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Sepsis, a serious inflammatory response that can be fatal, has a poorly understood
pathophysiology. The Metabolic syndrome (MetS), however, is associated with
many cardiometabolic risk factors, many of which are highly prevalent in adults. It
has been suggested that Sepsis may be associated with MetS in several studies.
Therefore, this study investigated diagnostic genes and metabolic pathways
associated with both diseases. In addition to microarray data for Sepsis, PBMC
single cell RNA sequencing data for Sepsis and microarray data for MetS were
downloaded from the GEO database. Limma differential analysis identified
122 upregulated genes and 90 downregulated genes in Sepsis and MetS.
WGCNA identified brown co-expression modules as Sepsis and MetS core
modules. Two machine learning algorithms, RF and LASSO, were used to
screen seven candidate genes, namely, STOM, BATF, CASP4, MAP3K14, MT1F,
CFLAR and UROD, all with an AUC greater than 0.9. XGBoost assessed the co-
diagnostic efficacy of Hub genes in Sepsis and MetS. The immune infiltration
results show that Hub genes were expressed at high levels in all immune cells.
After performing Seurat analysis on PBMC from normal and Sepsis patients, six
immune subpopulations were identified. The metabolic pathways of each cell
were scored and visualized using ssGSEA, and the results show that CFLAR plays an
important role in the glycolytic pathway. Our study identified seven Hub genes
that serve as co-diagnostic markers for Sepsis and MetS and revealed that
diagnostic genes play an important role in immune cell metabolic pathway.
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Introduction

Sepsis is caused by dysregulation of the immune system’s response to infection (Font
et al., 2020). In spite of a growing number of innovative treatments, Sepsis still ranks as a
leading cause of death in hospitals. As a result of the diversity of clinical symptoms of Sepsis,
diagnosing, treating, and managing patients with Sepsis remains challenging (Huang et al.,
2019). This is why it is urgent to understand the pathophysiology of Sepsis in order to
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identify new biomarkers that may improve the diagnosis, treatment,
and prognosis of the disease.

The prevalence of Metabolic syndrome (MetS) has also been rising
dramatically in adults in contrast to the prevalence of Sepsis (Grundy
et al., 2004). MetS is an umbrella term for various cardiovascular
disease risk factors such as diabetes, obesity, and hypertension, the
mechanisms of which are not yet fully understood (Pugazhenthi,
2017). There has been some evidence that MetS increases the risk
of adverse outcomes, including coronary artery disease, which can
result in a higher mortality rate in patients with Sepsis (Grundy et al.,
2004; Wilson et al., 2005). Sepsis is a primarily acute inflammatory
condition with mortality peaking within days, whereas MetS-related
complications manifest as chronic inflammation that results in
mortality over several years (Meydan et al., 2018). It has been
shown that both Sepsis and MetS are inflammation-related diseases.
A deeper understanding of the emerging long non-coding RNAs
(lncRNAs) has revealed the influence of inflammation-related
molecular agents and cytokines in both Sepsis and MetS (Meydan
et al., 2018). Linking non-coding RNA regulators to Sepsis and MetS
may lead to the identification of new high-value biomarkers as well as
targets for clinical intervention (Meydan et al., 2018). It has been
reported that Sepsis and MetS are regulated by the same upstream
regulators, such as microRNAs (miRNAs) and lncRNAs (Meydan
et al., 2018). In MetS, Lethe lncRNAs are known to inhibit the binding
of NF-κB’s p65 subunits to DNA, thus exerting anti-inflammatory
effects by inhibiting NF-κB’s DNA binding, which could have a
beneficial effect on Sepsis-induced immune disorders (Zgheib et al.,
2017). HOTAIR is another lncRNA involved in pathogen
inflammation through the NF-κB pathway (Wu et al., 2016).
HOTAIR lncRNA-associated transcripts are overexpressed in
adipose tissue, where they play an important role in the Metabolic
syndrome (Wu et al., 2016). In an analysis based on human peripheral
RNA sequencing data, 1,152 acutely ill patients were recruited for this
study and divided into systemic inflammatory response syndrome
(SIRS) and four Sepsis groups of increasing severity, with HOTAIR-
related genes elevated 2-3-fold in patients with severe Sepsis compared
to SIRS (Meydan et al., 2018). These studies suggest that HOTAIR
plays a significantly interactive role in Sepsis andMetS. Recent findings
have demonstrated that MetS improved survival in septic mice,
attenuated the increase in plasma nitric oxide (NO) in septic mice,
and lower NO production may help reduce hypotensive events in the
MetS animal group (Nakama et al., 2021). These findings provide new
insights into the association between MetS and Sepsis in mice.
Although the relationship between the two diseases is supported by
some evidence, the molecular mechanisms shared by Sepsis and MetS
are still being explored.

