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Sustainable livestock production requires that animals have a high production
potential but are also highly resilient to environmental challenges. The first step to
simultaneously improve these traits through genetic selection is to accurately predict
their genetic merit. In this paper, we used simulations of sheep populations to assess
the effect of genomic data, different genetic evaluation models and phenotyping
strategies on prediction accuracies and bias for production potential and resilience. In
addition, we also assessed the effect of different selection strategies on the
improvement of these traits. Results show that estimation of both traits greatly
benefits from taking repeated measurements and from using genomic
information. However, the prediction accuracy for production potential is
compromised, and resilience estimates tends to be upwards biased, when families
are clustered in groups even when genomic information is used. The prediction
accuracy was also found to be lower for both traits, resilience and production
potential, when the environment challenge levels are unknown. Nevertheless, we
observe that genetic gain in both traits can be achieved even in the case of unknown
environmental challenge, when families are distributed across a large range of
environments. Simultaneous genetic improvement in both traits however greatly
benefits from the use of genomic evaluation, reaction normmodels and phenotyping
in awide rangeof environments. Usingmodelswithout the reactionnorm in scenarios
where there is a trade-off between resilience and production potential, and
phenotypes are collected from a narrow range of environments may result in a
loss for one trait. The study demonstrates that genomic selection coupled with
reaction-norm models offers great opportunities to simultaneously improve
productivity and resilience of farmed animals even in the case of a trade-off.
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1 Introduction

Farmed animals can be exposed to a wide range of environmental challenges during their
development and lifespan. Climate change is known to exacerbate these challenges, e.g.,
through increased temperature fluctuations or more frequent occurrence of extreme weather
conditions (Thornton et al., 2007; Baumgard et al., 2012) and associated food shortages or
increased burden of infectious pathogens (Tomley and Shirley, 2009). It is thus desirable, for
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both animals’ welfare and productivity, that animals not only have a
high production potential in ideal environmental conditions, but are
also able to maintain it when exposed to environmental or infectious
challenges. In the animal breeding community, this capacity has
been defined as resilience and has been considered as an important
breeding goal since decades (Bisset andMorris, 1996; Hermesch and
Dominik, 2014; Knap and Doeschl-Wilson, 2020). In the context of
intensive livestock production, resilience and robustness are often
used interchangeably (Colditz and Hine, 2016; Friggens et al., 2016).
Here, we follow the definition of Knap (2005), who defined
robustness as the combination of high production potential with
high resilience to external stressors, allowing for unproblematic
expression of that production potential in a wide variety of
environmental conditions. The performance of an animal in an
environment is thus determined by its production potential,
resilience, and the level of the overall challenge the animal faces
in that environment.

Neither the resilience nor the production potential of an animal in
ideal environmental conditions are directly measurable. Instead,
estimates for both traits can be obtained by using so called reaction
norm (RN) models in which the performance of an animal is regressed
against the environmental challenge level (de Jong, 1990). In the case of
a linear RN model, the production potential then refers to the model
intercept and resilience refers to the inverse of the slope (Mulder, 2016).
Genetic parameter estimates and estimated breeding values for both
traits can then be obtained through random regression approaches
(Strandberg, 2006). Such random regression models have been used to
estimate animals’ resilience to temperature or other quantifiable
climatic measures (Knap and Su, 2008; Nguyen et al., 2016; Bohlouli
et al., 2019; Sánchez-Molano et al., 2019).

One of the hurdles for estimating resilience is that in many cases
the environmental challenge level is unknown or difficult to
quantify. This is particularly the case when animals are exposed
to infectious pathogens (Knap and Doeschl-Wilson, 2020) or a
whole cocktail of different environmental stressors (e.g., of
multiple pathogens, sub-optimal nutritional resources, etc.). In
these cases, the common approach is to use the contemporary
group mean performance as a proxy for the environmental
challenge level in the RN models (Knap, 2005; Strandberg, 2006;
Rashidi et al., 2014; Hermesch et al., 2015). To avoid bias in the
genetic parameter estimates for the regression parameters, the
contemporary group means (e.g., herd effect or herd-season-year
effect) representing the environmental value in the regression
models are usually estimated together with the regression
parameter estimates in an iterative procedure (Calus et al., 2004;
Knap and Su, 2008). Given that the average group performance is
most likely a combination of many factors, this proxy may indeed
provide a good overall description of the type of environment the
animals are exposed to (Strandberg, 2006). However, it is important
to note that this measure is only an approximation of the true
environmental challenge that each individual is exposed to, and that
the ideal environment and thus also the deviation from it, i.e., the
challenge level, may vary between individuals. However, it is
currently not known how inaccuracies in the estimates of the
actual environmental challenge levels of individuals affect the
prediction accuracies for production potential and resilience.

Another obstacle in estimating resilience through a RN approach is
the lack of performance data of an individual across multiple

environments. Many phenotypes have limited measurements per
animal, e.g., carcass weight and hence rely on phenotypic records of
related individuals (Strandberg, 2006). The sparsity of phenotypic
records for an individual can have a negative impact on the
accuracy of estimated breeding values (EBVs) (Cameron, 1997).
However, genomic prediction has proven to be beneficial in
improving prediction accuracies under these conditions (Meuwissen
et al., 2001;Mulder, 2016), with a few studies having assessed the benefit
of genomic prediction on the accuracies of resilience and production
potential. In particular, Calus et al. (2004) showed that prediction
accuracies of RN model parameters strongly depend on how related
individuals are distributed across different environments. Furthermore,
in scenarios where related individuals are reared in the same
environment, accuracy of EBVs for RN slope and intercept are
adversely affected (Calus et al., 2004). However, it is not known
whether genomic prediction can partly or completely overcome this
issue, because the genomic relationship matrix accounts for similarities
between related as well as unrelated individuals.

