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Background: Diabetic nephropathy (DN) is a widespread diabetic complication
and a major cause of terminal kidney disease. There is no doubt that DN is a
chronic disease that imposes substantial health and economic burdens on the
world’s populations. By now, several important and exciting advances have been
made in research on etiopathogenesis. Therefore, the genetic mechanisms
underlying these effects remain unknown.

Methods: The GSE30122, GSE30528, and GSE30529 microarray datasets were
downloaded from the Gene Expression Omnibus database (GEO). Analyses of
differentially expressed genes (DEGs), enrichment of gene ontology (GO), the
Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment
analysis (GSEA) were performed. Protein-protein interaction (PPI) network
construction was completed by the STRING database. Hub genes were
identified by Cytoscape software, and common hub genes were identified
by taking intersection sets. The diagnostic value of common hub genes was
then predicted in the GSE30529 and GSE30528 datasets. Further analysis was
carried out on the modules to identify transcription factors and miRNA
networks. As well, a comparative toxicogenomics database was used to
assess interactions between potential key genes and diseases associated
upstream of DN.

Results: Samples from 19 DNs and 50 normal controls were identified in the
GSE30122 dataset. 86 upregulated genes and 34 downregulated genes (a total of
120 DEGs). GO analysis showed significant enrichment in humoral immune
response, protein activation cascade, complement activation, extracellular
matrix, glycosaminoglycan binding, and antigen binding. KEGG analysis
showed significant enrichment in complement and coagulation cascades,
phagosomes, the Rap1 signaling pathway, the PI3K-Akt signaling pathway,
and infection. GSEA was mainly enriched in the TYROBP causal network, the
inflammatory response pathway, chemokine receptor binding, the interferon
signaling pathway, ECM receptor interaction, and the integrin 1 pathway.
Meanwhile, mRNA-miRNA and mRNA-TF networks were constructed for
common hub genes. Nine pivotal genes were identified by taking the
intersection. After validating the expression differences and diagnostic values
of the GSE30528 and GSE30529 datasets, eight pivotal genes (TYROBP, ITGB2,
CD53, IL10RA, LAPTM5, CD48, C1QA, and IRF8) were finally identified as having
diagnostic values.

Conclusion: Pathway enrichment analysis scores provide insight into the
genetic phenotype and may propose molecular mechanisms of DN. The
target genes TYROBP, ITGB2, CD53, IL10RA, LAPTM5, CD48, C1QA, and
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IRF8 are promising new targets for DN. SPI1, HIF1A, STAT1, KLF5, RUNX1, MBD1,
SP1, and WT1 may be involved in the regulatory mechanisms of DN
development. Our study may provide a potential biomarker or therapeutic
locus for the study of DN.
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Introduction

The worldwide prevalence of diabetes continues to increase
dramatically and is predicted to rise to nearly seven hundred
million in 2045 (Cho et al., 2018). The leading cause of both
chronic kidney disease (CKD) and end-stage renal disease
(ESRD) is diabetes mellitus (GBD Chronic Kidney Disease
Collaboration, 2020). DN affects a high proportion of
diabetics worldwide and is a microvascular disease (Wang
et al., 2021). The commonest reason for end-stage chronic
kidney disease is DN, and it has a serious impact on the
quality of life of patients (Liu et al., 2021). Compared with
non-DN patients, urinary protein levels were significantly
higher in DN patients (p < 0.001), and mitochondria in
podocytes were more fragmented in DN patients than in non-
DN patients (Ma et al., 2019). The early appearance of
microalbuminuria in DN should be screened at an early stage
and followed up regularly (Bakris and Molitch, 2014). DN
accompanies 40% of patients with diabetes and is related to
considerable morbidity and mortality (Macisaac et al., 2014).

DN progresses through normoalbuminuria, microalbuminuria,
or early DN, macroalbuminuria, and ultimately to ESRD (Sourris
and Forbes, 2009). The hallmark indicators of renal function are the
estimated glomerular filtration rate (eGFR) and albuminuria
(Persson and Rossing, 2018). But these do not provide advance
warning of a DN. Through research, questions have been raised
about their reliability as DN diagnostics (Macisaac et al., 2014;
Bjornstad et al., 2015). It has now been discovered that DN can
progress directly to ESRD without albuminuria, which challenges
the diagnostic value of albuminuria (MacIsaac and Jerums, 2011;
MacIsaac and Ekinci, 2019). It is common practice to detect
microalbuminuria at the early stages of DN; However, some
patients with microalbuminuria have advanced renal disease.
Microalbuminuria is influenced by many factors, and its
reliability and accuracy are disputed (Zhou et al., 2021). At the
same time, eGFR does not exactly reflect measured GFR (mGFR),
which could lead to an underlying misclassification of renal function
(MacIsaac et al., 2015). Serum creatinine has been questioned as a
marker as well, so there is an urgent need to find reliable biomarkers
to predict ND occurrence and progression (Colhoun and
Marcovecchio, 2018).