More recently, bioinformatics has been widely applied to
oncological and non-oncological diseases, including sepsis (Lai
et al., 2020; Li Z. et al., 2021; Wu Z. et al., 2021). Previous
studies have focused on differential genes in the blood of Sepsis
patients and revealed the molecular pathways of differential genes
(Chen et al., 2021). However, the common diagnostic genes of Sepsis
and MetS and the shared metabolic pathways remain unclear.
Therefore, in this study, WGCNA was utilized to identify the
common pivotal genes in the plasma of Sepsis patients and MetS.
In addition, the CIBERSORT algorithm was used to identify
immune infiltrating cells and to investigate the potential
mechanism of the Hub gene in immune cells, which will provide

some guidance for the identification of common biomarkers for
Sepsis and MetS in the future and provide a theoretical basis for new
diagnosis and treatment.

Materials and methods

Identification and analysis of differential
genes

We obtained a sepsis RNAmicroarray dataset and a sepsis RNA-
seq dataset [GSE28750, GSE154918], respectively (Sutherland et al.,
2011; Herwanto et al., 2021). Among them, there were 30 samples
(20 normal and 10 sepsis) in the GSE28750 dataset. In the
GSE154918 dataset, 60 samples (40 normal and 20 sepsis) were
selected. Two samples of peripheral blood mononuclear cells
(PBMCs) with sepsis and two samples of normal PBMCs were
selected in the GSE167363 dataset (Qiu et al., 2021) from GEO
database (Barrett et al., 2013); we also obtained the MetS dataset
GSE98895 (D’Amore et al., 2018). Forty samples (20 normal and
20 MetS) were selected in the GSE98895 dataset. In order to analyze
the data, the software R was employed. Principal component
analysis (PCA) was used before and after correcting batch effects
and visualizing the distribution of these datasets. The datasets were
corrected for background, transformed by log2, and normalized. We
also merged the datasets GSE28750 and GSE154918, and used the
Combat method in the “sva” package to batch-correct the merged
data (Leek et al., 2012). Then, the merged result was viewed by PCA
dimensionality reduction algorithm. Following the identification of
differentially expressed genes (DEGs) by the limma analysis, the
following filtering criteria was applied to screen for significantly
differentiating genes: p < 0.05 and |log2 Fold change (FC) | > 1.0
(Ritchie et al., 2015). Finally, Venn plots were used to illustrate
common genes which are up- and downregulated in Sepsis and
MetS, respectively. Meanwhile, Gene Ontology (GO) enrichment
analysis of the common DEGs were conducted utilizing the
“clusterProfiler” package of R software (Wu T. et al., 2021). The
pathways with p < 0.05 were considered significant.