Numerous studies have applied RN models to predict animals’
resilience or performance under different environmental challenge
conditions (Knap and Su, 2008; Herrero-Medrano et al., 2015; Li and
Hermesch, 2016; Oliveira et al., 2019; Song et al., 2020; Garcia-Baccino
et al., 2021). One of the clear benefits of linear RN models is that they
provide genetic parameter estimates for both breeding goal traits,
production potential and resilience. Therefore, depending on the
genetic parameters, it may be possible to concomitantly select for
both traits given appropriate indices. However, RN models are also
known to require a large amount of data for convergence (Knap and Su,
2008). Therefore, many studies continue to use conventional genetic
evaluation models for production performance, that don’t explicitly
quantify the environmental challenge level, but account for potential
differences in these by fitting fixed group effects. Although few studies
have assessed selection response in performance in different
environments for RN models compared to conventional models
(Kolmodin and Bijma, 2004; Mulder, 2016; Mulder and Rashidi,
2017), the genetic improvement in production potential and resilience
as breeding goal traits, that can be achieved by either approach, has not
been explicitly assessed. These are likely to also depend on the
environmental conditions under which phenotypic performance
records are collected (Calus et al., 2004; Mulder, 2016; Le et al., 2022).

Therefore, the first objective of this study was to assess the
benefits of using genomics over pedigree-based predictions in
obtaining accurate and unbiased breeding value estimates for
production potential and resilience from linear RN models. In
particular, we assessed how prediction accuracies depend on the
number of phenotypic records per individual, the distribution of
related animals across environments, and on the ability to
accurately quantify the environmental challenge level. The
second objective was to assess the feasibility of RN models to
improve production potential and resilience and compare these
to the response to selection that can be achieved by using
conventional models under a range of conditions.

2 Methods

The potential benefit of genomic selection to select for
production potential and resilience under a linear RN model was
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assessed using simulations of an outbred population of farmed
animals. Without loss of generality, in this study the genomes of
sheep populations were simulated, but it is expected that results
would be similar for other population of terrestrial farmed animals.
To assess the impact of genomics and other factors on prediction
accuracies and bias, a sheep population undergoing random
selection was simulated. To assess response to selection, a
population undergoing selection for 10 generations under
different selection strategies was simulated. Each simulation
scenario was replicated 100 times.

2.1 Genetic models for production potential
and resilience

The phenotype was defined assuming a RN model, where the
individual’s performance is affected by two components, simulated
as random effects: one related to the performance under ideal
condition and another being linearly related to an environmental
challenge level the individual is exposed to.

Here, the respective components are denoted as production
potential (subscripts 0) and resilience (subscripts R) and both are
assumed to be under genetic (A) and environmental (E) control.
Hence, the performance, y, of individual j in an environment with
challenge level X is:

yj,k X( ) � μ0 + A0j + E0j,k( ) +X μR + ARj + ERj,k( ), (1)

where the subscript k corresponds to the time of measurement
in case of multiple records for an individual. In the above
equation, μ0 refers to the population mean performance in
the absence of challenge, μR is the population average rate of
reduction in performance (as the environmental challenge
generally has adverse effect on performance, μR is negative).
The terms A0j and ARj are the additive genetic effects for
production potential and resilience and E0j,k and ERj,k are
their environmental deviations from the following normal
distributions

A0j

ARj

( ) ∈ N 0,
σ2A0

σA0AR

σA0AR σ2
AR

( )( ), E0j,k

ERj,k

( ) ∈ N 0,
σ2E0

0
0 σ2ER

( )( ),
(2)

where σ2A0
, σ2AR

and σ2A0AR
are the genetic variance of production

potential, resilience and the genetic covariance and σ2E0
and σ2ER

are
the environmental variance of production potential and resilience,
respectively.

With the parameterisation in Eq. 1, the heritabilities of the
production potential and resilience are

h20 �
σ2A0

σ2A0
+ σ2E0

, h2R � σ2AR

σ2AR
+ σ2ER

. (3)

The heritability of the performance at a given environmental
challenge level X follows (Kolmodin and Bijma, 2004)

h2 X; σ2( ) � σ2A0
+X2σ2AR

+ 2XσA0AR

σ2A0
+X2σ2AR

+ 2XσA0AR + σ2E0
+X2σ2E0

. (4)

We used low heritability values (0.1) for h20 and h20 (see Table 1),
however, the profile of changes with respect to other parameters did

not change for other heritabilities (result shown in Supplementary
Table SA1).

