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Background: Existing studies have indicated that mitochondrial dysfunction may
contribute to osteoarthritis (OA) development. However, the causal association
between mitochondrial DNA (mtDNA) characterization and OA has not been
extensively explored.

Methods: Two-sample Mendelian randomization was performed to calculate the
impact of mitochondrial genomic variations on overall OA as well as site-specific
OA, with multiple analytical methods inverse variance weighted (IVW), weighted
median (WM), MR-Egger and MR-robust adjusted profile score (MR-RAPS).

Results: Genetically determined mitochondrial heteroplasmy (MtHz) and mtDNA
abundance were not causally associated with overall OA. In site-specific OA
analyses, the causal effect of mtDNA abundance on other OA sites, including
hip, knee, thumb, hand, and finger, had not been discovered. There was a
suggestively protective effect of MtHz on knee OA IVW OR = 0.632, 95% CI:
0.425–0.939, p-value = 0.023. No causal association between MtHz and other
different OA phenotypes was found.

Conclusion:MtHz shows potential to be a novel therapeutic target and biomarker
on knee OA development. However, the variation of mtDNA abundance was
measured from leukocyte in blood and the levels of MtHz were from saliva
samples rather than cartilage or synovial tissues. Genotyping samples from
synovial and cartilage can be a focus to further exploration.
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1 Introduction

Osteoarthritis (OA) is a common joint disease with degenerative changes in articular
cartilage and remains major impact on public health worldwide (Nelson, 2018). According to
the estimation of the Global Burden of Disease Study (GBD), nearly 300 million individuals
throughout the world are suffering from OA, and the number is still increasing. OA is one of
the leading causes of pain, disability, and great socioeconomic burden in developed countries
(Glyn-Jones et al., 2015). However, the mechanism of OA remains unclear. Identifying risk
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factors such as a disorder-related biomarker is essential to
understand OA pathogenesis, decrease the incidence of the
disease and develop efficiency prevention strategies.

Mitochondria are complex multifunctional organelles involved
in various cell functions, e.g., heat regulation, calcium homeostasis,
reactive oxygen species (ROS) production, and proinflammatory
cytokines production, the damage of which may affect chondrocyte
health at an extent (Blanco et al., 2011; Fernandez-Moreno et al.,
2017; Blanco et al., 2018). They have their own genome
(mitochondrial DNA, mtDNA) which contain 37 genes and
encode 13 proteins, 22 transfer RNAs (tRNAs) and two
ribosomal RNAs (rRNAs) (Anderson et al., 1981). As multicopy
genome, sequence mutation and copy number variation of mtDNA
are prevalent in population (McArdle et al., 2013; McGuire, 2019).
As one of the mtDNA quantity characteristics, mtDNA abundance
is recognized as a rough estimation for the number of mitochondria
(Castellani et al., 2020). Previous studies provided supportive
evidence for extensive pathogenicity of mtDNA abundance
(Frahm et al., 2005; Hu et al., 2016). As one of the mtDNA
quality characteristics, mitochondrial herteroplasmy (MtHz),
where mtDNA with distinct sequences coexist, has been found in
a large spectrum of human disease, including classical mitochondrial
diseases and complex disorders (Ye et al., 2014). MtDNA abundance
andMtHz can integrate many aspects of mitochondrial function and
serve as promising biomarkers in probing interactions between
mitochondria and disorders (Castellani et al., 2020; Tian et al., 2021).

In a recent review, OA was recognized as a potential
mitochondrial disease considering the impact of mitochondrial
dysfunction on cartilage degradation (Fernandez-Moreno et al.,
2022). However, the causality between mitochondria and OA has
rarely been investigated. Therefore, the goal of our study was to
probe causal effects of characterization of mtDNA quantity and
quality on OA development which is crucial to understand the role
of mitochondria in OA etiology. A two-sample Mendelian

randomization (MR) analysis was performed to investigate
potential causal associations between mtDNA abundance and
MtHz with OA using summary statistics from large-scale
genome-wide association study (GWAS). MR-Steiger test was
applied to ascertain whether variation of mtDNA characterization
is a cause or a consequence of OA development.