Analysis of weighted gene Co-expression
networks

The “WGCNA” R package was employed to identify genes
associated with Sepsis and MetS using a weighted gene co-
expression network (Langfelder and Horvath, 2008). We used
genes with expression >0 for further analysis to exclude outlier
data. For the construction of the co-expression network, co-
expression analysis was utilized. Flash clust was used for cluster
analysis in our study. Clustering each sample from the beginning
ensured the reliability of the network. As a result of calculating
Pearson product moment correlation coefficients between gene
pairs, we group genes with similar expression patterns into
modules, thus creating a correlation matrix. Soft threshold
functions are also used to transform the correlation matrix into a
weighted adjacency matrix. To identify the most relevant Sepsis and
MetS modules, we set the optimal soft threshold and identified the
multi-co-expressed module genes simultaneously.
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Screening candidate genes with machine
learning

In order to further filter candidate genes for Sepsis and MetS
diagnosis, two machine learning algorithms have been applied:
random forest (RF) (Garge et al., 2013) and least absolute
shrinkage selection (LASSO) (Alhamzawi and Ali, 2018). The
search for important genes was carried out using the “random
forest” R package. Based on decision tree theory, the RF
algorithm was classified according to its ability to handle high-
dimensional data and select highly informative gene clusters. The RF
algorithm was used to screen diagnostic genes whose importance
score exceeded 0.5. LASSO regression can be used for high-
dimensional data to enhance the effectiveness of the analysis. For
further reducing the dimensions of the obtained genes, the LASSO
algorithm was applied to obtain the final diagnostic genes. The genes
deemed most significant were selected as the core genes for further
research.

Assessing the diagnostic value of candidate
genes

In supervised integrated learning, eXtreme Gradient Boosting
(XGBoost) is one of the most commonly used algorithms due to its
scalability and convenience (Parente, 2021). For the model,
hyperparameters were tuned using an optimisation method based
on a Bayesian sequence model. Optimisation was performed on the
training set, using K-fold cross-validation (K = 10) for continuous
iteration. Candidate gene models were constructed using XGBoost
on the training data set (GSE154918) and evaluated on the
validation data set (GSE28750). Following that, the diagnostic
efficacy of the model was evaluated using receiver operating
characteristic curves (ROC), precision-recall curves (PR), and
areas under the curve (AUC). This was verified in MetS patients.

Investigating the infiltration of immune cells

Assess the presence of immune cells in each sample using the
CIBERSORT algorithm (Hu et al., 2022). Based on linear support
vector regression, the CIBERSORT deconvolution algorithm
calculates the percentage of 22 immune cells in tissues or cells
using machine learning. These 22 cell types included dendritic cells,
CD4+ and CD8+ T Cells, B cells, macrophages M1 and M2,
monocytes, neutrophils, natural killer cells, and natural killer
cells. The proportion of immune cells in peripheral blood
mononuclear cells (PBMCs) was compared between the disease
and control groups. Meanwhile, the relationship between the Hub
gene and immune cells in Sepsis and MetS was explored.

Single-cell data analysis

To analyze the dataset of single cells GSE167363, we used the
“Seurat” R package to run PCA and t-distributed stochastic neighbor
embedding (t-SNE) (Butler et al., 2018). Those cells with more than
4,000 features, mitochondrial genes over 25%, or less than

200 features were excluded from the analysis. After scaling the
level of gene expression, a technique called “LogNormalize” was
utilized to normalize the data. After normalizing the data,
3,000 highly variable genes (HVGs) within each sample were
identified using the “vst” method. Principal component analysis
(PCA) was then performed and the significant principal
components (PCs) were identified using the elbow method. In
the end, t-SNE analysis was performed using 20 PCs that were
chosen. We used FindClusters function to cluster cells into
21 clusters. In order to locate differentially expressed genes
(DEGs) for each cluster, the logfc. threshold parameter was set to
0.25 using the FindeMarker function. The “singleR” package comes
with seven reference datasets, of which 5 are human and 2 are
mouse, and we have selected “HumanPrimaryCellAtlasData” as the
reference dataset (Aran et al., 2019). An automated annotation using
“SingleR”package in conjunction with DEGs in each cluster to
identify cell types, and then identifying the cell types in each
cluster separately (Li et al., 2020). The Hub gene expression was
also visualized by violin diagrams in different immune cells.