2.2 Simulation of the population

2.2.1 Genome in linkage disequilibrium
A similar approach as in Lee and van der Werf (2006); Sánchez-

Mayor et al. (2022) was adopted: first, a founder population with its
genome in linkage disequilibrium (LD) was simulated using a
mutation-drift algorithm (Meuwissen et al., 2001). In this regard,
a population with a genome divided in several chromosomes is
allowed to evolve. Mutations appear, and drift causes them to be lost
or to increase in frequency, and after many generations the genome
reaches an equilibrium with segregating SNP at a specific LD pattern
determined by the parameters used in the simulation, such as
population size and mutation rate. To simulate the pattern of a
typical farmed sheep population, the initial population was assumed
to have 100 individuals (half males and half females) which were
allowed to reproduce for 10,000 generations. Their genome was
composed of 26 autosomal chromosomes, each of one Morgan
length with 200,000 biallelic loci located equidistantly with a
mutation rate of 10−5. The mutation rate was tuned such that the
LD profile of the final generation matched that of real data for a
sheep breed (Kijas et al., 2014). Then, the final generation was
expanded within 5 generations to a larger population which served
as the gene-pool for sampling the base population for each replicate.
The final expanded founder population has 10,000 individuals,
2 haplotypes per individual and per chromosome,
26 chromosomes, and an average number of 4,800 segregating
SNPs per chromosome. Hence, for a given replicate, the genome
of the base generation was simulated by randomly sampling
haplotypes from the expanded founder population; and thereafter
the genome of animals from further generations were sampled by
dropping haplotypes from offspring to parents assuming Mendelian
inheritance law. Two scenarios for pedigree structure and base
population was considered as discussed in Section 2.4. Base
populations with size 1,200 (1,100 females and 100 males) and
2,970 (2,700 females and 270 males) were simulated from the
founder population. In simulation of N individuals of base
population from the founder population (N either 1,200 or
3,970), 2N haplotypes were randomly drawn from the pool of
20,000 haplotypes. In addition, sampling of haplotypes was done
independently for each chromosome to ensure independency of
replicates. As shown in the Supplementary Materials, the probability
that two drawn samples are dependent is very small. Moreover, as
discussed in the next section, location of SNPs and QTLs as well as
their effect was independently sampled for each replicate.

2.2.2 Genetic architecture

Once the base generation was sampled in each replicate,
1,500 segregating loci with the highest minimum allele frequency
were selected for each chromosome: 500 being randomly assigned to
be quantitative trait locus (QTL) affecting the traits and 1,000 being
part of the SNP chip array used to calculate the genomic relationship
matrix (GRM) needed in the genomic evaluation. The total number
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of QTLs and SNPs across the whole genome were 13,000 and 26,000,
respectively.

The true breeding values (TBV) were calculated as the sum of all
QTL effects given the individual’s genotypes. The QTLs were
assumed to have pleiotropic additive effects on both the
production potential and the resilience traits (A0 and AR) to
allow for non-zero genetic correlation between both traits. The
QTL effects for A0 and AR were sampled from a bivariate normal
distribution with a unit standard deviation and a correlation equal to
the targeted genetic correlation between A0 and AR (Wientjes et al.,
2017), and then they were re-scaled so that the TBV variances for A0

and AR in the base generation were equal to the targeted genetic
variances. Finally, the environmental deviations E0 and ER were
sampled to simulate the individuals’ phenotypic performance (using
Eq. 1) given the level of exposed environmental challenge at the time
of phenotype measurement.

2.2.3 Level of environmental challenge

To simulate the level of environmental challenge (X), individuals
were assumed to be phenotyped in flocks. These flocks represent
micro-environments, defined by a range of environmental challenge
levels around a flock specific average challenge level. Thus, for an
overall environmental challenge level [0, Xmax], individuals in a
given flock fwere exposed to a subset ranging between (X̂f −Xmax

ϵ
2)

and (X̂f +Xmax
ϵ
2), where X̂f is the average challenge effect of flock f

and ϵ is a parameter determining the heterogeneity of the flock
conditions. If multiple records were required for an animal, multiple
environmental challenge levels were sampled from the same flock.

The simulation of the level of environmental challenge related to
a given recorded phenotype was done as follows: firstly, the average
challenge level (X̂f) for each flock (f) was sampled from a uniform
distribution within [0 +Xmax

ϵ
2, Xmax −Xmax

ϵ
2]; secondly, each

individual was allocated to a given flock and all their phenotypic
records were assumed to be recorded in it; third the challenge level X

for a given phenotype was sampled from a uniform distribution
within the range [X̂f −Xmax

ϵ
2, X̂f +Xmax

ϵ
2], and this value was used

to calculate the phenotypic performance using Eq. 1. Hence, the level
of the exposed environmental challenge is different for all
individuals (and among records if an individual has more than
one recorded phenotype) but more alike between individuals
allocated to the same flock. In this study Xmax was set to 2,
which corresponded to an average difference of 6 phenotypic
standard deviations in performance compared to the average
performance at optimum condition (X = 0) (Table 1). Having a
relatively large environmental condition allows to define flocks
within where we can investigate the effect of, e.g., heterogeneity
of flocks and unknown environmental challenge levels.

In this study, ten flocks were simulated, all having equal within-
flock heterogeneity, ϵ. The magnitude of ϵ was set to 0.1, but other
values were simulated (Table 1) to assess its impact on the genomic
prediction with the RN approach when the environmental challenge
level is unknown (see below).

Additionally, several methods for allocating individuals across
flocks were used to assess the impact of the distribution of
phenotypes across environments: (i) random (RND), where
individuals were randomly distributed across all flocks, (ii)
clustered (CLS), where individuals from the same half-sib family
were allocated into one random flock, (iii) assortative (AST), where
individuals from the same half-sib family were allocated to the same
flock such that offspring from a sire with the highest breeding values
for production potential were allocated to the flock with the lowest
level of environmental challenge (i.e., the genetically best animals
were allocated to the best environment), and (iv) disassortative
(DIS), i.e., similar to AST scenario but with reverse order of sires.

2.3 Genetic evaluation

Genetic evaluations were carried out using the best linear
unbiased predictor (BLUP) or genomic BLUP (GBLUP)

TABLE 1 Parameter values used in simulating phenotypes.