2 Materials and methods

2.1 Study design overview

The design of our research is displayed in Figure 1.We adopted a
two-sample MR design to compute the causal effect of the
characterization of mtDNA quantity and quality on overall OA
and site-specific OA separately (Boer et al., 2021). Genetic
association estimates for mtDNA abundance were derived from
the United Kingdom biobank study (N = 291,950) (Hagg et al.,
2021). Single Nucleotide Polymorphisms (SNPs) associated with
MtHz were obtained from the 23andME research program (N =
982,072), a personal genomics and biotechnology company
(Nandakumar et al., 2021). The participants included in both
GWASs were of European ancestry.

2.2 Selection of genetic instruments

SNPs serving as instrumental variables (IVs) for MtHz and
mtDNA abundance, all reach genome-wide significance (p < 5 ×
10–8) (Hagg et al., 2021; Nandakumar et al., 2021). Twenty SNPs
were related to MtHz and accounted for 32% observed SNP-
heritability, 64 SNPs were included to estimate the genetic
liability of mtDNA abundance and explained approximately 8.3%
SNP-heritability. We performed linkage disequilibrium (LD)

FIGURE 1
The assumptions of MR and how we tested these assumptions in our analyses.
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pruning in PLINK with 1,000 Genomes Europeans as the reference
panel to ascertain whether these genetic variants are independent of
each other (r2 < 0.001) (Burgess et al., 2017). After LD test, five
genetic variants linked to MtHz were removed, and 17 IVs related to
mtDNA abundance were excluded. These SNPs were then matched
in summary GWASs of OA in subsequent analysis and those not
available in the outcome GWAS were removed or replaced by the
proxy SNPs. F-statistic was calculated to filter the weak instruments.
The threshold of F-statistic that was sufficient for identifying causal
effect was 10 (Burgess et al., 2011). The selected genetic variants are
demonstrated in Supplementary Table S1, S2.

2.3 Osteoarthritis and data sources

Summary statistics data on overall OA and its specific sites,
comprising knee, hip, spine, thumb, and hand OA, were obtained
from the latest publicly available GWAS of OA. This GWAS covered
nine populations with up to 826,690 participants (177,517 OA
patients) (Boer et al., 2021). The definition of OA satisfied the
criteria of Genetics of Osteoarthritis (GO) including self-reported
status, hospital diagnosed, ICD10 codes or radiographic as defined
by the TREAT-OA consortium (Boer et al., 2021). All studies
contributing data to our analyses were approved by the relevant
ethics committees, and all study participants in these studies
provided written, informed consent.

2.4 Statistical analysis

Two-sample MR analysis was executed in R software (R version
4.3.0) with the TwoSampleMR (version 0.5.6), MR-PRESSO
(version 1.0) and mr. raps (version 0.2) R packages (Hemani
et al., 2018; Verbanck et al., 2018). The methods applied in our
research are presented in Figure 2. MR-steiger test was applied to
infer causal direction between traits under investigation (Hemani
et al., 2017). Four methodologies including inverse variance
weighted (IVW), weighted median (WM), MR-Egger and MR-
robust adjusted profile score (MR-RAPS) were employed to
estimate causality between mtDNA abundance and MtHz and
OA. IVW was taken as a primary MR analysis method in our
research, which is based on the hypothesis that all selected genetic
instruments are valid and give an overall causal estimate
strengthening causal inference (Lawlor et al., 2008; Burgess et al.,
2013). MR-Egger regression takes presence of directional pleiotropy
into consideration and measures horizontal pleiotropy with

regression intercept, whereas the results of this method are
susceptible to outlying genetic variants (Bowden et al., 2015).
Weighted Median based on hypothesis that at least 50% of the
variants are valid, improves power of causal effect detection but
reduces precision (Bowden et al., 2016). MR-RAPS applies robust
adjusted profile scores to correct for pleiotropy and makes our
results more reliable (Hartwig et al., 2017).

Several sensitivity analyses were applied to detect and correct for
heterogeneity and pleiotropy. MR-PRESSO was conducted to detect
the existence of horizontal pleiotropy and correct the causal estimate
affected by possible pleiotropic outliers (Verbanck et al., 2018).
Corresponding p-values were derived based on 1,000 simulations
(Verbanck et al., 2018). And the estimation of MR Egger regression
intercept was also employed to reflect presence of pleiotropy (p <
0.05) (Burgess and Thompson, 2017). IVW method was utilized to
investigate heterogeneity. The level of heterogeneity was quantified
by Cochran Q statistics (Carnegie et al., 2020). Leave-one-out
sensitivity analysis was performed to identify possibly influential
SNPs, which repeated MR analysis with each SNP excluded in turn
(Carnegie et al., 2020). As five separate outcomes were tested in our
study, main results had statistical significance at p-value<0.01 (0.05/
5) after Bonferroni correction.