The DN treatment is not very effective, and the cost of its
treatment is consistently a significant expense in any country.
Early diagnosis of diabetic nephropathy is important for early
intervention and treatment. With the speedy advancement of
sequencing technology, a variety of research associated with the
pathophysiological course of DN has been conducted, and an
increasing number of new biomarkers have been identified (Fan

and Hu, 2022). These biomarkers have been shown to be
associated with the inflammatory and renal injury pathways of
DN, as well as with eGFR and albuminuria, increasing their
predictive and diagnostic properties (Colhoun and
Marcovecchio, 2018). TNFR1, CRP, TNF-, CCL15, Glypican-5,
MMPs, and VEGF are a few examples. However, there is still a
deficit in clinical evidence. In the absence of symptoms or early
symptoms, the expression levels of relevant biological signaling
molecules, cytokines, and other substances may already have
changed. Therefore, further research on the molecular
mechanisms, such as cytokines, involved in the progression of
DN is required to explore more DN-related biomarkers and
improve their relevant clinical evidence, thus improving the
early diagnosis and prognostic management of DN for the
benefit of patients.

The global prevalence of DN is currently a significant public
health concern. It is required to investigate potential biomarkers and
molecular pathways linked to the onset and progression of DN.
Bioinformatics has become a critical technique for elucidating the
pathogenesis, etiology, and therapy of DN.

In this study, we chose the GSE30122, GSE30528, and
GSE30529 datasets of the platform GPL571 from the Gene
Expression Omnibus (GEO), which is the transcriptome analysis
of human diabetic kidney disease. Identify the potential DEGs that
participate in the initiation and development of DN and analyze
their expression, function, and interaction in order to serve as a
guide for researching potential biomarkers or therapeutic targets
for DN.

Methous

Data acquisition

Screen potential diabetic nephropathy-related genes using
GEO datasets and text mining. The transcriptome expression
profile datasets GSE30122, GSE30529, and GSE30528 (Table 1)
were obtained on the GPL571 platform of the GEO database.
The datasets were composed of normal control samples and
diabetic nephropathy samples. Lastly, 19 DN and 50 normal
group samples were analyzed in the GSE30122 dataset.
Meanwhile, GSE30528 and GSE30529 were used for further
screening of the key genes and to probe the expression of
common key genes in the GSE30528 dataset. Statistical
analysis was performed by quantile-normalizing and log2-
transforming the raw data.

The details of the three datasets are shown in Table 1, and the
flowchart of the study is shown in Figure 1.
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Analysis of differential gene expression

These datasets were downloaded from the GEO database, and
only the probes with the highest signal values for the same
molecule were retained. The Limma software package was again
used to normalize the data and analyze the variance between the
two groups.

DEGs were calculated using the R software package “limma”
(Davis and. Meltzer, 2007), with p values adjusted < 0.05 and |
log2FoldChange| > 1. The “Complex Heatmap” (version 2.2.0) and
“ggplot2” packages (version 3.3.3) of R software (version 3.6.3) were

used to create volcano maps, PCA maps, and heat maps. (Gu et al.,
2016).

GO and KEGG pathway analysis

To conduct GO and KEGG pathway analysis, the ClusterProfiler
package (version 3.14.3) of R software was used (Yu et al., 2012). The
org.hs.eg.db package (version 3.10.0) for ID conversion, and the
GOplot package (version 1.0.2) for calculating the z-score (Walter
et al., 2015). The adjusted p-value was 0.05 as a measure of statistical

FIGURE 1
Presents the flowchart of the study.

TABLE 1 Details of GEO DN data in this study.

Accession Platform Tissue Tissue Subregion control DN Gene

GSE30122 GPL571 kidney glomerulus+tubules 50 19 mRNA

GSE30528 GPL571 kidney glomerulus 13 9 mRNA

GSE30529 GPL571 kidney tubules 12 10 mRNA

*GSE, gene expression omnibus; DN, diabetic nephropathy.
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significance. The GO enrichment analysis included biological
process (BP), cellular component (CC), and molecular function
(MF) (www.frontiersin.org).

Gene set enrichment analysis (GSEA)

GSEA was performed in order to explore biological signaling
pathways. When the FDR <0.25 and the p. adjust value <0.05, it is
thought to be a significant enrichment and is used as a screening
index. Mainly, the clusterProfiler package (version 3.14.3) was used
for GSEA analysis (Yu et al., 2012). Statistical analysis and
visualization using R software (version 3.6.3).

Protein-protein interaction network analysis

The STRING database (https://string-db.org/) was used to
construct the PPI network to reveal general organizational
principles of cellular function and predict protein-protein
interactions (Damian et al., 2018), perform modular
analysis, and visualize the results of the PPI network
through the MCODE of Cytoscape (version 3.9.1). Using the
Cytohubba plugin in Cytoscape, the 20 highest-scoring genes
were labeled as “hub genes” using the MCC algorithm in
Cytoscape. The hub genes of the three datasets were used as
an intersection and as a common hub gene for the validation
analysis.

FIGURE 2
Normalized expressionmatrices (A) of theGSE30122 dataset. Differentially expressed genes from the GSE30122 dataset using a |log2 FC|1 screening
criterion and an adjusted p-value of 0.05 (B–D). [(B) PCA plot; (C) heatmap plot; (D) Volcano plots in GSE30122. PCA: Principal Component Analysis; Ref:
Control Group; Test: Diabetic Nephropathy, DN].
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Structure of mRNA-miRNA and mRNA-TF
modulatory networks

Prediction of interactions with the miRNet database
2.0 between differentially expressed miRNAs and mRNAs
(prediction URL: https://www.mirnet.ca/). Then, the mRNA-
miRNA regulatory networks and the mRNA-TF regulatory
networks were constructed to profile the interactions with
mRNAs and miRNAs/TF as target potential for DN renal
cells. The regulatory network was visualized using Cytoscape
software.