Parameter Value Alternative values

μ0 10 —

μR −3 —

σ2A0
0.1 0.3, 0.6

σ2AR
0.1 0.3, 0.6

σ2E0
0.9 0.7, 0.4

σ2ER
0.9 0.7, 0.4

ρA0AR
−0.5 0, 0.5

FN 10 —

ϵ 0.1 0.2, 0.3, 0.5

Range of X [0,2] [0, 1], [1, 2]

μ0: mean production potential, μR: mean resilience, σ2A0
: additive genetic variance for production potential, σ2AR

: additive genetic variance for resilience, σ2E0
: environmental variance for

production potential, σ2ER
: environmental variance for resilience, ρA0AR

: genetic correlation, FN: number of flocks, ϵ: relative range of environmental challenge levels within each flock compared

to the entire range of environmental conditions.

Frontiers in Genetics frontiersin.org04

Ghaderi Zefreh et al. 10.3389/fgene.2023.1127530

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1127530


(Meuwissen et al., 2001) defined by the relationship matrix used in
the analysis (i.e., the NRM based on pedigree information for BLUP,
and the GRM based on genotype information with GBLUP). The
breeding values for production potential and resilience were
estimated using random regression reaction norm models (Eq. 1)
under two scenarios with respect to environmental challenge level:
known or unknown.

When the environmental challenge levels were unknown, the
genetic evaluation was carried out in a two-step RN approach (Calus
et al., 2002; Kolmodin et al., 2002): initially, a genetic evaluation
ignoring resilience was performed to estimate the flock effects, and
subsequently a random regression was performed using the obtained
flock effect estimates as proxy for the challenge level (Kolmodin
et al., 2002; Mulder and Rashidi, 2017; Carvalheiro et al., 2019). To
calculate the proxy, the estimated flock effect was rescaled such that
the flock with highest average performance was assigned as having
no challenge (i.e., X̂ � 0) and the lowest flock average is assigned the
maximum challenge. This proxy value was then assumed to be the
challenge level for all phenotypes recorded in the flock in question.

Hence, the use of the proxy with the RN approach introduces
two sources of error into the analysis: (i) error in the estimates of the
flock effects in the first step of the evaluation, and (ii) error by
assigning the same environmental challenge level to all animals in a
flock, thus ignoring the within flock heterogeneity in challenge.
Therefore, as flocks become more heterogeneous, the estimated
proxy becomes more uncertain and less representative of the true
challenge level, potentially affecting the quality of the estimates.

In addition, for the comparison of responses to selection based
on different breeding criteria traits, EBVs for production
performance were calculated using a conventional model without
the term associated to the environmental challenge (i.e., the
resilience trait) but accounting for the environmental flock effects,

yjl � μ̂ + F̂l + Âj + Êj, (5)
where F̂l is the fixed effect of the flock l that animal j belongs to, μ̂ is the
estimated population average of the production, Âj is the estimated
breeding value of the animal j and Êj is the random environmental effect.

An in-house software was used to estimate the variance
components and (G)EBVs using restricted residual maximum
likelihood (Patterson and Thompson, 1971; Lee and van der
Werf, 2006) and BLUP (Henderson, 1975; Gumedze and Dunne,
2011), respectively. The software is available on https://github.com/
mghaderizefreh/GenEval. The genomic relationship matrix was
calculated following (VanRaden, 2008). The genetic correlation
between production potential and resilience was estimated even
when the true genetic correlation was zero.

The quality of the genetic evaluation was assessed by the
accuracy and bias of (genomic) estimated breeding values, (G)
EBV. The prediction accuracy is defined as the correlation
between (G) EBV and the TBV. The bias (~b) is defined as the
standardised regression coefficient of TBV on EBV as explained in
(Lipschutz-Powell et al., 2012),

~b � 1/b − 1 b≥ 1
b − 1 b< 1

{ , (6)

where b is the regression coefficient between (G)EBVs and TBVs.
Hence, unbiased estimation has a zero value for the standardised

regression coefficient, whereas overestimated or underestimated (G)
EBVs have positive or negative standardised coefficients,
respectively.

2.4 Scenarios compared

As mentioned above, two different population structures were
considered to achieve the objectives of this study: To assess the
impact of genomics and other factors on prediction accuracies and
bias, a sheep population undergoing random selection was simulated
with 3 generations and ~1,000 animals per generation. To assess response
to selection, a population undergoing selection for 10 generations under
different selection strategies was simulated. The number of animals per
generation in the second population was ~3,000.

Table 1 shows the values of parameters used in the simulations that
were common for both populations. For the genetic correlations
between production potential and resilience, three values were
assumed corresponding to a favourable, zero and antagonistic
relationship between the traits. Results are mostly shown for the
case of negative genetic correlation as the worst-case scenario,
because it has the lowest heritability for production performance
across environments (c.f. Eq. 4). Results corresponding to medium
and high heritability are provided in of the Supplementary Table S1A.

2.4.1 Population under random selection
The scenarios considered here aim to assess the benefit of genomic

prediction in improving the quality of the prediction of production
potential and resilience aswell as to assess factors affecting the predictions.
The population consisted of three non-overlapping generations with a
half-sib structure. The base or first generation started with 100 males and
1,100 females, with each male being mated to 11 females to produce one
offspring per female, resulting in one male and 10 female offspring
(i.e., 1,100 individuals in the second generation, 100 males and
1,000 females). In the second generation, each sire was mated with
10 dams to produce 1,000 individuals in the third generation.

This population was used to assess the impact of different factors
on the benefit of genomic prediction to evaluate production
potential and resilience. They include:

• The effect of population parameters on the benefit of GBLUP
over BLUP in terms of improved accuracy.

• The effect of the distribution of individuals across environments
when comparing the GEBV accuracies obtained from individuals
across flocks allocated assuming the RND, CLS and AST scenarios.