3 Results

3.1 Causal effect of mitochondrial
heteroplasmy on OA

Fifteen LD-independent genetic variants were taken for repeated
MR analysis (Supplementary Table S1). We extracted data of above-
mentioned SNPs from summary GWAS of outcome traits (overall
OA and specific-site OA) and one SNP (rs2286639) was removed in
all outcomes except finger OA due to the effect of non-concordant
alleles (e.g., A/G vs A/C). In finger OA, two SNP (rs2286639,
rs3702096) were excluded for absence of proxy SNPs on the
online platform SNiPA (https://snipa.helmholtzmuenchen.de/
snipa3/). The mean F-statistic was 36.357 which was above the
threshold F value of 10. In total, there were 14 IVs for overall, knee,
hip, thumb, and hand OA and 13 IVs for finger OA.

Results of the casual association between MtHz and OA are
summarized in Table 1. The primary IVW analysis provided no
evidence for the casual association between MtHz and overall OA
[odds ratio (OR) = 0.852, 95% confidence interval (CI): 0.664–1.093,
p= 0.208]. The results of WM method, MR-RAPS and MR-Egger
were consistent with the result of IVW. Both MR-Egger and MR-

FIGURE 2
Flowchart of Mendelian randomization framework in this study.
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TABLE 1 MR results of causal effect of mitochondrial heteroplasmy on OA and its other phenotypes.

Outcome traits MR methods Mitochondrial heteroplasmy

OR (95%CI) SE MR p-
value

Heterogeneity test Pleiotropy test MR-stegier
test

Cochran’s Q (p) p intercept

Overall OA MR-Egger 0.922 (0.619,1.373) 0.203 0.697 12.407 (0.495) 0.625 Direction: TRUE

p-value < 0.0001

Inverse variance
weighted

0.852 (0.664,1.093) 0.127 0.208

MR-RAPS 0.850 (0.662,1.093) 0.128 0.206

Weighted median 0.867 (0.640,1.174) 0.155 0.355

MRPRESSO 0.851 (0.670,1.082) 0.123 0.209

Knee OA MR-Egger 0.667 (0.358,1.243) 0.318 0.226 11.272 (0.588) 0.831 Direction: TRUE

p-value < 0.0001

Inverse variance
weighted

0.632
(0.425,0.939)

0.202 0.023

MR-RAPS 0.630 (0.422,0.939) 0.204 0.023

Weighted median 0.637 (0.402,1.009) 0.235 0.055

MRPRESSO 0.631
(0.442,0.903)

0.182 0.024

Hip OA MR-Egger 0.708 (0.320,1.568) 0.406 0.412 10.208 (0.676) 0.897 Direction: TRUE

p-value < 0.0001

Inverse variance
weighted

0.738 (0.447,1.221) 0.257 0.237

MR-RAPS 0.734 (0.442,1.220) 0.259 0.234

Weighted median 0.711 (0.391,1.293) 0.310 0.272

MRPRESSO 0.736 (0.466,1.161) 0.233 0.208

Thumb OA MR-Egger 0.708 (0.320,1.568) 0.406 0.412 10.161 (0.681) 0.288 Direction: TRUE

p-value < 0.0001

Inverse variance
weighted

1.270 (0.506,3.188) 0.469 0.611

MR-RAPS 1.270 (0.502,3.216) 0.474 0.615

Weighted median 0.711 (0.391,1.293) 0.305 0.264

MRPRESSO 1.267 (0.576,2.791) 0.403 0.566

Hand OA MR-Egger 0.967 (0.333,2.803) 0.543 0.951 7.958 (0.846) 0.432 Direction: TRUE

p-value < 0.0001

Inverse variance
weighted

1.357 (0.687,2.681) 0.347 0.379

MR-RAPS 1.350 (0.678,2.686) 0.351 0.392

Weighted median 1.132 (0.503,2.546) 0.413 0.764

MRPRESSO 1.348 (0.769,2.362) 0.286 0.315

Finger OA MR-Egger 0.139 (0.010,1.909) 1.336 0.168 8.157 (0.773) 0.251 Direction: TRUE

