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Background: The metabolic processes involving amino acids are intimately
linked to the onset and progression of cancer. Long non-coding RNAs
(LncRNAs) perform an indispensable function in the modulation of metabolic
processes as well as the advancement of tumors. Non-etheless, research into
the role that amino acid metabolism-related LncRNAs (AMMLs) might play in
predicting the prognosis of stomach adenocarcinoma (STAD) has not been
done. Therefore, This study sought to design a model for AMMLs to predict
STAD-related prognosis and elucidate their immune properties and molecular
mechanisms.

Methods: The STAD RNA-seq data in the TCGA-STAD dataset were randomized
into the training and validation groups in a 1:1 ratio, and models were
constructed and validated respectively. In the molecular signature database,
This study screened for genes involved in amino acid metabolism. AMMLs were
obtained by Pearson’s correlation analysis, and predictive risk characteristics
were established using least absolute shrinkage and selection operator (LASSO)
regression, univariate Cox analysis, and multivariate Cox analysis. Subsequently,
the immune andmolecular profiles of high- and low-risk patients and the benefit
of the drug were examined.

Results: Eleven AMMLs (LINC01697, LINC00460, LINC00592, MIR548XHG,
LINC02728, RBAKDN, LINCOG, LINC00449, LINC01819, and UBE2R2-AS1)
were used to develop a prognostic model. Moreover, high-risk individuals had
worse overall survival (OS) than low-risk patients in the validation and
comprehensive groups. A high-risk score was associated with cancer
metastasis as well as angiogenic pathways and high infiltration of tumor-
associated fibroblasts, Treg cells, and M2 macrophages; suppressed immune
responses; and a more aggressive phenotype.

Conclusion: This study identified a risk signal associated with 11 AMMLs and
established predictive nomograms for OS in STAD. These findings will help us
personalize treatment for gastric cancer patients.
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Introduction

Cancer rates have been rising at an alarming rate in recent years,
particularly regarding gastrointestinal cancer, which is linked to a
high rate of morbidity and mortality. As indicated by the
“2020 Global Cancer Report” published by the World Health
Organization, gastric cancer ranks fifth and fourth in incidence
and mortality, respectively (Sung et al., 2021). Although events of
both new cases and deaths from gastric cancer are falling worldwide,
more than one million people suffer from this disease annually
(Thrift and El-Serag, 2020).

Thus, it is urgent to continuously improve the diagnosis and
prognosis evaluation system of gastric cancer. Many variables, such
as the natural environment, lifestyle, infection, genetics, etc., may
contribute to the onset and progression of tumors (Yang et al.,
2021a).

The part played by metabolism in tumor onset and progression
is another factor that has been progressively uncovered. Research
has shown that metabolites, including tumor metabolites as clinical
illness indicators, may alter DNA and protein modification via
chemical modification and metabolite-macromolecular
interactions, and that this is important for the regulation of
DNA, RNA, and protein activities (Park et al., 2020). Abnormal
changes in energy metabolism are an important sign of malignant
tumors. Tumor cells can plunder energy and substrates for
anabolism through metabolic reprogramming, thereby promoting
their survival and rapid proliferation (Tarrado-Castellarnau et al.,
2016). Glucose and fatty acid metabolic abnormalities are involved
in carcinogenesis, metastasis, treatment resistance, and cancer stem
cell survival (Park et al., 2020). Huang et al. also found that abnormal
iron metabolism was significantly related to lymphohematopoietic
tumors, which set off a research upsurge on iron metabolism-related
targets, hoping to obtain more strategies for the treatment of
lymphohematopoietic tumors. Amino acids, one of the three
major nutrients, were also found to be intimately linked to the
onset and progression of tumors. Ren et al. reported that amino acid
metabolism is associated with colorectal cancer (Ren et al., 2022).
Zhao et al. found that amino acid metabolism is linked to the
prognosis of liver cancer and the immune landscape (Zhao et al.,
2021). Nevertheless, the link between amino acid metabolism and
gastric cancer, the second most common cancer of the digestive
system, is yet to be thoroughly investigated.

Long non-coding RNA (LncRNA) is a type of RNA not involved
in coding that is over 200 nt in length, and numerous studies on
LncRNA have emerged in the past decade (Bridges et al., 2021).
LncRNAs can regulate cell proliferation, differentiation, signal
transduction, and inflammatory responses in the human body
through different pathways, and participate in the development
of various diseases including cancer (Chen et al., 2019), diabetes
(Feng et al., 2017), and cardiovascular disease (Jin et al., 2021).
Moreover, LncRNA is implicated in many different metabolic
pathways and may affect posttranslational modifications of key
metabolic enzymes in a direct or indirect manner (Bridges et al.,
2021).