• The effect of uncertainty of the environment challenge level in a
RN model situation by studying the impact of the within-flock
level heterogeneity on the range of environmental challenge.

Further, we assume that the third generation does not have
phenotypes and we assess the (G)EBVs for this generation only. We
use these assumption in order to have generally low accuracy so that
the above effects are more pronounced.

2.4.2 Population undergoing multiple generations
of selection

Performance records in this section were simulated assuming a
genetic correlation of −0.5 between resilience and production potential,
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with flocks covering 10% of the whole environment and one record for
each individual in a random distribution scenario. This population
structure was used in scenarios that quantified the selection response for
production potential and resilience when using a RN model. The
population attempted to mimic a sheep population with large half-
sib and small full-sib families. The population structure for each
generation consisted of 8,100 individuals (2,700 males and
5,400 females), all genotyped with the SNP chip array and having
single phenotypic record. At each generation, half of the females and a
tenth of males were selected to mate at random (10 females per 1 male)
and a litter size of 3 including 1 male and 2 females was assumed. The
assumption of discrete generations and litter size of 3, albeit not very
common, (Kenyon et al., 2019), was made to maintain the population
size across different generation while allowing for a selection intensity
for the females. Genetic evaluations were performed using either the RN
approach (with unknown environmental challenge level) or the
conventional method without RN (i.e., using Eq. 5).

When using RN approach, a selection index was defined as I �
(1 − α)Â0 + αÂR where α (0 ≤ α ≤ 1) is the weight given to resilience.
Hence, α = 0 corresponds to selection for production potential only,
whereas α = 1 corresponds to selection for resilience only. The
selection scheme was done over 10 discrete generations and
individuals were allocated using the RND allocation scenario. We
also contrasted scenarios where performance records were generated
in a narrow compared to a wide range of environments (Table 1).

3 Results

3.1 Random selection scenario

3.1.1 Comparison between pedigree based and
genomic predictions

Figure 1 shows the BLUP and GBLUP results for the genetic
evaluation of production potential and resilience depending on the
number of phenotypic performance records available per individual.
As expected, the extra information from increasing the number of

records per individual resulted in better estimation leading to less
convergence failures in the REML analysis (Figure 1A), and higher
GEBVs accuracies (Figure 1B) with lower standardised biases
(Figure 1C) in the GBLUP/BLUP analyses. The average
prediction accuracies of EBVs from BLUP for production
potential and resilience incremented as much as 70% when the
number of records per individual was increased from one to three
(i.e., the accuracies for production potential and resilience with one
record per individual were 0.13 and 0.10, respectively, compared to
0.22 and 0.17 with three records per individual). Consistently across
the scenarios, the GBLUP evaluation outperformed BLUP. For
instance, when assuming three records for each animal, the
REML analysis using pedigree information failed to converge in
15% of the replicas whereas using genomic information only 4% of
the replicates failed to converge (Figure 1A). For the same scenario
the GEBV accuracy was 91% and 105% higher than that of EBVs for
production potential and resilience, respectively (Figure 1B). In
particular, for both traits, prediction accuracy assuming one
record per animals with GBLUP was as high as that of BLUP
with five records. Regardless of the method used (pedigree or
genomic), estimated breeding values for production potential
were in general more accurate than those for resilience, e.g., for
three records per individuals, prediction accuracies for production
potential were 19% higher than those for resilience. Some degree of
bias in the estimates were observed in scenarios considering one or
two records available per individual, but this tended to be slightly
less on estimates from GBLUP than with those estimates obtained
using BLUP (Figure 1C). Since the frequency of variance
component estimation giving non-zero estimates was lower for
n = 3, all our comparison based on this pedigree structure were
done assuming 3 records per individual.

Moreover, the observed trends were consistent across different
genetic correlations between production potential and resilience and
between BLUP and GBLUP (results not shown). In particular, as would
be expected, prediction accuracies for both traits increase with
increasing genetic correlations (as shown for GEBVs in Figure 2A):
the average prediction accuracies of production potential and resilience

FIGURE 1
Effect of number of records per individual on (A) percentage of simulations where REML failed to converge to feasible variance components (B)
prediction accuracy of production potential and resilience, and (C) standardised bias in EBV for production potential and resilience, when using GBLUP
(solid lines and circles) or BLUP (dashed lines and triangles).
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increases from 0.41 to 0.60, and from 0.34 to 0.58, respectively. In
addition, the resilience tends to be upward biased, and this intensifies
when the genetic correlation is negative (Figure 2B).

For the remainder of this section (Random selection scenario),
we will only show results for GEBVs assuming three records per
individual and genetic correlation of −0.5 between production
potential and resilience. This scenario was chosen to show how
potential trade-offs between the traits may affect prediction
accuracies, and because it has a low rate of failure to converge in
the REML estimation ensuring that the results are true reflection of
the situations compared and not to a lack of information due to
inadequate population size. Furthermore, the observed effects of
distribution of phenotypes across environments and uncertainty in
the level of environmental challenge described below were similar
for EBVs and GEBVs.

3.1.2 Effect of distribution of phenotypes across
environments

Figure 3 shows the effect of the distribution of phenotyped
animals across environments with different average challenge levels
on the accuracy and the bias of the GEBV for resilience and
production potential. In general, the distribution of phenotypes
across environments affected the quality of the genetic prediction
of both traits but in different ways. The accuracy of the production
potential was affected by the distribution of phenotypes across
environments, with the highest accuracy (0.41) observed in the
RND distribution scenarios and the lowest in AST and DIS scenarios
(0.32). This was not the case for the resilience GEBVs, to which their
accuracies were almost identical for the different allocation
scenarios. In particular, even though the accuracy of production
potential is generally higher than that of resilience, in the scenarios
AST and DIS, resilience is estimated on average more accurately
than the production potential. On the other hand, the distribution of
phenotypes across different environments affected the resilience
GEBV mainly, on the degree of bias, with the AST scenarios
introducing the highest standardised bias of 15% (Figure 3B).