p-value < 0.0001

Inverse variance
weighted

0.483 (0.090,2.588) 0.857 0.395

MR-RAPS 0.481 (0.088,2.621) 0.865 0.398

Weighted median 0.364 (0.049,2.688) 1.021 0.322

MRPRESSO 0.483 (0.121,1.927) 0.707 0.323

MR, mendelian randomization; SNP, single nucleotide polymorphism; OA, osteoarthritis; OR, odds ratio; CI, confidence interval; SE, standard error (the standard error is an estimate of the

standard deviation (SD) of the coefficient); p, p-value.
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TABLE 2 MR results of causal effect of mtDNA abundance on OA and its other phenotypes.

Outcome traits MR methods MtDNA abundance

OR (95%CI) SE MR p-
value

Heterogeneity test Pleiotropy test MR-stegier
test

Cochran’s Q (p) p intercept

Overall OA MR-Egger 1.091 (0.856,1.391) 0.124 0.485 62.748 (0.033) 0.687 Direction: TRUE

Inverse variance
weighted

1.040 (0.963,1.125) 0.040 0.318

MR-RAPS 1.041 (0.974,1.112) 0.034 0.229 p-value < 0.0001

Weighted median 1.108
(1.001,1,226)

0.052 0.048

MRPRESSO 1.040 (0.963,1.125) 0.040 0.323

Knee OA MR-Egger 0.823 (0.562,1.206) 0.195 0.324 65.050 (0.027) 0.225 Direction: TRUE

Inverse variance
weighted

1.034 (0.915,1.168) 0.062 0.592

MR-RAPS 1.035 (0.934,1.145) 0.052 0.516 p-value < 0.0001

Weighted median 1.056 (0.903,1.236) 0.080 0.494

MRPRESSO 1.034 (0.915,1.168) 0.062 0.594

Hip OA MR-Egger 0.616
(0.399,0.950)

0.221 0.034 60.396 (0.062) 0.027 Direction: TRUE

Inverse variance
weighted

0.992 (0.857,1.152) 0.076 0.931

MR-RAPS 0.993 (0.873,1.130) 0.066 0.919 p-value < 0.0001

Weighted median 0.921 (0.763,1.113) 0.096 0.397

MRPRESSO 0.993 (0.857,1.152) 0.076 0.931

Thumb OA MR-Egger 0.819 (0.364,1.844) 0.414 0.633 61.709 (0.061) 0.392 Direction: TRUE

Inverse variance
weighted

1.148 (0.880,1.499) 0.136 0.309

MR-RAPS 1.151 (0.912,1.454) 0.119 0.235 p-value <0.0001

Weighted median 1.135 (0.790,1.631) 0.185 0.494

MRPRESSO 1.148 (0.880,1.499) 0.136 0.314

Hand OA MR-Egger 1.028 (0.601,1.759) 0.274 0.920 40.089 (0.680) 0.663 Direction: TRUE

Inverse variance
weighted

1.152 (0.969,1.369) 0.088 0.108

MR-RAPS 1.154 (0.967,1.376) 0.090 0.109 p-value < 0.0001

Weighted median 1.144 (0.887,1.476) 0.130 0.299

MRPRESSO 1.152 (0.979,1.356) 0.083 0.096

Finger OA MR-Egger 0.876 (0.223,3.442) 0.698 0.850 51.688 (0.229) 0.837 Direction: TRUE

Inverse variance
weighted

1.004 (0.647,1.556) 0.224 0.987

MR-RAPS 1.003 (0.662,1.520) 0.212 0.986 p-value < 0.0001

Weighted median 1.193 (0.641,2.221) 0.317 0.577

MRPRESSO 1.004 (0.647,1.556) 0.224 0.987

MR, mendelian randomization; SNP, single nucleotide polymorphism; OA, osteoarthritis; mtDNA, mitochondrial DNA; OR, odds ratio; CI, confidence interval; SE, standard error (the

standard error is an estimate of the standard deviation (SD) of the coefficient); p, p-value.
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PRESSO reported no existence of horizontal pleiotropy (Egger-intercept:
p > 0.05; MR-PRESSO global heterogeneity: p > 0.05). Cochran’s Q test
did not detect heterogeneity in overall OA (p= 0.495 > 0.05).