The study by Dai et al. found that LncRNAs related to amino
acid metabolism were linked to the prognosis of breast cancer, (Dai
et al., 2022) suggesting a novel approach to the therapy of this
disease. However, there is currently insufficient data from studies to
conclude that LncRNAs involved in amino acid metabolism are
linked to the outcomes (prognosis) of patients suffering from gastric
cancer. This research aimed to discover new gastric cancer
therapeutic targets. Although the lack of tissue-specific expression
patterns and sequence conservation makes LncRNA research more
difficult, it also makes it more valuable.

The surrounding environment in which tumor cells live
constitutes the tumor microenvironment (TME). TME factors,
including immune cell infiltration, perform a crucial function in
tumor onset and progression. Therefore, immunity is closely
related to tumors. Not only that, but immune cell infiltration also
determines the prognosis of patients withmalignant tumors (Ge et al.,
2019). Immune checkpoint inhibitors (ICPIs) are used in
gastrointestinal tumors as a new form of immunotherapy (Jin
et al., 2020). However, due to various reasons such as individual
differences and tumor drug resistance, the role of ICPIs is still limited.
Immune checkpoints are critical. Studies have shown that LncRNAs
also play an important role in regulating immune responses, such as
T cell development, differentiation and activation, as well as the
production of inflammatory mediators (Heward and Lindsay,
2014). Amino acid metabolism can also affect the tumor immune
microenvironment (TIME). A research found that cysteine can
promote tumor cell proliferation, enhance their invasiveness, and
inhibit T cell activity (Levring et al., 2012). Additionally, some studies
have found that leucine (Hayashi et al., 2013), serine (Ma et al., 2017),
and other amino acids can promote T cell activation and proliferation.
Therefore, an in-depth study of the relationship between amino acid
metabolism-related LncRNAs (AMMLs) and the prognosis and
immunity of gastric cancer might offer fresh perspectives for the
immunotherapy of this disease.

Materials and methods

Data acquisition and processing

The flow chart for the analysis of this study is shown in
Supplementary Figure S1. This study retrieved and collected
STAD-related expression and clinical data from the TCGA
database. 374 amino acid metabolism-related genes were obtained
from REACTOME_METABOLISM_OF_AMINO_ACIDS_AND_
DERIVATIVES, which was contained in the Molecular
Signatures Database v7.5.1 [GSEA | MSigDB (gsea-msigdb.org)].
In addition, the corresponding expression data of the 374 genes were
obtained in the TCGA transcription data. AMMLs were screened
based on Pearson’s correlation analysis with a filter condition of p <
0.001 and |correlation coefficient|>0.5. Then, utilizing the “limma” R
package, based on FDR<0.05 and |logFC|>1, differential analysis
was performed between gastric cancer samples and normal samples
to obtain differentially expressed LncRNAs.
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Risk establishment and verification of
signatures

Based on AMMLs differentially expressed in gastric cancer
samples and tumor samples. First, This study conducted
univariate Cox regression analysis to identify 24 AMMLs linked
to overall survival (OS) in STAD (p < 0.05). These 24 AMMLs were
then subjected to LASSO analysis. A total of 11 characteristic
AMMLs and their correlation coefficients were obtained. These
11 AMMLs were used to determine the patient’s risk score. The
calculation formula is shown below: Risk Score = S (Expi p Coefi).
After that, patients were categorized into high- and low-risk groups
(categories) as per their median score. Kaplan-Meier (K-M) analysis,
log-rank test, and time-dependent receiver operating characteristic
(ROC) curve analysis were conducted with the “survival,”
“survivaler” and “survivalROC” R packages to judge the OS of
different risk groups, and the accuracy of the prognostic model.
Furthermore, This study employed univariate and multivariate Cox
regression analyses to verify if AMMLs-related risk scores
independently functioned as prognostic indicators for STAD. To
confirm the efficacy of this prognostic model, This study computed a
risk score by applying similar regression coefficients, formulas, and
genes for both the validation and the combined cohorts.
Additionally, This study explored the robustness of the model in

an integrated group classified based on different clinical traits (age,
sex, grade, etc.).