Correlation of single-cell metabolic
pathways with core genes

Molecular Signature Database (MSigDB) (Li J. et al., 2021) was
used to download the hallmark gene set, and single sample gene set
enrichment analysis (ssGSEA) was done to analyze metabolic
pathways associated with the Hub genes. Lastly, we analyzed the
correlation between immune cells and metabolism in Sepsis and
MetS. Use the Pearson correlation method in the “stats” package of
R language to calculate its correlation. Differences in metabolic
pathway scores between single cell subpopulations were
demonstrated by violin plots, where significant differences were
determined by Wilcoxon tests.

Statistical analysis

All statistical tests were performed using R version 4.1.2. The
Wilcoxon or Student’s t-test was used to analyse the difference
between the two groups. Correlations between variables were
determined using Pearson’s or Spearman’s correlation test.
Statistical significance was set at a two-tailed p < 0.05.

Results

Screening of common differential genes

As shown in Figure 1, the study flow chart explains how it was
conducted. The PCA was performed on three datasets (GSE28750,
GSE154918 and GSE98895) before corrections and normalizations
(Supplementary Figures S1A, B). The datasets were normalized, and
3,902 DEGs (1930 upregulated and 1972 downregulated) were
found in Sepsis, while 2,639 DEGs (1,354 upregulated and
1,285 downregulated) were found in MetS. By identifying
common DEGs between Sepsis and MetS, 122 common
upregulated DEGs and 90 common downregulated DEGs were
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found (Figures 2A, B) (Supplementary Tables S1, S2). GO
enrichment analysis of the identified common DEGs was
performed to investigate their biological functions and pathways.
According to GO analysis, the commonly upregulated DEGs are
mainly involved in cell activation and leukocyte activation involved
in immune response and regulation of regulated secretory pathway,
while the common downregulated DEGs were enriched in epithelial
tube morphogenesis, actin cytoskeleton, mitochondrial matrix,
SMAD protein signal transduction (Figures 2C, D)
(Supplementary Tables S3,S4).

Analysis of Co-expressed gene modules in
WGCNA

With a threshold of 80, 2 outlier samples were detected and
removed, and 98 samples were retained (Supplementary Figures
S1C, D). The “pick Soft Threshold” function of the “WGCNA”

package is used to filter out power parameters from 1 to 30. As a soft
threshold, a power of 6 was selected for ensuring the scale-free
network (Figure 3A). A total of 14 modules containing genes with
similar co-expression traits were obtained using the “cutree”
dynamic and module eigengenes functions (Figure 3B). The
heatmap displayed the correlation between each module and the
diseases (Figure 3C). “Brown” modules indicate that Sepsis and
MetS are highly linked (Sepsis: r = 0.46, p = 0.009; MetS: r = 0.26, p =
0.003). Sepsis and MetS have positively linked genes in the brown
module (Sepsis: cor = 0.38, p = 2.8e-18; MetS: cor = 0.37, p = 2.4e-17)
(Figures 3D,E). For this brown module gene, a GO analysis was
performed. The results show that it was mainly enriched in histone
modification, peptidyl−lysine modification, regulation of response
to DNA damage stimulus in biological process (BP), Mitochondrial
matrix, mitochondrial inner membrane and Mitochondria
containing protein complexes in cellular component (CC) and
transcription coregulator activity and structural constituent of
ribosome in molecular function (MF) (Figure 3F).

FIGURE 1
Research technology flow chart.
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Identification of candidate central genes
using machine learning

We used the RF algorithm in combination with LASSO
regression to finally obtain seven diagnostic genes, including
STOM, BATF, CASP4, MAP3K14, MT1F, CFLAR, UROD
(Figures 4A–D). Afterwards, we evaluated these genes’ diagnostic
value. The AUC values of ROC curves were 0.995 of STOM
(Supplementary Figure S2A), 0.996 of BATF (Supplementary
Figure S2B),0.995 of CASP4 (Supplementary Figure S2C),
0.995 of MAP3K14 (Supplementary Figure S2D), 0.968 of MT1F
(Supplementary Figure S2E), 0.934 of CFLAR (Supplementary
Figure S2E), 0.973 of UROD (Supplementary Figure S2E). All
seven gene features had high accuracy with AUC >0.9,
demonstrating their predictive power. Based on the training set
GSE154918, we constructed a candidate gene model (STOM, BATF,
CASP4, MAP3K14, MT1F, CFLAR) and evaluated it on the
validation set GSE28750. As displayed in Figure 4E, in
GSE154918, the AUC of ROC value was 0.997 and the PR value
was 0.995. The ROC and PR values for GSE28750 are 0.965 and
0.951, respectively (Figure 4F), demonstrating the model’s
diagnostic accuracy. It has also been validated in MetS, indicating

that the model is applicable and effective in MetS, with a ROC of
0.97 and a PR of 0.971 (Figure 4G).