In site-specific OA analyses, the nominally significant results of IVW
analysis suggested that MtHz was a potentially protective factor for knee
OA (OR = 0.632, 95% CI: 0.425–0.939, p= 0.023, Table 1). MR-RAPS
showed similar results with IVW analysis (OR = 0.629, 95% CI:
0.422–0.939, p= 0.023, Table 1). However, no relationship between
MtHz and other OA sites, including hip OA (IVW OR = 0.738, 95%
CI: 0.447–1.221, p= 0.237), hand OA (IVW OR = 1.357, 95% CI:
0.687–2.681, p= 0.379), thumb OA (IVW OR = 1.270, 95% CI:
0.506–3.188, p= 0.611) or finger OA (IVW OR = 0.483, 95% CI:
0.090–2.588, p= 0.395) was observed in IVW model (Table 1). MR-
PRESSO was performed to test for horizontal pleiotropy, and no outliers
was identified. The results ofMR-Egger intercept were consistent with the
MR-PRESSO results (intercept p > 0.05). The heterogeneity was tested by
Cochran’sQ test andMR-PRESSO global heterogeneity test, providing no
evidence about the existence of heterogeneity. The MR-Steiger results
supported that these SNPs were more predictive of the exposure than of
the outcome (p< 0.05, Supplementary Table S3). The results of leave-one-
out sensitivity analysis and forest plots demonstrated that our study in
genetically prediction was robust (Supplementary Figure S1–S3).

3.2 Causal effect of mitochondrial
abundance on OA

After LD test, 47 independent genetic variants were chosen for two-
sample MR analysis. Several genetic variants could not be matched in
summary statistic GWASs of knee (rs35734242), finger (rs1065853), and
hand OA (rs12451555). We searched their proxy SNPs on SNiPA and
those whose proxy SNPswere absent on SNiPAwere excluded. Themean
F-statistic for IVs ofmtDNA abundance was 93.380, which was above the
threshold 10 (Supplementary Table S2). Finally, the SNPSwere selected as
IVs for thumb, hip, overall OA was 47, and 46 SNPS for hand, finger,
knee. Regarding overall OA, MR-PRESSO identified two outliers s
(rs59488041, rs12924138) and therefore removed them for repeated
MR analysis. In the presence of heterogeneity (Cochran’s Q: p= 0.033)
and absence of pleiotropy (Egger-intercept: p= 0.687 > 0.05), the results of
WM analysis on overall OA were nominally significant (OR = 1.108, 95%
CI: 1.001–1,226, p= 0.048, Table 2). IVWmethod in randomeffectsmodel
was utilized to correct results potentially impacted by heterogeneity, and
the results suggested that genetically elevated mtDNA abundance was not
casually associated with overall OA (OR = 1.040, 95% CI: 0.963–1.125, p=
0.318). MR-RAPS analysis agreed with the results of IVW analysis (OR =
1.041, 95% CI: 0.974–1.112, p= 0.228, Table 2).

With respect to site-specific OA, we observed that genetically
determined MtHz was not causally associated with knee OA (OR =
1.034, 95% CI: 0.915–1.168, p= 0.592), thumb OA (OR = 1.148, 95% CI:
0.880–1.499, p= 0.309), hand OA (OR = 1.152, 95% CI: 0.969–1.369, p =
0.108) and finger OA (OR = 1.004, 95% CI: 0.647–1.556, p= 0.987) in
IVW model. The results are presented in Table 2. Both MR-Egger and
MR-PRESSO reported no existence of horizontal pleiotropy (Egger-
intercept: p > 0.05; MR-PRESSO global heterogeneity: p > 0.05).
Cochran’s Q test did not detect heterogeneity in above-mentioned
outcome traits (p > 0.05). For the analysis of hip OA,
rs16978036 were excluded from MR-PRESSO analysis. In presence of
horizontal pleiotropy (p= 0.027) and absence of heterogeneity (p= 0.062),

the nominally significant result of MR-Egger method was found (OR =
0.616, 95%CI: 0.399–0.950, p= 0.034). However, no evidence about causal
relationship between the exposure and hip OA was observed with IVW
method andMR-RAPSmethod (IVW:OR= 0.992, 95%CI: 0.857–1.152,
p= 0.931; MR-RAPS: OR = 0.993, 95% CI: 0.873–1.130, p= 0.919)
(Table 2). The results of MR-Stegier test were in Supplementary Table S3.