Co-expression network

To determine the link between AMMLs and mRNA, This study
constructed an mRNA-LncRNA co-expression network model
using Cytoscape_v3.9.1, a network visualization software.

Nomogram

The findings of the multivariate analysis were utilized in the
development of nomograms for anticipating one-, three-, and five-year
survival rates. The “rms”Rprogramwas adopted to construct and illustrate
the findings. Values of discriminant performance and prediction
nomograms were determined by Harrell’s C-index and calibration curve.

Gene set enrichment analysis (GSEA)

First, the “limma” R program was implemented to
detectdifferentially expressed genes (DEGs) between high- and
low-risk categories, and the screening conditions were p <
0.05 and |LogFC|>1. After that, the “clusterProfiler” R program
was employed to conduct gene enrichment analysis based on Gene
Ontology (GO). An FDR value of <0.05 was required for the pathway
and function enrichment analysis to be deemed significant. Next,
GSEA software (version 4.2.3) was employed to evaluate the “c2.
cp.kegg.v7.5. symbols.gmt” gene set in low- and high-risk categories to
determine which genes were enriched. This study screened
enrichment results with a nominal p-value <5% and FDR <25%.

Immune-related features

This study started by using the ESTIMATE technique to derive
each patient’s immune and stromal scores. This study then explored the
differences (variations) in immune, stromal, and ESTIMATE scores in
the TIME of STAD patients across low- and high-risk categories. This
study next used a single-sample GSEA (ssGSEA) algorithm to compare
the immune functions of patients across low- and high-risk categories
and elucidate the correlation between the risk score and the TIME in
STAD patients. Subsequently, This study explored the level of immune
cell infiltration in high- and low-risk groups through different
algorithms such as CIBERSORT, EPIC, QUANTISEQ, and XCELL.
Since immune checkpoint inhibitors are widely used in tumor therapy,
This study compared the levels of various widely used
immunosuppressors and immune checkpoints across high- and low-
risk categories. These immune checkpoints and immunosuppressive
factors were obtained from previously published articles.

Analysis of drug sensitivity

To evaluate targeted drugs for different risk groups and
sensitivity to chemotherapeutics, This study predicted the

FIGURE 1
Volcano plot of 327 differentially expressed AAMRLs in STAD.
AAMRLs, Amino acid metabolism-related LncRNAs; STAD, Stomach
adenocarcinoma.
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maximal inhibitory concentration (IC50) with the help of the
“pRRophetic” R package.

Statistical analysis

This study used R soft 4.1.2 software to analyze all the data.
Pearson correlation analysis was conducted to study the co-
expression of amino acid metabolism genes and LncRNA. The
prognostic factors were determined by LASSO regression
analysis. This study used univariate and multivariate COX
regression analyses to ascertain if the risk score independently
acted as a predictive marker for STAD. An evaluation of the risk
model’s specificity and sensitivity was executed using the area under
the ROC curve (AUC). Categorical variables were subjected to a
comparison with the chi-square test and the Fisher’s exact test. To
compare data of factors between risk groups, a Student’s t-test was
employed.

Result

Data sources and basic clinical information

In total, 407 mRNA expression profiles were acquired from
TCGA, comprising 375 tumors and 32 normal tissue samples.
The clinical data of STAD samples, including age, gender, grade,
TNM stage, etc. 374 genes involved in the metabolism of amino
acids were obtained from REACTOME_METABOLISM_OF_
AMINO_ACIDS_AND_DERIVATIVES, in the Molecular
Signatures Database. The list is presented in Supplementary
Table S1.

Screening for AMML differentially expressed
in normal and gastric cancer samples and
associated with prognosis

First, the expression data of 374 amino acid metabolism-related
genes were extracted from the TCGA database. Then, relevant
LncRNAs were screened based on Pearson correlation analysis,
and the screening conditions were |correlation coefficient (r)|
>0.4 and FDR<0.05. In total, 1724 AMMLs were obtained
(Supplementary Table S2). Subsequently, 327 AMMLs with
differential expression were identified by performing differential
analysis between normal and tumor tissues utilizing the “Limma” R
package (Supplementary Table S3). Differential AMMLs are shown
on a volcano plot in Figure 1. Then, 24 AMMLs (p < 0.05) linked to
OS were obtained as per the univariate COX regression analysis of
327 AMMLs. The forest map shown in Figure 2A displays the HR
values and confidence intervals (CI) for the 24 AMMLs, whereas the
heat map in Figure 2B shows the specific variations in expression.