Validation of common hub genes

The R package partial (pROC) was used for receiver operating
characteristic (ROC) curve analysis and computation of ROC
curves and ROC AUC values. Visualization of charts is
implemented with the ggplot2 package. Multi-gene ROC
analysis is a predictor of probability based on the contribution

of multiple genes to the outcome. A ROC analysis was performed
on the results of binary logistic regression calculations for each
sample. Regression was performed with the SPSS 22.0 version.
Outcomes were quantified as the area under the ROC curve (AUC)
of the results, and the genes with AUC > 0.7 were deemed
diagnostic.

Identification of key potential genes related
to DN

The Comparative Toxicogenomics Database (CTD, http://
ctdbase.org/, accessed December 10, 2022) is an integrated
database that integrates information related to chemical gene-
protein interactions, chemical disease, and genetic disease
relationships and proposes postulates associated with disease
mechanisms (Davis et al., 2018). Data from the CTD were used
to characterize the relationship of potential key genes to diseases
upstream of the DN, such as insulin resistance, diabetes, metabolic
syndrome, hyperlipidemia, and acidosis.

FIGURE 3
Normalized expressionmatrices (A) of the GSE30528 dataset. Differentially expressed genes from the GSE30528 dataset with a |log2 FC| 1 screening
criterion and an adjusted p-value of 0.05 (B–D). [(B) PCA plot; (C)Heatmap plot; and (D) Volcano plots of GSE30528. PCA: Principal component analysis;
Ref: Control group; Test: Diabetic nephropathy, DN].
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TABLE 2 GO terms and pathways significantly enriched by DEGs.

ONTOLOGY ID Description GeneRatio BgRatio pvalue p.adjust qvalue

BP GO:
0006959

humoral immune response 22/110 317/18800 9.46E-18 2.30E-14 1.74E-14

BP GO:
0002253

activation of immune response 19/110 386/18800 9.75E-13 1.18E-09 8.95E-10

BP GO:
0002443

leukocyte mediated immunity 20/110 457/18800 2.01E-12 1.63E-09 1.23E-09

BP GO:
0006956

complement activation 12/110 131/18800 1.55E-11 9.39E-09 7.11E-09

BP GO:
0002455

humoral immune response mediated by circulating
immunoglobulin

11/110 121/18800 1.23E-10 5.99E-08 4.53E-08

CC GO:
0062023

collagen-containing extracellular matrix 18/114 429/19594 5.47E-11 1.10E-08 8.18E-09

CC GO:
0072562

blood microparticle 11/114 147/19594 9.65E-10 9.75E-08 7.21E-08

CC GO:
0005581

collagen trimer 8/114 86/19594 3.73E-08 2.51E-06 1.86E-06

(Continued on following page)

FIGURE 4
Normalized expression matrices (A) of the GSE30528 dataset. Differentially expressed genes of the GSE30528 dataset with a filtering standard of |
log2 FC|≥1 and adjust p-value < 0.05(B–D). [(B) PCA plot; (C) Heatmap plot; (D) Volcano plots of GSE30528. PCA: Principal Component Analysis; Ref:
Control Group; Test: Diabetic Nephropathy, DN).
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FIGURE 5
Enrichment plots through GO. [(A) Bar graph of GO enrichment pathways, (B) Bubble plot, (C) chord diagram, (D) loop graph.].

TABLE 2 (Continued) GO terms and pathways significantly enriched by DEGs.

ONTOLOGY ID Description GeneRatio BgRatio pvalue p.adjust qvalue

CC GO:
0009897

external side of plasma membrance 13/114 455/19594 2.48E-06 9.52E-05 7.04E-05

CC GO:
0034774

secretory granule lumen 11/114 322/19594 2.84E-06 9.52E-05 7.04E-05

MF GO:
0005539

glycosaminoglycan binding 13/112 234/18410 1.81E-09 5.63E-07 4.10E-07

MF GO:
0008201

heparin binding 10/112 168/18410 7.78E-08 1.01E-05 7.32E-06

MF GO:
0005201

extracellular matrix structural 10/112 172/18410 9.71E-08 1.01E-05 7.32E-06

MF GO:
0003823

antigen binding 9/112 174/18410 1.17E-06 8.82E-05 6.41E-05

MF GO:
0061134

peptidase regulator activity 10/112 230/18410 1.42E-06 8.82E-05 6.41E-05

*GO, gene ontology; DEGs, Differentially Expressed Genes; MF, molecular fuction; CC, cellular component; BP, biological process.
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Statistical analysis

We used R software v. 3.6.3 for strategic analysis. Figures were
presented in terms of means and standard deviations, and
comparisons between groups were made using unpaired t-tests. A
p-value < 0.05 was considered statistically significant.