Infiltration of immune cells in sepsis and
MetS patients

Sepsis and MetS patients with immune infiltration were studied.
In addition, heat maps show the differential expression of seven key
genes in immune cells (Figures 5B, D). Normal tissues contained
fewer neutrophils and monocytes than Sepsis tissues (p < 0.05). A
comparison of Sepsis tissues and normal tissues revealed that Sepsis
tissues contained significantly fewer naïve B cells, memory naïve
B cells, CD8 naïve T Cells, and CD4 naïve T Cells (Figure 5A). The
expression of STOM, BATF, CASP4, MT1F, CFLAR, and UROD
was negatively correlated with infiltration levels of resting NK cells,
CD4 naïve T Cells, CD8 T Cells, and CD4 resting T Cells. And
MAP3K14 expression was negatively associated with neutrophils,
activated mast cells, monocytes, macrophage M0, and NK activated
cells (Figure 5B). We also calculated the immune cell content in
patients with MetS, and monocyte proportions were higher in
patients with MetS than in controls (Figure 5C). The expression

FIGURE 2
Differential analysis and KEGG enrichment analysis of Sepsis andMetS patients (A) Intersection of DEGs upregulated by sepsis and DEGs upregulated
by MetS (B) The intersection of MetS downregulated DEGs and Sepsis downregulated DEGs (C) GO enrichment analysis for common genes upregulated
(D) Analysis of downregulated common genes based on GO enrichment.
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levels of key genes differed significantly in patients with MetS, with
six genes (STOM, BATF, CASP4, MT1F, CFLAR, UROD) being
expressed at lower levels in M0, M1 and M2 macrophages than in
MAP3K14. However, six genes (STOM, BATF, CASP4, MT1F,
CFLAR, UROD) were expressed at higher levels in monocytes, B
memory cells and T cell regulation (Tregs), but all higher than
MAP3K14 (p < 0.05) (Figure 5D). To explore the potential metabolic
pathways involved in hub genes, correlations between hub genes and
classical metabolic pathways were analysed. In sepsis samples,
significant positive correlations were found between six hub
genes (STOM, BATF, CASP4, MT1F, CFLAR, UROD) and the

pathways of glycolysis, bile acid metabolism, adipogenesis,
cholesterol homeostasis and xenobiotic metabolism, while the
pathways of glycolysis, bile acid metabolism, adipogenesis,
cholesterol homeostasis and xenobiotic metabolism showed
negative correlations with MAP3K14 (Figure 5E). Similarly, MetS
samples expressing six central genes (STOM, BATF, CASP4, MT1F,
CFLAR, UROD) showed positive correlations in glycolysis,
oxidative phosphorylation and fatty acid metabolism pathways
(Figure 5F), while MAP3K14 expression was negatively correlated
with glycolysis, oxidative phosphorylation and fatty acid metabolism
(Figure 5F).