Development and verification of a predictive
model based on AMMLs

A total of 371 samples were obtained after merging expression
data with survival data. Patients were randomized into test and
training sets on a 1:1 ratio. The sample size for the training set was
187, whereas the value for the testing set was 184. Then, based on the
24 AMMLs obtained in the training cohort, the LASSO regression
algorithm was employed to correct overfitting and underfitting in the
training group. Finally, 11 stable AAMLs were obtained as the best
LncRNAs for prognostic models, as shown in Figures 3A, B. The specific
11 AMMLs and the corresponding correlation coefficients are depicted in

FIGURE 2
Screening with AMMLs. (A) Forest plot of AMMLs linked to STAD OS. (B) Heatmap of differential expression of AMMLs linked to STAD OS. AMMLs,
Amino acid metabolism-related LncRNAs; STAD, Stomach adenocarcinoma; *p < 0.05; **p < 0.01; ***p < 0.001.
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FIGURE 3
LASSO Regression for STAD Patient Risk Models Based on AMMLs. (A) 10-fold cross-validation of variable selection in LASSO models. (B) The
distribution of LASSO coefficients for 11 AMMLs. (C) 11 characteristic AMMLs and their correlation coefficients. LASSO, Least absolute shrinkage and
selection operator; STAD, Stomach adenocarcinoma; AMMLs, Amino acid metabolism-related LncRNAs.

FIGURE 4
The prognostic significance of 11 AMMLsmodels in testing, training, and whole cohorts. (A,D,G). Survival curves of two groups of patients in training,
test, and the whole group. (B,E,H). Model presentation of AMMLs with survival status and time based on testing, training, and the full set of risk scores.
(C,F,I). Expression of 11 AMMLs in training, test and comprehensive cohorts in high and low-risk categories. AMMLs, LncRNAs related to amino acid
metabolism.
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Figure 3C. The risk score was calculated as follows: Riskscore =
LINC01697 × 0.553770368482515 + LINC00460 ×
0.00341458368213084 + LINC00592 × 0.29999979722043 +
MIR548XHG × 0.0967424091144317+
LNCOG× −0.0246619595544397 + LINC02728 × 0.351554070674873
+ RBAKDN ×0.317036345024823 + LINC01094× 0.192056510214801 +
LINC00449 × −0.122953284509337 +
LINC01819 × −0.00910281613561449 + UBE2R2-
AS1 × −0.136924432797998

Get its risk score

Patients in the low- and high-risk categories were divided
premised on the medium risk score. Figure 4A shows the

expression of 11 AAMLs in STAD patients, with LINC01697,
LINC00460, LINC00592, MIR548XHG, LNCOG, LINC02728,
RBAKDN, and LINC01094 being expressed at a high level in the
high-risk group, whereas LINC00449, LINC01819, and UBE2R2-
AS1 were expressed at a low level, of course, This needs to be verified
in experiments. This study observed that patients with higher risk
scores for STAD had a lower likelihood of survival, as depicted in
Figure 4B. K-M survival analysis found that high-risk patients (p <
0.001) had a considerably shortened OS duration, as depicted in
Figure 4C. Similar patterns of expression, risk, and survival were
observed between the test and composite groups and the training set
(Figures 4D, E, G, H). Furthermore, high-risk individuals had
substantially shorter OS duration in both the test (p = 0.001) and
combined groups (p < 0.001). These all validate the accuracy of this
prognostic model. This study further explored the precision of

FIGURE 5
The risk score independently functions as a prognostic marker in STAD patients. (A). Univariate and multivariate overall survival prognostic analysis of
clinical parameters and risk scores. (B). Heatmap of prognostic features and clinicopathological findings in STAD AMMLs. *p < 0.05; **p < 0.01; ***p < 0.001.
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prognostic features through the ROC curve. The predicted AUC
values for 1-, 3-, and 5- years in the test group were 0.723, 0.638, and
0.667, correspondingly, and the predictive power of the prognostic
model was significantly better than that of age (0.544), sex (0.532),
and grade (0.560). and staging (0.579), as shown in Supplementary
Figures 2A, D. Also, this finding was also consistent in the test set
and the combined set (Supplementary Figures 2B, C, E, F).

