.48 0.5717 0.8304

DenseNet + CBAM attention 83.70 67.25 75.48 0.5183 0.8046

DenseNet + improved CBAM attention 80.25 77.65 78.95 0.5809 0.8527
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TABLE 5 Performance of iEnhancer-DCSV in 10 trials.

Layer Cycle index Sn (%) Sp (%) Acc (%) MCC

First layer 0 78.50 78.00 78.25 0.5650

1 83.00 75.50 79.25 0.5866

2 80.50 75.00 77.75 0.5558

3 74.00 85.50 79.75 0.5989

4 77.00 81.50 79.25 0.5855

5 87.50 68.00 77.75 0.5658

6 80.50 80.00 80.25 0.6050

7 79.50 80.00 79.75 0.5950

8 80.50 78.00 79.25 0.5851

9 81.50 75.00 78.25 0.5661

Mean ± STD 80.25 ± 3.39 77.65 ± 4.47 78.95 ± 0.84 0.5809 ± 0.0158

Second layer 0 99.99 61.99 81.00 0.6702

1 95.99 62.99 79.50 0.6250

2 95.99 64.99 80.50 0.6416

3 99.99 60.99 80.50 0.6624

4 99.99 56.99 78.50 0.6313

5 99.99 61.99 81.00 0.6702

6 99.99 60.99 80.50 0.6624

7 99.99 64.99 82.50 0.6938

8 99.99 58.99 79.50 0.6468

9 98.99 67.99 83.50 0.7047

Mean ± STD 99.10 ± 1.58 62.30 ± 3.00 80.70 ± 1.38 0.6609 ± 0.0243

FIGURE 5
ROC curves for layer 1 (enhancer recognition).
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3.4 Comparison of different model
frameworks

In this study, we used six network frameworks: ResNet,
DenseNet, DenseNet + channel attention model, DenseNet +
spatial attention model, DenseNet + CBAM attention model, and
DenseNet + improved CBAM attention model. We tested these five

network frameworks in the first layer (enhancer recognition) task
because the amount of data for the second layer (enhancer strength
prediction) task was too small. The original features were extracted
using each of these five network frameworks for the high-level
features, and the best-performing network framework was
selected based on the experimental results. The experimental
comparison results are shown in Table 4. Adding an attention

FIGURE 6
ROC curves for layer 2 (enhancer strength prediction).

TABLE 6 Comparison with other methods on the same independent datasets.

Layer Predictor SN SP Acc MCC AUC Source

First layer iEnhancer-2L 71.00 75.00 73.00 0.4604 0.8062 Liu et al. (2015)

EnhancerPred 73.50 74.50 74.00 0.4800 0.8013 Jia and He (2016)

iEnhancer-EL 71.00 78.50 74.75 0.4964 0.8173 Liu et al. (2018a)

iEnhancer-ECNN 78.50 75.20 76.90 0.5370 0.8320 Nguyen et (2019)

iEnhancer-XG 75.75 74.00 77.50 0.5150 — Cai et al. (2021)

iEnhancer-EBLSTM 75.50 79.50 77.20 0.5340 0.7720 Niu et al. (2021)

Enhancer-FRL 80.50 75.50 78.00 0.5607 0.8573 Wang et al. (2022a)

iEnhancer-DCSV 80.25 77.65 78.95 0.5809 0.8527 This study

Second layer iEnhancer-2L 47.00 74.00 60.50 0.2181 0.6678 Liu et al. (2015)

EnhancerPred 45.00 65.00 55.00 0.1021 0.5790 Jia and He (2016)

iEnhancer-EL 54.00 68.00 61.00 0.2222 0.6801 Liu et al. (2018b)

iEnhancer-ECNN 79.10 56.40 67.80 0.3680 0.7480 Nguyen et (2019)

iEnhancer-XG 70.00 57.00 63.50 0.2720 — Cai et al. (2021)

iEnhancer-EBLSTM 81.20 53.60 65.80 0.3240 0.6580 Niu et al. (2021)

Enhancer-FRL 98.00 49.00 73.50 0.5391 0.8723 Wang et al. (2022b)

iEnhancer-DCSV 99.10 62.30 80.70 0.6609 0.8686 This study
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model behind the DenseNet is already very effective, and the
improved CBAM attention model integrates the advantages of
both attention models. However, the improved effect is limited
because the shape of the feature map is too small. The results show
that the DenseNet + improved CBAM attention network framework
works better. Therefore, we finally chose the DenseNet + improved
CBAM attentional network framework model.

3.5 Performance of iEnhancer-DCSV on the
training dataset

To verify the performance of the iEnhancer-DCSV classifier, we
cycled through 10 times of fivefold cross-validation, and the
experimental results are shown in Table 5. We found that the
values of the evaluation metrics fluctuated relatively steadily on
the first (enhancer recognition) and second (enhancer strength
prediction) layer tasks, indicating that the iEnhancer-DCSV
model has good generalization capability. Figure 5 shows the
ROC curves of the first layer (enhancer recognition) with a mean
AUC value of 0.8527 in 10 experiments, and Figure 6 shows the ROC
curves of the second layer (enhancer strength prediction) with a
mean AUC value of 0.8686 in 10 experiments. The results show that
our proposed iEnhancer-DCSV has good performance.

3.6 Comparison of iEnhancer-DCSV with
existing predictors

The iEnhancer-DCSV predictor proposed in this study is compared
with seven existing predictors. The performance of independent
datasets under different methods is shown in Table 6. The
iEnhancer-DCSV predictor has better Acc and MCC metrics
compared with others. The improvement ranges for ACC and MCC
in the first layer (enhancer recognition) were 1.95%–5.95% and
0.0202–0.1205, respectively, and the improvement ranges for ACC
and MCC in the second layer (enhancer strength prediction) were
7.2%–25.7% and 0.1218–0.5588, respectively. Meanwhile, in the first
and second layers, the SN and SP metrics also have some advantages,
indicating that iEnhancer-DCSV is more balanced and has more stable
and superior performance in identifying positive and negative samples.
The iEnhancer-DCSV predictor is expected to be the most advanced
and representative tool for predicting enhancement and its strengths
and weaknesses.

4 Conclusion

In this study, we propose a new predictor of enhancer
recognition and its strength called iEnhancer-DCSV. It is based
on DenseNet and an improved CBAM attention module approach.
The experimental results demonstrate that the MCC value for
enhancer identification on the independent test set is 0.5809, and
the MCC value for enhancer strength prediction is 0.6609. This
indicates that the iEnhancer-DCSV predictor has good performance
and generalization ability, which is better than the existing
prediction tools. We combine deep learning methods with
enhancer research to innovate computational methods in the

field of bioinformatics and enrich enhancer research. In the
future, the iEnhancer-DCSV predictor not only is applicable to
enhancer classification tasks but can also be used in different
prediction tasks, making its use convenient for researchers.

Of course, some deficiencies must be overcome in our proposed
model. The current enhancer sample of data is small and fails to
sufficiently promote the performance of the iEnhancer-DCSV
model using a big data-driven approach. In addition, data
enhancement strategies were not employed to augment our data
samples, such as generative adversarial networks (GANs) (Li and
Zhang, 2021). This will be our future work issue to address.
However, as the research on enhancers progresses, the
disadvantage of a small amount of data will gradually disappear,
and better deep learning methods will be used in the research,
creating more possibilities for future enhancer recognition and
strength prediction.
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