Result

Expression profiling data

The expression matrices of GSE30122, GSE30528, and
GSE30529 for the three data sets were normalized, and the box
plots’ distribution tendency was generally straight (Figures
2A–4A). The probes associated with 12,548 genes in the
GSE30122 dataset were identified, and the DEGs for DN were
confirmed. |log2(FC)|>1 and p. adj0.05 were met by 120 IDs.

Under this threshold, the number of high expressions in the DN
group was 86 and in the reference group was 34. Normalization is
performed through the inter-array normalization function of the
Limma package and then visualized. The GSE30528 (Figure 3) and
GSE30529 (Figure 4) datasets were analyzed based on the same
criteria and visualized as normalized box plots, volcano plots,
heatmaps, and PAC plots.

GO enrichment analysis

To further investigate the biofunction of the 120 DEGs
obtained in GSE 30122, GO functional enrichment analysis was
performed. There were 304 items for BP, 57 items for CC, and
52 items for MF based on the adjusted filtering criteria (p-value <
0.05 and Q value < 0.2). GO analysis of the enrichment showed
that the differentially expressed genes were mainly functional in
the following 15 ways (Table 2): GO: 0006959, “humoral immune

FIGURE 6
Enrichment plots through KEGG. [(A) Bar graph of KEGG enrichment pathways, (B) Bubble plot, (C) chord diagram, (D) loop graph).
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TABLE 3 Analysis of GSEA enrichment.

ID/Description SetSize EnrichmentScore NES pvalue p.adjust qvalues rank leading_edge

WP_TYROBP_CAUSAL_NETWORK 50 0.795981415 2.503 0.0017 0.03269 0.02680 1194 tags = 54%, list = 10%, signal = 49%

REACTOME_INTERLEUKIN_10_SIGNALING 43 0.744766999 2.281 0.0017 0.03269 0.02680 937 tags = 40%, list = 8%, signal = 37%

WP_INFLAMMATORY_RESPONSE_PATHWAY 29 0.798773879 2.237 0.0019 0.03269 0.02680 1299 tags = 52%, list = 11%, signal = 46%

REACTOME_CHEMOKINE_RECEPTORS_BIND_CHEMOKINES 52 0.706657097 2.232 0.0017 0.03269 0.02680 900 tags = 37%, list = 8%, signal = 34%

KEGG_CELL_ADHESION_MOLECULES_CAMS 115 0.618803129 2.209 0.0016 0.03269 0.02680 1223 tags = 35%, list = 10%, signal = 32%

KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION 73 0.661032843 2.201 0.0016 0.03269 0.02680 1669 tags = 42%, list = 14%, signal = 37%

WP_TYPE_II_INTERFERON_SIGNALING_IFNG 36 0.74575286 2.193 0.0018 0.03269 0.02680 1512 tags = 58%, list = 13%, signal = 51%

REACTOME_INTERFERON_GAMMA_SIGNALING 77 0.652216095 2.184 0.0016 0.03269 0.02680 1333 tags = 42%, list = 11%, signal = 37%

REACTOME_COMPLEMENT_CASCADE 54 0.679372563 2.155 0.0017 0.03269 0.02680 447 tags = 24%, list = 4%, signal = 23%

REACTOME_TCR_SIGNALING 106 0.600536288 2.113 0.0016 0.03269 0.02680 1481 tags = 33%, list = 12%, signal = 29%

BIOCARTA_CTL_PATHWAY 13 0.867303264 2.028 0.0019 0.03269 0.02680 1283 tags = 85%, list = 11%, signal = 76%

KEGG_ECM_RECEPTOR_INTERACTION 79 0.598503792 2.017 0.0016 0.03269 0.02680 994 tags = 30%, list = 8%, signal = 28%

PID_INTEGRIN1_PATHWAY 62 0.61879348 2.015 0.0017 0.03269 0.02680 994 tags = 39%, list = 8%, signal = 36%

KEGG_CHEMOKINE_SIGNALING_PATHWAY 165 0.534914996 2.003 0.0015 0.03269 0.02680 1276 tags = 24%, list = 11%, signal = 22%

*NES, normalized enrichment score.
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response.” GO: 0002253, “activation of the immune response.”
GO: 0002443, “leukocyte-mediated immunity.” (www.spandidos-
publications.com) GO: 0006956, “complement activation.” GO:
0002455-humoral immune response mediated by circulating
immunoglobulin (draco.cyverse.org); GO:0062023-collagen-
containing extracellular matrix; GO: 0072562 (blood
microparticle); GO: 005581 (collagen trimer); GO: 0034774
(secretory granule lumen); GO: 009897 (external side of plasma
membrane); GO: 0005539—Glycosaminoglycan binding; GO:
0008201—Heparin binding; GO: 1901681—Sulfur compound
binding; GO: 0003823—Antigen binding; GO:
0005201—Extracellular matrix structural constituent (www.ncbi.
nlm.nih.go). The results are presented in Table 2. In order to
sufficiently demonstrate the requirements of GO enrichment
analysis, the R packages GOplot and ggplot2 were employed for
visualization. (Figure 5).