This study classified patients according to their clinical characteristics
to further examine the link between risk scores and patient prognosis.
Patients in the high-risk category were shown to have a dismal prognosis
across all demographics, including different ages (>65 and ≤65 years),
genders (female andmale), grades (G1-2 andG3), and stages (I-II and III-
IV). The low-risk category also exhibited improved survival status in
contrast with that of the high-risk category across different N stages (N0,
and N1-N3). In M and T stages, M0 and T3-4 showed the same
performance as above, and the OS of the low-risk category was
elevated. Details are shown in Supplementary Figures 3A–G, I–L, N
Conversely, the difference in survival across the two groups in terms of
M1 and T1-2 was insignificant; this could be because of the small sample

sizes in these groups, as depicted in Supplementary Figures 3H,M.As per
these findings, the prognostic model is highly accurate and stable.

This study next conducted univariate and multivariate analyses
to investigate if the risk model had any impacts on the prognostic
factors of patient survival. Univariate analysis results illustrated that
age (p = 0.004), stage (p < 0.001), and Risk score (p < 0.001) can
affect the prognosis of STAD patients. The multivariate analysis
illustrated that age (p < 0.004), stage (p < 0.001), and Risk score (p <
0.001) independently acted as prognostic indicators for patients
(Figure 5A). Furthermore, as depicted in Figure 5B, tumor grade and
stage differed between high- and low-risk patients.

Co-expression network of amino acid
metabolism-associated mRNAs and
LncRNAs

This study created and visualized an mRNA-lncRNA co-
expression network in Cytoscape to additionally observe the links
between genes involved in amino acid metabolism and 11 AAMLs
(version 3.9.1, http://www.cytoscape.org/), as depicted in Figure 6.

Creation of predictive nomograms

This study designed the nomogram incorporating patients’ features
anddemonstrated its accuracyusingHarrell’s concordance index (C-index)
and a calibration curve, which showed consistency between the
nomogram’s predicted and actual survival over 1, 3, and 5 years (Figure 7).

Enrichment analysis

The “limma” R program was first used to screen for DEGs
between high and low-risk categories. The screening conditions were

FIGURE 6
Co-expression network of 11 AMMLs and genes involved in the
metabolism of amino acids. AMMLs, Amino acid metabolism-related
LncRNAs.

FIGURE 7
Nomogram for anticipating OS in GC patients. (A) Nomogram of prognostic models and clinicopathological factors founded on 11 AMMLs. (B)
Performance of the nomogram model determined by the calibration curve. The ideal nomogram is shown as the diagonal dotted grey line. *p < 0.05,
**p < 0.01; ***p < 0.001. OS, overall survival; GC, gastric cancer; AMMLs, Amino acid metabolism-related LncRNAs.
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p < 0.05 and |LogFC|>1, and 284 DEGs were screened. The
“clusterProfiler” program in R was subsequently employed to
conduct a GO enrichment study. Figure 8A demonstrates that
the majority of these genes undergo enrichment in immune-
related functions. This study utilized GSEA to contrast high- and
low-risk STAD patients for the enrichment of biologically
functioning pathways to better understand the differences
between the two groups. p-values <5% and FDRs <25% were
considered meaningful enrichments. A considerable enrichment
in the high-risk patients was found in tumor proliferation,
angiogenesis, and tumor resistance-related pathways, such as
VEGF SIGNALING PATHWAY, MAPK SIGNALING
PATHWAY, and JAK-STAT SIGNALING PATHWAY which
may lead to faster tumor progression. Moreover, immune-related
pathways such as those involving T cell receptors, B cell receptors,
the generation of IGA in the gut, and natural killer cells, were all
considerably enriched (Figures 8B, C). Furthermore, there were no
substantially enriched pathways discovered in the low-risk
population. This difference between the two categories could be
the factor that led to the reduced survival rate of the high-risk
patients.

Immune correlation analysis

Given that the high-risk category was shown to have an
enrichment of immune-related pathways, This study investigated
how prognostic models and immunity are linked with each other.
This study first used the ESTIMATE method to assess the matrix
and immune scores of the patient’s immune milieu. Results showed
that high-risk individuals’ matrix, immune, and comprehensive
scores were all substantially elevated and different from those of
the low-risk individuals, implying that the immune
microenvironment of the two groups was significantly different
(Figures 9A–C). This study next used ssGSEA to determine
whether there were any remarkable differences in immune
functions between the two groups and discovered that
12 immune processes, including Types I and II IFN Response,
and APC co-inhibition, were substantially upregulated in the
high-risk patients (Figure 9D). This study also used algorithms
like MCPCOUNTER, CIBERSORT, EPIC, QUANTISEQ, and
XCELL to investigate immune cell infiltration across distinct risk
categories. Figure 10 shows that the patient’s risk scores were
positively linked to fibroblasts, B cells, M1and M2 macrophages,