FIGURE 3
Co-expression modules and enrichment analysis in patients with Sepsis and MetS (A) Analysis of the network topology of soft threshold power (B)
Cluster dendrogram identifying co-expressed genes in Sepsis and MetS (C) The module–trait relationships in Sepsis and MetS. Correlations and p-values
are provided for each module (D) Correlation of brown modules with Sepsis (E) Correlation between brown modules and MetS (F) Analysis of GO
enrichment for brown module genes.
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Single-cell sequencing analysis in sepsis and
normal patients

In order to check the quality of the single-cell dataset
GSE167363, a preliminary quality check was performed. The
correlation between nFeature RNA, nCount RNA, and precent.
mt was examined to make sure the cell samples used in the
study were of high quality. Figure 6A exhibited a positive
correlation between nCount RNA and nFeature RNA
representing unique molecular identifiers, with a correlation
coefficient of 0.94. We excluded some cells and the result was

diaplayed in Figures 6B,C. In the scRNA-seq dataset, a total of
3,000 genes with high levels of variation were identified, and ten of
the most significant markers were tagged. A PCA analysis of the top
20 PCs was performed (Figure 6D). The t-SNE algorithm was used
to cluster cells, obtaining 21 clusters (Figure 7A). We showed the top
ten marker genes for the 21 clusters (Supplementary Table S5). In
the Sepsis group, monocyte clusters, T Cells, and NK cells were
decreased, and the B cell subpopulation increased (Figure 7B). We
extracted mainly monocytes, NK cells, T Cells and B cells from the
sepsis single cell dataset. GO enrichment analysis was performed to
obtain the pathways of the differential genes (Supplementary Table

FIGURE 4
Co-diagnostic gene screening andmodel construction usingmachine learning (A) Relationship between the number of decision trees and the error
rate. The yellow node represents the root node, the black node represents the non-leaf node, and the red leaf node represents the classification result (B)
The top 40 candidate genes screened by random forest. Gene importance coefficients are indicated by the horizontal coordinates. The vertical
coordinates indicate the names of the genes (C) Spectrum of Lasso coefficients for candidate genes (D) Evaluation of the optimal tuning parameters
log(Lambda) in LASSO regression with cross-validation (E) A training set for XGBost modeling has been created for Sepsis (F) Demonstration of validity
using the Sepsis Validation Set (G) MetS dataset validation.
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S6-9) (Supplementary Figure S3-6). We show differential genes by
plotting volcanoes, where red dots represent upregulated genes, blue
dots represent downregulated genes, and yellow dots represent the
seven core genes (Figure 7C). We found the most significant
differences in CFLAR, STOM and BATF. Similarly, we compared
the expression levels of the seven core genes in normal subjects and
sepsis patients. In both groups, STOM, CASP4 and CFLAR were
expressed at higher levels, while the remaining four genes were
expressed at lower levels (Figure 7D).

A heatmap showing the proportion of core genes expressed in
immune cells is then displayed. A high expression level of STOM,
BATF, CASP4, and CLFAR was found in all samples in all 6 cell
types (Figure 8A), and CLFAR and STOM were expressed at a high
level at the gene expression level as well. STOMwas highly expressed
in platelet subpopulations in the normal and Sepsis groups
(Figure 8B), while CLFAR expression was higher in the
monocyte subpopulation, neutrophil subpopulation, and NK cell
subpopulations in the Sepsis group compared to the normal
group. We found that these results were generally consistent with
what we found in Figure 6D in our previous analysis. Moreover,

performing ssGSEA metabolic pathway analysis, we found that the
glucose metabolism scores of monocytes and NK cells were different
in normal and Sepsis (Figures 8C, D). Sepsis patients had higher
glucose metabolism scores on monocytes and NK cells than normal
patients, and CLFAR appears to be involved in this pathway
(Figure 8E).

Discussion

Bioinformatic tools and software have advanced rapidly in
recent years, making public databases an excellent resource for
understanding the pathophysiology of Sepsis. Sepsis mainly
consists of two cross-developing pathophysiological phases,
starting with immune activation and ending with chronic
immunosuppression, which eventually leads to immune cell
death (Nedeva, 2021). As a result, there is a tremendous amount
of pro- and anti-inflammatory mediators produced, which can both
lead to a severe imbalance in the immune system, as well as
metabolic disorders (Hirasawa et al., 2009; van der Poll et al.,