3.1.3 Effect of uncertainty in the level of
environmental challenge

Figure 4 shows the effect of uncertainty in the knowledge of
challenge level on the GEBV accuracies. In the ideal scenario, where
the challenge levels are known without error, the GEBV accuracy
was 0.41 for production potential and 0.35 for resilience. When the
heterogeneity of flocks was 10%, as modelled here by flocks exposed
to larger ranges of environmental challenge levels with average
performance used as a proxy, the reduction on the GEBV
accuracy was small (e.g., for RND scenario the average prediction
accuracy for resilience and production potential changes from
0.44 to 0.49 to 0.46 and 0.50, respectively). However, as the level
of uncertainty increased the GEBV accuracy further decreased, to
the level that for the scenario Unkown50 (where each flock covered
up-to 50% of full environmental challenge range) the GEBV
accuracy was 0.28 and 0.21 for production potential and
resilience, respectively. The rate of reduction in GEBV accuracy
with increasing uncertainty was similar for different distribution
scenarios (Figure 4).

3.2 Directional selection scenario

Figure 5 shows the gain in production potential and resilience
after ten generations of selection when phenotypes are collected
from a wide range of environmental challenge levels, spanning over
six phenotypic standard deviations in average performance. The
genetic gain is shown for different weights for resilience in the
selection index. The response to selection for the two traits when the
conventional model for performance (i.e., ignoring the
environmental challenge and only fitting the flock as fixed effect)
(Eq. 5) is used, is indicated with a point and is moved horizontally to
lie on the selection index profile. Figure 5 shows a smooth transition
of the genetic gain for resilience from negative to positive values as
the index for the resilience is varied from 0 to 1, and the reverse is
true for production potential. The maximum achievable relative

FIGURE 2
Effect of true genetic correlation between production potential and resilience on (A) the prediction accuracy of GEBVs and (B) the standardised bias
in GEBV (positive values correspond to over-estimated GEBVs). The error-bars are the 95% confidence intervals.
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gains for production potential and resilience using corresponding
indices are 1.4 and 1.3, respectively. This means that using an index
with all weights on production potential, the average production
potential is increased from 10 to 11.4 after 10 generations. Similarly,
α = 1 in the selection index increases the resilience by 43.3%
from −3 to −1.7 after 10 generations (cf. Table 1). The genetic
gain from the conventional model indicates that in such a scenario
both resilience and production potential can be improved
simultaneously with a relative gain of 0.78 for both traits,
equivalent to an index with weights 0.58 and 0.42 for resilience
and production potential, respectively.

The response to selection after 10 generations of selection
depends strongly on the range of environments in which

phenotypes are collected. Figure 6 shows the results when
phenotypes are collected in a narrow range of good or bad
environmental conditions, corresponding to ranges of [0,1] and
[1,2], respectively. In good environmental conditions (i.e., low
challenge levels, Figure 6A), the maximum achievable gain for
resilience (i.e., an index with all weights on resilience) is
0.7 whereas the maximum relative genetic gain in production
potential (i.e., an index with all weight on production potential)
is up to 1.6. Using a conventional model when phenotypes are
mainly collected from a narrow range of environmental conditions
with low challenge, only production potential is improved, whereas
the relative genetic gain in resilience is zero. Conversely, collecting
data mainly from bad environments (Figure 6B) results in higher

FIGURE 3
Effect of distribution of phenotyped animals on the (A) prediction accuracy and (B) standardised bias of GEBVs. The error-bars are the 95%
confidence intervals.

FIGURE 4
Effect of unknown environmental challenge in RNmodel on the accuracy of GEBV for production potential (A) and resilience (B). The numbers after
the word “Unknown” on the x-axis indicate the heterogeneity of flocks in terms of percentile coverage of the entire range of environmental conditions.
The effect is shown for different distribution scenarios with different colours. The error-bars indicate the 95% confidence intervals.
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gains in resilience. The maximum available gain for production
potential with a selection index reduces to 0.5 in this case (i.e., one-
third of what is observed when phenotypes are collected in good
environments), whereas that of resilience increases to 1.4 (i.e., twice
as much as when phenotypes are from good environments).
Similarly, the genetic gain that can be achieved when analysing
phenotypes collected in bad environments with the conventional
model results in improvement of resilience mainly, with a relative
gain of 1.5 compared to the 0.35 gain for production potential. It is
also noteworthy that the conventional model yields close to
maximum genetic gain in resilience if phenotypic records are

collected under high challenge conditions, whereas it leads to
zero improvement of resilience when only phenotypic records in
low challenge levels are available. In the latter case, genetic gain in
resilience can only be achieved using reaction-norm models.

4 Discussion

In this study, we demonstrated the benefit of genomic prediction
on the accuracy and bias of the estimated breeding value of resilience
and production potential traits for data simulated with RN models.
We also showed that the number of phenotypic records, the
distribution of phenotypes across different environments, and the
degree of uncertainty on the challenge levels can affect GEBV
accuracy and bias. However, even for sub-optimal distribution of
phenotypes or highly heterogeneous and unknown challenge levels,
accuracies are sufficiently high, and bias is sufficiently low to select
simultaneously for both traits.