FIGURE 8
Enrichment analysis. (A) GO analysis shows the enrichment of most immune-associated biologic processes. (B,C) GSEA analysis shows enriched
pathways in high-risk groups. GSEA, gene set enrichment analysis; LncRNAs, long non-coding RNAs; GO, Gene Ontology; MF, molecular function; CC,
cellular component; BP, biological process; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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and Tregs cells, but inversely linked to uncharacterized cells.
Variations in immunocyte infiltration between high- and low-risk
categories could be a key factor in the diverse outcomes observed
between them. Due to the widespread use of immune checkpoints in
tumors, This study investigated whether high-risk patients might
gainmore benefit from immune checkpoint inhibitors by comparing
their levels of checkpoint expression with those of low-risk patients.
The increased expression of immune checkpoints in the high-risk
category compared to the low-risk population implies that immune
checkpoint inhibitors may be very effective in high-risk patients.
(Figure 11A). Since elevated levels of Tregs and macrophage
infiltration in the high-risk population secrete some
immunosuppressive factors, we explored to verify the expression
levels of these immune factors in the high-risk group versus the low-
risk group. It was found that the expression levels of cytokines (IL4,

IL10, IL13, TGFB1, TGFB2, TGFB3, etc.) were higher in the high-
risk group, which further suggests that elevated levels of Tregs and
macrophage infiltration in the high-risk population play a
suppressive role in the immune microenvironment. (Figure 11B).
These data suggest that the high-risk patients exhibit indolence in
tumor immunity, which might account for their poor prognosis.

Analysis of drug sensitivity

This study evaluated treatment response premised on IC50 of
each sample using the pRRophetic algorithm to compare the
sensitivity of prospective medications typical of AMMLs between
high- and low-risk categories. Twelve targeted drugs, including
A.770041, ABT.263, AG.014699, AICAR, AMG.706, AP.24534,

FIGURE 9
ESTIMATE calculates the purity of STAD. (A) Estimate Score (B). Immune Score (C). Stromal Score. (D) Variations in immune function across high and
low-risk categories calculated by ssGSEA algorithm. STAD, Stomach adenocarcinoma; ssGSEA, single-sample gene set enrichment analysis. *p < 0.05;
**p < 0.01; ***p < 0.001.
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AS601245, ATRA, AUY922, Axitinib, AZ628, and AZD.0530, were
shown to be more effective in high-risk categories. This may provide
insights into new treatment options for STAD patients (Figure 12A).

Discussion

Under normal physiological conditions, the body maintains a
dynamic balance of metabolism, but this metabolic state will be
altered to some degree in a disease state. Therefore, detecting the
metabolic level of the corresponding substance can help diagnose
and judge the disease. Amino acids, as one of the main nutrients in
the human body, have recently been the subject of substantial
research in the field of oncology. Studies have found that amino
acids may promote tumor progression. For example, when
extracellular cysteine is reduced or lacks endogenous
transsulfuration activity, cysteine production can support tumor
cell proliferation in vivo (Zhu et al., 2019). It is well known that
tumor cells grow rapidly in the early stage of tumors, but tumor
angiogenesis is insufficient, and tumor cells obtain more energy
through glycolysis, this phenomenon is called the “WarburgEffect”
in this study. However, in the case of glucose starvation, tumor cells
may obtain energy through autophagy. Tumor cell-related
autophagy often yields amino acids and other metabolites, and
new research suggests that non-essential amino acids may replace
glucose as tumor cells’ functional substances (Uneyama et al., 2017).
Amino acids have also been extensively studied in gastric cancer.
Wang et al. disclosed that apoptosis was promoted in gastric cancer

cells by the deprivation of glucose, whereas amino acids directly
counteracted this effect (Wang et al., 2014). According to certain
studies, the plasma amino acid level may distinguish between gastric
ulcers and gastric cancer. Among them, the content of glutamine,
histidine, arginine, and tryptophan in the plasma of gastric ulcer
patients was elevated as opposed to that of tumor patients, while the
content of ornithine was the opposite (Jing et al., 2018).