FIGURE 5
Immune cells and metabolic pathways in patients with Sepsis and MetS (A) Infiltration of immune cells between Sepsis and healthy samples (B)
Immune infiltration analysis of seven candidate genes in Sepsis (C)Comparison of immune cell infiltration between samples from theMetS group and the
normal group (D) Analysis of seven MetS candidate genes’ immune infiltration (E) Correlation between the expression levels of seven hub genes and the
ssGSEA enrichment scores of the classical metabolic pathways in the sepsis data (F) Correlation between the expression levels of seven hub genes
and the ssGSEA enrichment scores of the classical metabolic pathways in the MetS data. *p < 0.05, **p < 0.01, ****p < 0.001.
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2021). The metabolic changes that cause hyperglycemia include
muscle glycolysis and lipolysis, followed by hepatic glycogenesis and
glycolysis (Hirasawa et al., 2009; Ferreira et al., 2022). Among
patients with Sepsis, variability in blood glucose levels is
associated with higher mortality rates (Ali et al., 2008; Lu et al.,
2022). In addition to insulin resistance, metabolic dysfunction is also
correlated with the MetS (Marette et al., 2014). The combination of
WGCNA and machine learning enabled us to identify key genes
common to both Sepsis and MetS, thus making it easier to identify
patients at an early stage of the disease. ssGSEA was also used to
assess patients’ glucose metabolism levels in order to identify
metabolic disorders as early as possible.

There are a number of studies examining the relationship between
Sepsis and MetS, but few have examined the diagnostic genes and
metabolic pathways and immune cells that are associated with both

diseases. This core brown module was developed using WGCNA, and
enriched for analysis in mitochondrial matrix, endosomes, and protein
pathways. The mitochondria played a key role in the production of
ATP, the release of reactive oxygen species, and the regulation of cell
death (Stanzani et al., 2019). Several studies have suggested
mitochondrial dysfunction plays a crucial role in Sepsis-induced
organ failure (Stanzani et al., 2019). Several studies suggest
mitochondrial nitric oxide synthase (NOS) plays an important role
in Sepsis progression, but their exact role remains unclear (Mantzarlis
et al., 2017). However, mitochondrial respiratory impairment is a key
factor in multi-organ failure and death in Sepsis patients (Mantzarlis
et al., 2017; Stanzani et al., 2019). These studies are consistent with our
findings. The study also found that Sepsis and MetS share common
diagnostic genes. Based on RF and LASSO machine learning methods,
seven common diagnoses were identified, including STOM, BATF,

FIGURE 6
Sepsis single cell data quality control process (A) Analysis of the correlation between gene expression and cell counts and mitochondrial content in
each sample. (B) Precent. mt, nFeatureRNA, and nCountRNA for each sample before filtering (C) nCount RNA, nFeature RNA, and precent. mt for each
sample after filtration (D) Principal component analysis (PCA) plot, where each dot in the plot, represents a cell. Elbow plot, a method used to determine
the number of PCs.
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CASP4, MAP3K14, MT1F, CFLAR, and UROD. By analyzing their
ROC curves, their predictive ability was demonstrated. XGBoost
machine learning model was used to validate seven genes in Sepsis
and MetS. Based on immune infiltration and metabolic pathway
analysis, the seven genes were highly expressed at different levels of
immune cell subpopulations and metabolic pathways. According to
Sepsis single cell data, two genes, CFLAR and CASP4, were highly
expressed in all immune cell subpopulations. CFLAR, also known as
cFlip, includes CASP8 and FADD-like apoptosis regulators (Xiao et al.,
2012; Faiz et al., 2018). CFLAR is an integral component of the body’s
natural immune defense system (Schattenberg et al., 2011). CFLAR also
plays a key role in inflammation and apoptosis in the body (Xiaohong
et al., 2019). There is evidence that reduced levels of CFLAR contribute
to inflammation after myocardial infarction (Xiao et al., 2012). The
CFLAR was primarily found on neutrophils in immune infiltration
analysis. Single-cell RNA sequencing has also revealed CFLAR
expression on neutrophils in Sepsis patients’ blood. Cystein
recruitment domains (CARDs) at the N terminus of
CASP4 distinguish it from other cysteine-aspartate proteases (Papoff
et al., 2018). In the innate immune response, CASP4 promotes
phagosome-lysosome fusion, as well as maturation and secretion of
pro-inflammatorymolecules (Papoff et al., 2018). Apoptosis induced by
endoplasmic reticulum stress (ER) is alsomediated by CASP4 (Songane