It has been widely reported in literature that the use of genomic
information improves the accuracy of breeding values in genetic
evaluation for different species (VanRaden et al., 2009; Riggio et al.,
2014; Wolc et al., 2016; Tsai et al., 2016; Sánchez-Mayor et al., 2022).
Evidence on the beneficial effect of genomic information when using
a RN model is also available from real data. For example, Silva et al.
(2014) reported that the GEBVs for total number of born in pigs at a
given environment were about 70% more accurate than EBV
accuracy obtained using pedigree information. Moreover, recently
it has been shown that ssGBLUP implementing a RN model on
production traits in pigs yields prediction which were 10 ~25%more
accurate than a RN using pedigree alone (Fragomeni et al., 2016;
Song et al., 2020). Whilst these studies estimated GEBVs for
production potential and resilience, their criterion of comparison
was based on the accuracy to predict performance at a given
environment with a specific level of challenge. The emphasis in
this study, however, was to evaluate the benefits of using genomic

FIGURE 5
Genetic gain after 10 generations of selection using different
strategies, when performance records are obtained from a wide range
of environmental challenge levels ([0,2]). The lines correspond to
using a selection index comprising production potential and
resilience with different relative weights on resilience on the x-axis,
and points correspond to selection on production performance
GEBVs obtained using the conventional model (Eq. 5)

FIGURE 6
Genetic gain after 10 generations of selection using different strategies on performance records obtained in narrow environmental conditions with
mainly (A) low (X ∈[0,1]) and (B) high (X ∈[1,2]) challenge levels. The lines correspond to using a selection index comprising production potential and
resilience, with different relative weights on resilience on the x-axis, and the points correspond to selection on production performance GEBVs obtained
using the conventional model (Eq. 5).
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information on prediction accuracies for the two traits, production
potential and resilience, themselves.

We observed that the benefit of GBLUP in increasing GEBV
accuracies was greater for resilience than for production potential,
which is partly explained by the fact that the resilience trait has lower
accuracy from the start. It is important to note that the beneficial
effect of GBLUP over BLUP was the same regardless of the number
of phenotypic records available per individual. Hence, one may
extrapolate that similar benefits of using genomic information
should be expected in other populations that may differ in size
or the number of phenotypic records available.

Whilst the GEBV accuracy for production potential was generally
greater than for resilience, production potential GEBVs were more
sensitive to the distribution of animals across environments, compared
to the resilience trait, whose accuracy remained barely unchanged
across the different scenarios on how the phenotypes are distributed
across the environments. It is important to note that for the extreme
case of AST scenario, the production potential GEBVs was severely
affected to the point that their accuracy was on average lower than that
for resilience. It is known that accuracy of EBVs for production
potential (estimated with pedigree) are lowest when animals are
reared in clusters and the correlation between the exposed
challenge level and the production level is negative (i.e., the AST
scenario) (Calus et al., 2004). The most plausible explanation for the
lower accuracy in the AST scenario may be due to genetic and
environment factors being confounded and that genetic
connectedness is reduced between herds (Foulley and Quaas, 1995).
We observed that this trend remains true also for GEBVs. For a BLUP
evaluation, information of EBV for an individual comes from its own
performance plus that of closely related individuals, so clustering them
in environments with similar challenge level would be expected to
affect EBV accuracy (especially for AST scenario where the best
families are reared in the best environment). However, for GBLUP
evaluation, the GEBVs for a given individual are based on their own
information and from all recorded individuals, related or unrelated;
hence one may expect that GEBV accuracies being less sensitive to the
distribution of phenotypes. However, our results show that this is not
the case, and the use of genomic information would not overcome the
negative impact of member of the same family being evaluated in
similar environments as in CLS or AST. Note that although the GEBV
accuracy for resilience is relatively unaffected by the system of
recording performance across the environment, some degree of bias
in the resilience estimate tend to appears as the scenario become more
like the CLS or AST. Therefore, for estimating both the production
potential and resilience, it is important that the phenotypes from related
individuals are collected from different environmental conditions as
was represented by the RND scenario in this study. Unfortunately, the
pattern of distribution of phenotype across environments is heavily
influenced by the production system. Populations where natural mating
is common would lead to scenarios similar to AST or CLS, but the
widespread use of artificial insemination may allow for a more mixing
of families across environments. Unfortunately, artificial insemination
has been proved to be challenging for some species like sheep (Carta
et al., 2009). Additionally, scenarios with large use of artificial
insemination may also lead to clustered distribution of phenotypes,
where good farms with high management input may result in
environments with low challenge but also having the resources to
buy the semen from the best sires (hence resulting in AST situation).

The results from our study further highlight the need to promote as
much as possible an un-clustered distribution scenario if resilience and
production potential are to be accurately evaluated without bias. Based
on our results, as shown in Figure 3, for breeding values estimated with
GBLUP, the use of genomic evaluation would not counterbalance this
detrimental clustering effect and the accuracies are lower when animals
are clustered.