Scatter plots, forest plots and leave-on-out sensitivity analysis
plots were displayed in Supplementary Figure S4–6. The results of
leave-one-out analysis implicated that the selected genetic variants
potentially impacted the pooled results, which suggested that careful
interpretations for the results was crucial.

4 Discussion

The causal roles of MtHz and mtDNA abundance in OA
pathogenesis were poorly studied in previous works. To our best
knowledge, this is the first MR study to evaluate the causal association
between mitochondrial genome traits and OA. Four MR methods were
employed to estimate the causal association between mtDNA
characterization and OA. The results of MR steiger test verified the
causal direction of our research (MtHz and mtDNA abundance were
exposure and OA were outcome). No effect of mtDNA abundance and
MtHz on overall OA was detected. In subgroup analysis, a suggestively
protective role of MtHz on knee OAwas observed, but not on other sites.
Andwe did not find thatmtDNAabundancewas causally associated with
any site-specific OA.

Althoughmitochondria iswidely recognized as an important factor of
OA development (Blanco et al., 2011), the role of MtHz has not been
thoroughly investigated (Suliman and Piantadosi, 2016). Indeed,
heteroplasmic mutations in mtDNA are often pathogenetic (Ye et al.,
2014).Ananimalstudyhasindicatedthatthestateofheteroplasmyitselfwas
deleterious when the two mtDNA sequences contain no pathogenic
variants (Sharpley et al., 2012). However, there is potentially a particular
level threshold forMtHz (McCormick et al., 2020). For instance, when the
A3243G mutation in mitochondrial DNA is present in more than 10%,
patients canmanifestType 2diabetes (Wallace, 2005).And low-frequency
mtDNA variants (0.2%–2% heteroplasmy) are extensively presented in
healthysubjects(Payneetal.,2013).Furthermore,MtHzcanbebeneficialin
health promotion as an intermediate state in emergence of novelmtDNA
haplogroups (Wallace, 2016). In previous study, MtHz was found to be
significantly relevant to several haplogroups (haplogroupH, J, K, T,U and
X)withdifferentcharacterizationsamonghaplogroups(Nandakumaretal.,
2021).Mitochondrial haplogroup J has been extensively found tomediate
thedevelopmentofOA(5).ASpanish cohort-study (ncase =457; ncontrol =
262)had reported thathaplogroup Jwasassociatedwithadecreased riskof
knee OA (OR = 0.460, 95%CI: 0.282–0.748, p= 0.002) (Rego-Perez et al.,
2008). Furthermore, a meta-analysis in European cohorts also suggested
thathaplogroup Jwasassociatedwitha lower riskofkneeOA(HR=0.702,
95%CI:0.541–0.912,p=0.008)(Fernandez-Morenoetal.,2017).However,
theassociationbetweenmitochondrialDNAvariantsandOAhasnotbeen
verified in a large sample observational study (Hudson et al., 2013). The
studyhasonly explored the causal relationship in termsof singlemutation,
butwetakeMtHz(variationatawholemtDNAlevel)asanexposurewhich
contribute to understand the causal role of mitochondria in OA
development. In terms of biological mechanism, MtHz has been
reported a regulation role of metabolic and epigenomic changes.
Kopinski PK et al. had found the levels of mitochondrially drove acetyl-
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CoA decreased at high heteroplasmy (Kopinski et al., 2019). And the
reduction of acetyl-CoA levels might influence histone acetylation and
activate AMP-activated protein kinase (AMPK) to protect from OA
development and progression (Chen et al., 2018). Besides, MtHz could
playarole inotherprocesses involvedinOApathogenesis toreducetherisk
ofOA, includingregulatingenergyproduction,maintainingmitochondrial
proteostasis, suppressing matrix metalloproteinase expression, reducing
ROS generation, and promoting mitophagy (Blanco et al., 2018). In
conjunction with prior observational findings and mechanism studies,
our epidemiologic and genetic findings provided supportive evidence that
MtHz may have therapeutic value in knee OA and can be regarded as a
candidate biomarker after precisely identifying the relationship between
MtHz and each haplogroup (Blanco et al., 2018).