Liu et al. (2018) found that free amino acids in gastric juice can
help the diagnosis of early gastric cancer. Abnormal metabolism of
tumor cells can cause alterations in the TME, which in turn
influences immune cell infiltration and promotes tumor immune
escape. Numerous recent studies have shown that aberrant amino
acid metabolism in patients with tumors might alter the TIME. Also,
studies have found that a variety of amino acids or their transporters
can promote T cell activation and proliferation, including leucine
(Hayashi et al., 2013), methionine (Sinclair et al., 2019), serine (Ma
et al., 2017), alanine (Ron-Harel et al., 2019), and so on. Research has
also discovered that arginine deficiency in tumors not only leads to
the anti-tumor response of T cells but also induces the generation of
myeloid-derived suppressor cells (MDSCs) (Fletcher et al., 2015). In
addition, T lymphocytes differentiate into Tregs but not into helper
T cells in the presence of glutamine deficiency (Klysz et al., 2015). All
of these things point to the significance of amino acid metabolism in
the TIME. At present, amino acid metabolism-related factors are
also effective targets for the treatment of tumors. For example,
glutaminase inhibitor CB-893 (Johnson et al., 2018), glutamine
metabolism inhibitor JHU083 (Leone et al., 2019), and arginase
1 inhibitor INCB001158 (Steggerda et al., 2017) can not only inhibit

FIGURE 10
The relationship between immune cell infiltration and risk score in the tumor immune microenvironment of STAD patients calculated by different
algorithms. (A) EPIC (B). QUANTISEQ (C). MCPCOUNTER (D). CIBERSORT (E). XCELL. *p < 0.05; **p < 0.01; ***p < 0.001.
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tumor progression but also increase the immune system in TME cell
infiltration. However, there is no report on the value of AMMLs in
assessing immune infiltration and clinical outcomes in gastric
cancer. LncRNAs related to amino acid metabolism remodel the
TME, and whether this change affects the prognosis and
immunotherapy response of STAD patients is of great
significance for us to explore.

So far, this is the first research project that uses AMMLs to
establish a prognostic model in STAD. Pearson correlation and
univariate Cox regression analyses can effectively detect cellular
senescence LncRNAs linked to disease prognosis predicated on the
RNA-seq data set downloaded from TCGA and genes related to
amino acid metabolism. The LASSO regression technique was used
to develop a prediction model that included 11 AMMLs. In this
research, 371 samples were randomized into the training and test
sets, of which the training set and the test set contained 187 and
184 samples, correspondingly. The prognostic model was proven to
be reliable across all three study groups (training, test, and whole
groups).

The 11 AMMLs used to construct prognostic models, included
7 risk genes notably, LINC01697, LINC00460, LINC00592,
MIR548XHG, LINC02728, RBAKDN, and LINC01094, and
4 protective genes, namely LINCOG, LINC00449, LINC01819,
and UBE2R2-AS1. Furthermore, This study found that some of
these 11 LncRNAs have been previously reported in tumors. For
example, LINC01697 has a diagnostic and prognostic function in
lung adenocarcinoma and oral squamous cell carcinoma (Liu et al.,
2019; Li et al., 2020). LINC00460 has been reported in various
tumors such as head and neck squamous cell carcinoma (Yang et al.,
2021b), cervical cancer (Lin et al., 2020), bladder cancer (Li et al.,
2021), colorectal cancer (Ruan et al., 2021), and is implicated in
tumor proliferation, migration, mesenchymal transition, drug
resistance, and increased tumor progression (Meng et al., 2020;
Cheng et al., 2021). Wang and Yang et al. also found that
LINC00460 could promote the progression of gastric cancer
(Wang et al., 2018; Yang et al., 2020). Xu et al. reported that the
lncRNA UBE2R2-AS1 targeted the miR-877-3p/TLR4 axis, thereby
promoting apoptosis in glioma cells (Xu et al., 2021). In colorectal

FIGURE 11
Variations in the expression of immune-associated genes between low- and high-risk groups. (A) Expression of immune checkpoints in high- and
low-risk patients with gastric cancer. (B) Expression of immunosuppressive cytokines across the two groups. *p < 0.05; **p < 0.01; ***p < 0.001.
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cancer, upregulated long intergenic non-protein-coding RNA 1094
(LINC01094) is associated with a dismal prognosis and altered
cellular function (Zhang et al., 2022). The RBAKDN gene has
been linked to the prognosis of patients with cervical cancer. (Ye
et al., 2021). Zhang et al. (2020) discovered that lung
adenocarcinoma recurrence was linked to LINC01819. Previous
studies have found that LINC00592 (Cheng et al., 2019)
LINC02728 (Lai et al., 2021) LINC00449 (Zhang et al., 2021) are
associated with gastric cancer prognosis. Non-etheless, reports of
MIR548XHG are rare, only Shan et al. (2022) have found significant
increase in MIR548XHG expression in endometriosis. Therefore,
more research is needed in this area.