The RN models are the most common approach in
disentangling the environmental effect from the genetic effect on
the phenotype (Calus et al., 2004; Mulder, 2016). In many real-world
scenarios, the environmental challenge is unknown or simply not
measured. In order to fit random effects for the level of response to
environment, i.e., the resilience, a proxy is estimated for the
challenge level using the same data to be analysed. The drawback
is that this approach requires to separate performance into discrete
classes (e.g., contemporary groups), where all individuals in each
class are assumed to be affected by the same challenge level, so the
genetic evaluation is done assigning the same proxy value to all
individuals in the class. We show that accuracy of GEBVs obtained
from this approach are not compromised if the discrete classes are
relatively homogeneous, i.e., cover a small range of environments.
This is likely not to be the case, particularly for infectious diseases,
where exposure to infectious pathogens is highly stochastic in nature
(Bishop and Woolliams, 2010). The error in the assigned challenge
level would be expected to affect the accuracy of the GEBVs.
Furthermore, the magnitude of this detrimental effect is expected
to be related to the within-group heterogeneity in the challenge level.
Our results showed that the loss in accuracy due to uncertainty on
the level of the challenge should beminimal, if classes to calculate the
proxy are created such as that their heterogeneity within (defined as
the range of possible environmental challenge of within the class,
relative to the whole) is under 10%. However, although the large
impact that uncertainty on the challenge level can have on the
quality of the prediction, our results showed that relatively good
genetic estimates can still be achieved even when these
environments are very heterogeneous (e.g., 50%). Whilst the
implementation of an RN evaluation should have extra care in
the allocation of performance records in discrete classes, (to reduce
environmental heterogeneity within class), we have shown that even
when these classes are very heterogeneous, the GEBV can be of
sufficient accuracy so their use can result in successful genetic
progress in practical breeding programmes.

Over the recent decades, the animal breeding community has
given much attention to breeding for resilience. However, it is
desirable that by selecting for increased resilience, one does not
accidentally select for poor performers when conditions are good.
It has been postulated (Falconer and Mackay, 1996), and shown here,
that selecting for animals that perform well in bad environments
increases resilience when a conventional model is used without RN.
However, this may result in little gain for the production potential if
not a decrease when the genetic correlation between production
potential and resilience is negative. Improving both traits
simultaneously is easier when there is no trade-off between traits
(Mulder, 2016). However, many studies report an antagonistic genetic
correlation between resilience and production potential (Carabaño
et al., 2017; Sánchez-Molano et al., 2020; Freitas et al., 2021).
Additionally, it has been shown, using a more complex model,
that the estimates of heritability are smaller when animals are
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exposed tomicro-environmental disturbances,Xd > 0, compared to an
environment with no disturbance, Xwd = 0, (Le et al., 2022). This
translates to heritability of performance at Xd, i.e., h

2 (Xd), being
smaller than heritability at Xwd, which is h

2 (Xwd) = h2 (0) in Equation
4, which occurs always for negative genetic correlation and small Xwd.

In this study, linear reaction models were used. Changes in
performance of animals may however not always be linear with
respect to challenge level. Therefore, non-linear reaction norms (e.g.,
quadratic) can predict phenotypes at specific environments more
accurately Pollott and Greeff (2004); Sánchez-Molano et al. (2020).
To improve resilience with such models a more complex selection
index may be needed because all the coefficients from the model
contribute to the sensitivity of an animal to a challenge and hence
need to be incorporated in the selection index. Furthermore, in our
study, we used a linear heterogeneous residual term and continuous
challenge level. Heterogeneous residual variances can be modelled
with exponential function (Hill and Mulder, 2010), as is the case in
uniformity studies. While the definition of the heritability for
resilience is more straightforward with our model, it is important
that the conclusions drawn in this study are tested in other scenarios.

Lastly, in this paper, we defined resilience as the ability of an animal
to maintain high production performance when exposed to challenge, in
line with Bisset andMorris (1996). Resilience was simulated as a reaction
norm, where one performance record for an animal corresponds to a
given environmental challenge, X. This approach is valid when there is a
relatively constant challenge level over a significant period of animals’ life,
e.g., prolonged nutritional shortage or heat stress, and when the effects on
the animal phenotype of interest can be captured by a constant value, e.g.,
growth rate over a specific time period, or carcass weight. Several more
recent studies, including the EU Horizon 2020 Smarter consortium
(SMARTER, 2018) define resilience as the ability of an animal to either
maintain or revert quickly to high production or health status when
exposed to challenge or micro-environmental disturbances (Colditz and
Hine, 2016; Berghof et al., 2019; Le et al., 2022). To estimate resilience
according to this refined definition of resilience, longitudinal performance
measures of individual animals would be required to capture, e.g., ability of
the animal to return to its pre-challenge state after exposed to a challenge
(Colditz and Hine, 2016; Berghof et al., 2019; Knap and Doeschl-Wilson,
2020). Thanks to the automated phenotype measurement devices that the
animal industry is adopting, daily measurements of performances are
becomingmore available (Poppe et al., 2020;Neethirajan andKemp, 2021).
Recent studies have produced and evaluated novel resilience indicators
from such daily measurements (Putz et al., 2019; Nguyen-Ba et al., 2020;
Poppe et al., 2021). For example, Le et al. (2022) defined and used resilience
and resistant terms in simulated longitudinal body weight of growing pigs
and showed environmental disturbances affect estimates of breeding values.
Future studies are warranted to assess the benefits of genomics and the
influence of diverse factors as those assessed here, on these novel resilience
indicators.

5 Conclusion

In this paper, we studied the benefits of using genomic
information, random regression RN models and phenotyping
strategies on genetic evaluations of resilience and production
potential. We showed that simultaneous improvement of both
traits is possible even under unknown environmental challenge

conditions if genomic information is used in a RN model and
phenotyped animals are not in family clusters. In contrast, genetic
improvement in resilience without the use of RN models is possible if
genotyped and phenotyped animals are reared in wide range of
environmental conditions. Therefore, for the best genetic
evaluation, use of artificial insemination or other methods that
increase connectedness among genotypes in various environmental
conditions, is recommended. Additionally, higher between-variance
for different environmental conditions facilitates simultaneous genetic
improvement for resilience and production potential.
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