et al., 2018). In Sepsis and MetS, metabolic correlation analysis
demonstrated the relevance of core genes in glucose metabolic
pathways. As a result of our findings, we believe the common
diagnostic genes we obtained contribute to the onset and
progression of Sepsis and MetS. As a result of the limited number
of studies that have been conducted on these two genes in Sepsis and
MetS, we can only use our analysis as a preliminary reference, and
further tests are necessary to confirm our findings.

Sepsis is a life-threatening organ dysfunction caused by a
dysregulated host response to infection, with impaired glucose
metabolism being a common problem leading to increased mortality
in sepsis patients (Ferreira et al., 2022). Immune cells in patients with
sepsis initially exhibit a hyperinflammatory state, whichmay be followed
by a state of immune tolerance (Arts et al., 2017). The glycolytic pathway
has been shown to be upregulated in hyperinflammatory cells, whereas
the glycolytic pathway is usually downregulated in immune-tolerant cells
(Arts et al., 2017). A large body of evidence suggests that changes in
cellular metabolism during the inflammatory and suppressive phases of
disease may influence the immune response to sepsis. We have used
metabolic correlation analysis to demonstrate the association of hub
genes in the glucose pathway in sepsis and MetS. Next, we will continue
to investigate the mechanisms of glucose metabolism in sepsis andMetS
in animal models.

FIGURE 7
Single-cell subpopulation identification and expression levels of diagnostic genes in Sepsis and normal groups (A) TSNE display plot of cell
subpopulations in Sepsis patients (B) Comparison of immune cell composition in patients with Sepsis and normal (C) Volcano diagram showing
differential genes, with red dots representing upregulated genes, blue dots representing downregulated genes and yellow dots representing hub genes
(D) An expression plot showing the levels of diagnostic genes in Sepsis patients and normal individuals.

Frontiers in Genetics frontiersin.org10

Tao et al. 10.3389/fgene.2023.1129476

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1129476


Further screening by multiple machine learning algorithms
yielded seven diagnostic genes common to both Sepsis and MetS,
and assessment of diagnostic gene expression levels in immune
cell subpopulations and metabolic pathways, all of which
contribute to early diagnosis of patients. However, this study
still has limitations. In order to better understand the potential
of key genes in the diagnosis of Sepsis, we plan to conduct a

prospective cohort study. While we have improved the
diagnostic efficacy of core genes through WGCNA combined
with machine learning algorithms and validated their
differential expression in a single-cell dataset, we will also
investigate the potential of signature genes in the treatment
of Sepsis. Several genes will also be knocked out in rat models for
further study.

FIGURE 8
Co-localization and differential expression of co-diagnostic genes in immune cells of Sepsis patients (A) Co-diagnostic gene expression ratios in
Sepsis and normal immune cells (B) Expression of co-diagnostic genes in Sepsis and normal individuals in each immune cell (C) A violin plot showing the
difference between normal and Sepsis monocyte glucose metabolism (D) A violin plot depicting the differences in glucose metabolism in normal and
Sepsis NK cells (E) Co-localization of glucose metabolic pathway and CFLAR in patients with Sepsis and healthy individuals. *** (p < 0.001).
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Conclusion

The effector genes involved in Sepsis and MetS are identified
using a combination of single cell analysis and WGCNA as well as
machine learning techniques. Additionally, it was found that disease
diagnostic genes are associated with multiple immune cells and
metabolic pathways. It is possible that glucose metabolism-related
pathways are common to both Sepsis and MetS, and in Sepsis
patients, glucose metabolism may work through monocytes and NK
cells. We found that the CFLAR gene is likely to play a key role in
glucose metabolism in Sepsis patients. This study may provide a new
approach to diagnosing and treating Sepsis.
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