However, the reason that MtHz showed diverse effects on different
sites of OA remains unclear. So far, we did not find relevant research that
investigated the relationship betweenMtHz and hand, finger, and thumb
OA. A case-control study suggested that mitochondrial haplogroups was
associated with hip OA (Rego et al., 2010) (OR = 0.661, 95% CI:
0.440–0.993, p= 0.045), however, with no evidence on the causality. In
addition, the data sources and sample size used in MR analysis varied in
site-specific OA, which mainly included more knee OA cases and less
other skeletal joints cases. More MR studies and additional GWAS
covering more other site-specific OAs are needed to determine a role
of MtHz in the risk of different OA sites.

MtDNA abundance has been regarded as a potential biomarker
of mitochondrial function and plays a role in several human
diseases (Castellani et al., 2020; Clyde, 2022). Existing literature
has suggested that mtDNA abundance may involve in production
of inflammatory mediators and regulation of immune function
that can influence OA development (Blanco et al., 2018; Zhan et al.,
2020). In addition, mtDNA abundance is also associated with sex,
advanced age, and elevated BMI, which are also risk factors for OA
(16). However, there are few studies to estimate the effects of
mtDNA abundance on OA. Only two case-control studies in Asian
population were found that reported an association between
mtDNA copy number and OA, but their findings were
inconsistent (Fang et al., 2014; Zhan et al., 2020). One in
Thailand (ncase = 204; ncontrol = 169) had found mtDNA
abundance in the OA group was significantly lower than that in
the control group (p < 0.0001), whereas the results were not
adjusted by sex and age (Zhan et al., 2020). Another case-
control study carried out in southern Chinese (ncase = 187;
ncontrol = 420) observed a general increase of mtDNA
abundance in OA patients (p= 0.019), but obesity was not
adjusted in the analysis (Fang et al., 2014). These findings from
case-control studies could not determine causal relationships between
mtDNA abundance and OA, and the potential confounding variables
were not comprehensively considered. Our MR analysis overcame these
shortcomings and suggested that genetically determined mtDNA
abundance was unrelated to OA. Furthermore, previous study has
implicated that the relative contribution of mtDNA abundance might
differ between different ethnic groups (Ruiz-Pesini et al., 2004).
Considering that our studies have been carried out in European
population, the comparisons with results from other ethnic groups
such as Asian ancestry require careful considerations.

Our research applies MR methods to investigate causal
relationships between mitochondrial genome characterization and
OA. However, there are some limitations in our analysis. Firstly, we

did not estimate causal effects of mitochondrial genome traits on OA
stratified by gender. Mitochondrial genome are maternally
inherited, and females may have lower MtHz than males from
the perspective of mitochondrial inheritance (Nandakumar et al.,
2021). Therefore, the effects of MtHz and mtDNA abundance on
OA may differ in gender. Secondly, only participants of European
descent are included in the study, but the impact of specific mtDNA
variants on diseases could vary in different ethnic groups (Ruiz-
Pesini et al., 2004). Additional MR studies on other ethnic groups are
needed to probe a causal association between mtDNA
characterization and OA. Thirdly, the genetic instruments for
mtDNA abundance explain a relatively small amount of
phenotypic variance (8.3%), IVs that can account for more
variance of mtDNA abundance are warranted to draw robust
conclusions. Besides, considering the Bonferroni correction of
multiple independent tests, our findings about the association
between MtHz and knee OA are deemed suggestive evidence of
possible associations (0.01 < p< 0.05). Furthermore, the variation of
mtDNA abundance and the levels of MtHz varied in different tissues
and cell types. And in original GWASs, mtDNA abundance was
measured from leukocyte in blood and MtHz from saliva samples
rather than cartilage or synovial tissues. Considering that OA is
mainly characterized by progressive loss of cartilage and synovial
hyperplasia, the application of data from blood samples and saliva
samples would limit the explanation ability of our study to a certain
extent (Sellam and Berenbaum, 2010). Observational epidemiology
studies exploring an association between concrete levels of MtHz
and a risk of OA are needed to improve causal inference.

5 Conclusion

In conclusion, our MR analyses elucidated that MtHz is a
suggestively protective factor of knee OA, implying that MtHz
could be a genetically prediction factor and a therapeutic target
in the development of knee OA. No causal association was found
between mtDNA abundance and OA. Additional MR analyses are
warranted to probe causal relationships between mitochondrial
genome traits and OA stratified by gender. Moreover, GWAS
covering more than one ethnic population are needed to detect
the effect of characterization of mtDNA quantity and quality in
different ethnic groups.
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