KEGG pathways enrichment analysis

To explore the potential biological pathways in diabetic
nephropathy, we applied DEGs for KEGG pathway analysis.
We used DEGs for KEGG pathway analysis after adjusting the

filtering criteria (P and Q values). The adjusted filtering criteria
(p-value 0.05 and Q-value 0.2) indicate that 21 KEGG pathways
were enriched in GSE 30122. Complement and coagulation
cascades; The phagosome; protein digestion and absorption;
the PI3K-Akt signaling pathway; Primary immunodeficiency;
Focal adhesion; The NF-kappa B signaling pathway; The
Rap1 signaling pathway; and other pathways were enriched
(Figure 6). Based on these findings, pathways such as
inflammation, the immune response, and mediated interstitial
renal fibrosis may be involved in the biological pathways of
diabetic nephropathy.

GSEA analysis of enrichment

The GEO30122 dataset was examined using GSEA to
characterize the functional genome associated with diabetic
nephropathy. Finally, a total of 226 datasets met the FDR Q
value <0.25 and the p. adjust value <0.05. We selected 14 of
these pathways that met NES ≥ 2.0 and the adjusted p-value <
0.05 for GSEA enrichment analysis to be shown (Table 3). These
data sets include (Cho et al., 2018): TYROBP causal network
(GBD Chronic Kidney Disease Collaboration, 2020);

FIGURE 7
Enrichment plots by GSEA. [(A–C) GSEA visual analysis, (D) GSEA ridgeplot).
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Interleukin 10 signaling (Wang et al., 2021); Inflammatory
response pathway (Liu et al., 2021); Involved in chemokine
receptor-binding (Ma et al., 2019); Involved in cell adhesion
molecules, CAMS (Bakris and Molitch, 2014); Interferon γand α
signaling pathways (Macisaac et al., 2014); Type II interferon
signaling, IFNG (Sourris and Forbes, 2009); Antigen processing
and presentation (Persson and Rossing, 2018); Reactome
complement cascade (Bjornstad et al., 2015); Reactome tcr
signaling (MacIsaac and Jerums, 2011); Biocarta CTL
pathway (MacIsaac and Ekinci, 2019); ECM receptor
interaction (Zhou et al., 2021); PID integrin1 pathway
(MacIsaac et al., 2015); Chemokine pathway; and so on.
Then, the results of the GSEA enrichment analysis were
visualized and presented (Figure 7).

Construction of PPI network and screening
of hub genes

Separate PPI analyses were conducted for each of the three
datasets using the STRING platform. The final 115 nodes and
448 interactions were identified in the GSE30122 dataset.
338 nodes and 973 edges were identified in dataset GSE30528.
A total of 457 nodes and 2946 edges were identified in dataset
GSE30529. A sub-network graph was constructed by the MCODE
plugin for the differential genes of the GSE30122 dataset

(Figure 8). In addition, the MCC module in the Cytohubba
plugin filtered the top 20 hub genes in each of the three
datasets and then took the intersection of the top 20 hub
genes to determine the common hub genes by Venn software,
and finally a total of 9 common hub genes were obtained
(TYROBP, ITGB2, CD53, IL10RA, LAPTM5, CD48, C1QA,
C1QB, and IRF8) (Figure 9).

mRNA-miRNA and mRNA-TF regulatory
network

We predict target miRNAs and TFs using the miRNet tool.
Lastly, we identified 93 miRNAs from nine common hub genes
and identified 110 mRNA-miRNA pairs. Meanwhile, we
identified 8 TFs for 2 common hub genes and identified
8 mRNA-TF pairs. Based on the forecast results, a co-
expression network of mRNAs and miRNAs consisting of
93 nodes and 110 edges and an expression network graph of
mRNAs and TFs consisting of 10 nodes and 8 edges were
constructed using Cytoscape. (Figure 10). With 18 miRNAs
modulating IRF8, 4 miRNAs modulating TYROBP, 4 miRNAs
modulating C1QB, 9 miRNAs modulating ITGB2, 4 miRNAs
modulating C1QA, 24 miRNAs modulating LAPTM5,
24 miRNAs modulating CD48, 19 miRNAs modulating
IL10RA, and 4 miRNAs modulating CD53.

FIGURE 8
PPI network construction in GSE30122. [(A–E) Sub-network diagram constructed by the MCODE plugin].
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Identification of potential key genes for
upstream diseases associated with diabetic
nephropathy

Use of CTD to probe the interactions of potential key genes with
diseases associated with diabetic nephropathy As shown in
Figure 11, there are potential key genes for insulin resistance,
hyperlipidemias, diabetes mellitus, acidosis, and the metabolic
syndrome. The inferred scores in the CTD reflect associations
between chemicals, diseases, and genes. The results of the
interactions show that LAPTM5, IRF8, IGTB2, CD53, and C1QB
scored higher with diabetes mellitus.

GSE30528 and GSE30529 validate the
expression and diagnostic value of nine
common hub genes

GSE30528 was used to detect the expression of the screened
common hub genes, and the expression of 9 diagnostically
relevant hub genes (TYROBP, ITGB2, CD53, IL10RA,

LAPTM5, CD48, C1QA, C1QB, and IRF8) differed between
DN and normal control patients (Figures 12A–I). We created
ROC curves using data from patients with diabetic
nephropathy compared to healthy individuals. Findings
suggest that these eight genes have important value in the
diagnosis of diabetic nephropathy. In the GSE30528 dataset,
nine common hub genes all had a good diagnostic value for DN
(Figure13A–I). In the GSE 30529 dataset, the genes C1QA,
CD48, CD53, IL10RA, IRF8, ITGB2, LAPTM5, and TYROBP
all had good diagnostic values; however, the AUC of the
variable C1QB was 0.542 (95% CI 0.263–0.820), which was
not diagnostic (Figure14A–I). Eight Hub genes’ expression in
the normal group and DN group in the GSE30529 dataset had
also been analyzed and visualized (Figures 15A–H).