Pathways associated with B cell receptors, T cell receptors, and
natural killer cell-mediated cytotoxicity were shown to be
predominantly enriched in the high-risk category as per the
GSEA analysis. Neither the impact of LncRNAs involved in
amino acid metabolism nor their links to the immune milieu in
gastric cancer has been studied. As a first step, the tumor purity of
STAD patients in the high and low-risk categories was determined
utilizing the ESTIMATE method. High-risk patients had greater
values for all three scores (immune, stromal, and estimate scores)
compared to those at lower risk. In addition, 12 out of 13 immune
functions were different between the two groups, with the high-risk
patients showing considerably higher immune function. The
infiltration levels of immune cells in the STAD TME were

subsequently investigated utilizing algorithms like CIBERSORT,
EPIC, MCPCOUNTER, QUANTISEQ, and XCELL, and it was
discovered that cancer-associated fibroblasts (CAFs),
M2 macrophages, and Tregs cells were positively linked to risk
scores. Previous studies have found that CAFs are associated with
tumor size, tumor invasion depth, and metastasis (Quail and Joyce,
2013). CAFs typically secrete CXCL12, TGF-β, LOXL2, HGF, and
IL-22 to promote tumor progression. This is consistent with the
results of this study showing increased cytokine secretion of CAFs in
high-risk patients. Tumors may manifest as cells that affect tumor
growth, invasion, and metastasis by secreting these cytokines in
gastric cancer. This negatively impacts the prognosis of gastric
cancer. There are now two recognized types of macrophages,
M1 and M2. It is widely accepted that M1 macrophages perform
a fundamental function in inflammatory and immune response
activation, whereas M2 macrophages are implicated in oncogenesis.
Tumor-associated macrophages (TAM) also promote tumor
angiogenesis and invasion by producing inflammatory factors,
chemokines, and growth factors. For example, Wu et al. found
that TAM-derived CXCL8 promotes tumor invasion and induces
angiogenesis by stimulating tumor cells to secrete MMP-9 and
VEGF (Wu et al., 2020). Wang et al. reported that tumor-
associated fibroblasts promote immune escape by secreting IL-10
(Wang et al., 2015). In addition, This study discovered that
M2 macrophages infiltrated the TME to a greater extent in high-

FIGURE 12
Drug candidates targeting AMMLs. IC50s of (A). (A)770041 (B). ABT.263 (C). AG014699 (D). AICAR (E). AMG.706 (F). AP.24534 (G). AS601245 (H).
ATRA (I). AUY922 (J). Axitinib (K). AZ628 and (L). AZD.0530 between the low- and high-risk patients. AMMLs, LncRNAs related to amino acid metabolism,
*p < 0.05; **p < 0.01; ***p < 0.001.
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risk patients and that cytokines such as IL-10, CXCL8, and
CCL5 were expressed at a high level in the high-risk category as
well, as determined by differential analysis. This further supports the
accuracy of the findings in this study.

Chemotherapy and targeted therapy are widely used in gastric
cancer. Immune checkpoint analysis shows that high-risk groups
may have a higher sensitivity to immune checkpoint inhibitors.
Twelve targeted pharmaceuticals, including AICAR, Axitinib, and
ATRA, were shown to have increased sensitivity among high-risk
patients. This study could offer a new approach to treating gastric
cancer. The findings of this pharmacological screening, however,
will need to be confirmed in larger clinical studies.

There are still some shortcomings in this study. First of all, data
samples are mainly from TCGA data sets, which are limited and
single. We will further investigate this in multi-center or multi-data
sets. Second, the study had no underlying experimental validation.
Therefore, basic experiments on LncRNAs associated with amino acid
metabolism in gastric cancer will be further carried out in the future,
mainly focusing on relevant mechanisms and signaling pathways.

Conclusion

In summary, this study explored the prognostic and molecular
immunological features of amino acid metabolism-related LncRNAs
in gastric cancer. It was found that this prognostic model can offer
an insightful perspective on the prognosis of patients with STAD,
and provide innovative ideas for gastric cancer therapy in the future.
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