Discussion

Diabetic nephropathy (DN) is the major cause of CKD and
ESRD (Vaisar et al., 2018), and it has become a global public
problem. In recent years, DN has achieved significant progress

FIGURE 9
Hub genes in the GSE30122, GSE30528 and GSE30529 datasets. (A) Top 20 hub genes in GSE30122; (B) Top 20 hub genes in GSE39528; (C) Top
20 hub genes inGSE30529 dataset; (D) Common hub genetic Venn diagram.
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in the diagnosis, treatment, and prevention of the disease, and a
wealth of research results have been obtained.
SGLT2 inhibitors and GLP1 receptor agonists have shown a
significant advance in renal protection. Inhibition of apoptosis
signal-regulated kinase 1 (ASK1) by histone modifications in
sufficient cells induces oxidative stress to reduce glomerular
injury. Bioinformatics research on biomarkers has also
achieved significant advances and gained increasing
attention. Studying biomarkers of diabetic nephropathy is
particularly important for early diagnosis, therapy, and
evaluation of the disease’s prognosis. For this research, we
utilized 19 DN samples and 50 gene expression profiles of
normal subjects included in the GSE30122 dataset, and the data
were analyzed using biological informatics tools. 120 IDs met
the thresholds of |log2(FC)| ≥ 1 and p. adj < 0.05. Within this
threshold, 86 IDs were hyper-expressed in the DN groups and
34 IDs were hyper-expressed in the control groups for GO,

KEGG, and GSEA analysis. Top20 hub genes were filtered with
the Cytohubba plugin, and 9 common hub genes were obtained
by taking the intersection with the Top20 gene Venn diagram of
the GSE30528 and GSE30529 datasets. Further validation of the
diagnostic value was performed using ROC curves in the
GSE30528 and GSE30529 datasets, and finally, some
important hub genes such as TYROBP, ITGB2, CD53,
IL10RA, LAPTM5, CD48, C1QA, and IRF8 were associated
with a risk for DN, suggesting that these may play an important
role in the mechanisms of DN onset and progression.

There is tremendous heterogeneity in DN susceptibility, and
genetic regulation may be an essential factor contributing to this
heterogeneity. The mainly damaged cells in DN are podocytes,
and the severity of damage is highly related to disease
progression. Podocyte apoptosis is the leading cause of
podocyte reduction in DN (Li et al., 2007). ROS-mediated
apoptosis of podocytes induced by hyperglycemia is the initial

FIGURE 10
mRNA-miRNA regulatory network (A, B) and MRNA-TF regulatory network (C, D).
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step in the progression of diabetic nephropathy (Stern et al.,
2016). Macrophage infiltration is an important distinguishing
feature of DN (Tesch, 2010). Li et al. (2022a) reported that the
differential gene expression, signaling pathways involved, and

signature enrichment profiles obtained differed significantly by
the proportion of cell types in different datasets. By integrated
transcriptome analysis, two genes (TEKT2 and PIAS2) related to
spermatogenesis were found to be dysregulated to mediate DN,
and the knockdown of TEKT2 could resist high glucose
induction of podocyte cytoskeletal remodeling and
NPHS1 protein downregulation. In our study, C1Q8 was
found to be highly expressed in both DN glomeruli and
tubular cells, but its diagnostic value in DN tubular cells was
less (AUC = 0.542).

TYROBP is located on chromosome 19 and can act as an
adaptor molecule for TREM (trigger receptor expressed on
myeloid cells) and induce cytokine production in
macrophages (Colonna, 2003), and is involved in the
regulation of interleukin-1β, interleukin-6, and interleukin-10.
TYROBP was identified by bioinformatics analysis as a potential
candidate gene for lupus nephritis (Zhang et al., 2020) and a
candidate gene for tubulointerstitial fibrosis in diabetic
nephropathy, possibly associated with the epithelial-
mesenchymal transition of the renal tubular epithelium (Bai
et al., 2023). ITGB2 is a protein-encoding gene involved in
processes such as apoptosis, cell adhesion, cell-matrix
adhesion, and inflammatory responses. The encoded protein
can be linked to endothelial cell surface adhesion molecules and
various cytoskeletal proteins and is involved in signal
transduction, possibly accelerating small vessel lesions in DN
via the cell adhesion molecule (CAM) pathway. (Geng et al.,
2019). Ligand adhesion molecules are part of the
immunoglobulin family, are highly expressed in the serum
and kidney of DN, and can contribute to disturbed lipid
metabolism in podocytes (Fu et al., 2020). CD53 is a critical
factor in the regulation of immune cells and is found in cellular
exosomes (Buschow et al., 2010), cell surfaces, and plasma
membranes. It is involved in signal transduction and may
contribute to inflammation and apoptosis in DN through
immune cell infiltration and exosome secretion. (Jiang et al.,
2022). IL10RA, the interleukin 10 receptor subunit alpha, is
involved in the negative regulation of autophagy, the positive
regulation of the JAK-STAT receptor signaling pathway, and the
response to lipopolysaccharide. The JAK-STAT pathway has an
essential effect on the progression of DN by promoting
inflammatory factor expression and inducing the activation of
inflammatory cells (Zhang et al., 2017). Lysosomal exhaustion
leads to dysfunctional autophagy in kidney tubular epithelial
cells, and SMAD3, a key effector of TGFB-SMAD signaling,
causes tubular epithelial damage in diabetic organisms by
disrupting the autophagic flow, which in turn accelerates the
DN process (Yang et al., 2021). LAPTM5 encodes a lysosome-
associated transmembrane receptor that is involved in the
induction of programmed cell death (Inoue et al., 2009), the
positive regulation of NIK/NF-kappaB signaling (rgd.mcw.edu),
and the positive regulation of the MAPK cascade (Adra et al.,
1996). Studies suggest that NF-kappaB receptor activation may
contribute to podocyte injury in combination with cytokines
such as TNF, MAC-2, and IL-1B, promoting glomerular
oxidative stress and pro-inflammatory factor production and
mediating the development of DN (38). CD48, which encodes
immunoglobulin-like receptors, is involved in defense

FIGURE 11
CTD analysis of the association between potential key genes and
disease. (A) Insulin Resistance; (B) Hyperlipidemias; (C) Diabetes
Mellitus; (D) Acidosis; (E) Metabolic Syndrome.
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responses. Diabetic nephropathy is a multi-mechanism disease
involving genetic, inflammatory, immune, and endocrine
mechanisms. Autoantibodies produced by B cells can lead to
the deposition of immune complexes in the kidney (Sosenko
et al., 2017), inducing the aggregation of macrophages,
generating a cascade response, and aggravating the
progression of diabetic nephropathy. C1QA, the complement
C1q A chain, is involved in complement activation. Studies have
suggested that complement activation may be a major cause of
DN (Ricklin et al., 2018). C1QA and ITGB2 are involved in the
complement cascade response, CD48 and CD53 may be involved
in humoral immunity and macrophage activation, and
integrated polygenic regulation promotes the inflammatory
response cascade effect and accelerates DN progression

(Klessens et al., 2017; Xu et al., 2021). IRF8, which is highly
expressed in the DN group, is involved in autophagy, immune
response, phagocytosis, and regulation of interferon production.
IRF8 is an important regulatory gene for the development of
dendritic cells, which play a crucial role in the regulation of
insulin secretion and hyperglycemia (Besin et al., 2011). High
glucose promotes dendritic cell maturation through activation
of the NF-kB pathway, accelerating and amplifying the
inflammatory immune response and accelerating the
development of DN (Tu et al., 2019). The identification of
these molecular biomarkers might be used for diagnosis,
therapy, and prediction of diseases, and the regulation of
disease regression from molecular mechanisms might be an
important tool for future individualized treatment.

FIGURE 12
Expression comparison of nine DN-related hub genes in the GSE30528 dataset (A–I). (**, p < 0.01; ***, p < 0.001).
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The mechanism of DN is very sophisticated, and present
treatments can only slow down its development but cannot
effectively prevent and cure it. The pathophysiology of DN is
often believed to include problems in hemodynamics, metabolic
function, and hormone production. Advanced glycosylation end
products (AGE), renin-angiotensin-aldosterone system (RAAS),
transforming growth factor-1 (TGF-1) expression, activation of
protein kinase C (PKC), mitogen-activated protein kinase
(MAPK), and reactive oxygen species (ROS) are all
considered to be significant pathways in the initial stages and
progression of diabetic nephropathy. However, various pathway
factors regulate each other and overlap (Samsu, 2021).
Functional enrichment analysis revealed that the differential
genes might be engaged in biologic processes as immune
response, antigen-antibody activation, and complement
activation, promoting the development of DN through

phagocytosis vesicles, the PI3K-Akt signaling pathway, focal
adhesion, the NIK/NF-kappaB signaling pathway, and the
Rap1 signaling pathway. The pathological mechanisms
associated with the participation of ECM in DN development
have potential interactions with immune cells. Li et al. (2022b)
showed that the hub genes of DN patients are mainly enriched in
those involved in ECM-receptor interactions, focal adhesion,
complement, and coagulation cascade reactions, a result that is
consistent with our findings. They also inferred that COL6A3,
COL1A2, THBS2, CD44, and FN1 promote the progression of
DN through the ECM-receptor interaction pathway and are
expected to be new therapeutic targets. A variety of
inflammatory factors and tissue factors are the major
inducers and drivers of renal inflammation and plays a major
part in the network of pro-inflammatory molecules in the DN. In
patients with DN, the PI3K-Akt pathway has been demonstrated

FIGURE 13
Diagnostic ROC curves for 9 common hub genes associated with DN in the GSE30528 dataset (A–I). (ROC, receiver operating characteristic; TPR,
true positive rate; FPR, false positive rate).
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to be an important signaling pathway (Chen et al., 2013). Lu et al.
(2022) found that LCK and HCK genes were highly expressed in
DN through bioinformatics analysis of the role of immune-
related genes in DN progression and identified two different
immune-related subgroups, C1 and C2, which provided a
theoretical basis for the formulation of immunotherapy for
DN patients. In addition, enrichment analysis indicated that
adhesion molecules may be involved in the integrin pathway
closely related to DN, similar to previous reports (Gu et al.,
2012). According to the analysis of published literature, C1S and
C1R are differentially expressed in DN (Zhang et al., 2009),
suggesting that C1 may be involved in the development of DN.
Another clinical study showed a sixfold increase in glomerular

C3 levels in renal biopsy samples from patients with DN
(Woroniecka et al., 2011), which suggests that the
complement system may have a positive role in DN and
glomerulosclerosis.

In our study, Transcription factors HIF1A, KLF5, RUNX1,
SP1, SPI1, STAT1, MBD1 and WT1 may be related to diabetic
nephropathy. The results were similar to previous studies (Hu
et al., 2021). Chronic hyperglycemia can lead to microcirculatory
disorders presenting with renal ischemia and hypoxia, and
hypoxia can lead to inhibition of HIF-1α stability and
function and decreased renal hypoxia tolerance. Studies have
shown that HIF-1 is repressed in DN renal tubules (Gu et al.,
2013), and tubular hypoxia promotes tubular atrophy and

FIGURE 14
Diagnostic ROC curves for 9 common hub genes associated with DN in the GSE30529 dataset (A–I).
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interstitial fibrosis, facilitating the progression of glomerular
lesions in DN. High expression of HIF-1 in DN in mesangial
cells accelerates the process of renal fibrosis (Isoe et al., 2010).
Sp1 mediates the upregulation of Prdx6 expression to prevent
diabetic nephropathy by alleviating oxidative stress and ferritin
deposition, thereby preventing podocyte damage (Zhang et al.,
2021a). Animal experiments showed that inhibition of
KLF5 expression alleviated foot cell injury in diabetic
neuropathy (Zhang et al., 2021b), Runx1 promoted TGFβ1-
induced kidney fibrosis in mice by upregulating the PI3K
pathway (Zhang et al., 2021c), STAT1 phosphorylation
inhibited the M1 phenotypic transformation of macrophages
and suppressed DN progression (Zhang et al., 2019), and WT1-
induced apoptosis in diabetic nephropathy podocytes by activating
the p53 pathway (Zhang et al., 2021d). The relationship between
SPI1, MBD1, and diabetic nephropathy needs further experimental
verification. According to the literature, mir-33a regulates insulin
signaling and fatty acid metabolism and plays a role in the

development of diabetes and its complications (Dávalos et al.,
2011; Nikpour et al., 2014). According to another study, C1 is
regulated by LEF1 and has-mir-33a (Wang et al., 2016) and is
involved in the development of DN. Recent studies have shown
that dapagliflozin acts as a nephroprotective agent for DN by
counteracting hsa_circRNA_012448-has-miR-29b-2-5p-GSK3β
pathway-mediated oxidative stress (Song et al., 2022), and has-
miR-29b-2-5p expression was also screened in our mRNA-
miRNA network. The PubMed literature search showed that the
relevance of our screened miRNAs such as miR-29b-2-5p, miR-34a-
5p, miR-27a-3p, miR-146a-5p, miR-155-5p (Cao et al., 2022), miR-
103a-3p (Jing et al., 2022) and miR-103a-3pto DN has been
confirmed by research and that more signaling pathways remain
to be further investigated. has-miR-34a-5p has been shown to be a
salient biomarker of diabetes, involved in oxidative stress (Banerjee
et al., 2017), vascular senescence (Ito et al., 2010). It was found that
the expression of has-miR-34a-5p was associated with LAPTM5 in
DN. Among the regulatory networks constructed, has-miR-34a-5p,

FIGURE 15
Expression comparison of eight DN-related hub genes in the GSE30529 dataset. (**, p < 0.01; ***, p < 0.001)..
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has-miR-27a-3p, and has-miR-146a-5p were found as molecules
coordinating the regulation of hub genes. Gholaminejad et al. (2021)
identified miR-34a-5p, miR-129-2-3p, and miR-27a-3p as the top
regulatory molecules produced in immunoglobulin A nephropathy.
Has-miR-146a-5p and has-miR-30a-5p expression levels were
suggested by Baker et al. (2017) for the identification of DN and
renal diseases other than IgA nephropathy.

The current study discusses eight potentially key genes in the
development of diabetic nephropathy as potential mechanisms
involved in diabetic nephropathy. The genes might be prospective
biomarkers and treatment goals for diabetic nephropathy. Also,
there are some limitations in this paper: the dataset samples
included (age, cells, race, lifestyle, and family history) may affect
the stability of the results. The analysis of key potential molecules
gained from this study needs to be further validated in the clinical
trial.

Conclusion

Our study explored the same platform GEO dataset for
diabetic nephropathy bioinformatics analysis and identified
eight potential key genes (TYROBP, ITGB2, CD53, IL10RA,
LAPTM5, CD48, C1QA, and IRF8), screened eight
transcription factors, and identified 93 miRNA nodes. It
provides some contribution to identifying new biomarkers of
diabetic nephropathy susceptibility and useful potential targets
for therapy.
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