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Background: In recent years, tumor immunotherapy has become a viable
treatment option for triple negative breast cancer (TNBC). Among these,
immune checkpoint inhibitors (ICIs) have demonstrated good efficacy in
advanced TNBC patients with programmed death-ligand 1 (PD-L1) positive
expression. However, only 63% of PD-L1-positive individuals showed any
benefit from ICIs. Therefore, finding new predictive biomarkers will aid in
identifying patients who are likely to benefit from ICIs. In this study, we used
liquid biopsies and next-generation sequencing (NGS) to dynamically detect
changes in circulating tumor DNA (ctDNA) in the blood of patients with
advanced TNBC treated with ICIs and focused on its potential predictive value.

Methods: FromMay 2018 to October 2020, patients with advanced TNBC treated
with ICIs at Shandong Cancer Hospital were included prospectively. Patient blood
samples were obtained at the pretreatment baseline, first response evaluation, and
disease progression timepoints. Furthermore, 457 cancer-related genes were
evaluated by NGS, and patients’ ctDNA mutations, gene mutation rates, and
other indicators were determined and coupled with clinical data for statistical
analysis.

Results: A total of 11 TNBC patients were included in this study. The overall
objective response rate (ORR) was 27.3%, with a 6.1-month median progression-
free survival (PFS) (95% confidence interval: 3.877–8.323 months). Of the
11 baseline blood samples, 48 mutations were found, with the most common
mutation types being frame shift indels, synonymous single-nucleotide variations
(SNVs), frame indel missenses, splicing, and stop gains. Additionally, univariate Cox
regression analysis revealed that advanced TNBC patients with one of 12 mutant
genes (CYP2D6 deletion and GNAS, BCL2L1, H3F3C, LAG3, FGF23, CCND2,
SESN1, SNHG16, MYC, HLA-E, and MCL1 gain) had a shorter PFS with ICI
treatment (p < 0.05). To some extent, dynamic changes of ctDNA might
indicate the efficacy of ICIs.
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Conclusion:Our data indicate that ICI efficacy in patients with advanced TNBCmay
be predicted by 12 mutant ctDNA genes. Additionally, dynamic alterations in
peripheral blood ctDNA might be used to track the effectiveness of ICI therapy
in those with advanced TNBC.
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1 Introduction

Breast cancer has become the leading cause of cancer-related
morbidity and mortality in women worldwide (Bray et al., 2018;
Feng et al., 2019; Siegel et al., 2021). Triple negative breast cancer
(TNBC) accounts for 12%–17% of all breast cancer cases, is
commonly recurrent and metastatic, and has a median overall
survival (OS) of only 10–13 months (William D Foulkes et al.,
2010; Schumacher and Schreiber, 2015; Garrido-Castro et al.,
2019). TNBC is the most drug resistant subtype of breast cancer
because of low or absent expression of the estrogen receptor (ER),
progesterone receptor (PR), and human epidermal growth factor
receptor 2 (HER2) (Adams et al., 2019). Despite chemotherapy
remaining the most effective course of treatment, advanced TNBC
patients usually have limited response to chemotherapy and develop
disease progression. Therefore, it is critical to continuously examine
therapeutic efficacy and seek out new treatment options.

TNBC differs from other subtypes of breast cancer in various
ways, including having a higher mutation frequency, higher
percentage of tumor-infiltrating lymphocytes, and 20% of
TNBC cells expressing programmed death-ligand 1 (PD-L1)
(Mittendorf et al., 2014; Budczies et al., 2015; Schumacher and
Schreiber, 2015; Luen et al., 2016). Because of these characteristics,
immune checkpoint inhibitors (ICIs) may have a higher efficacy in
TNBC than in other breast cancer subtypes. To date, clinical trials
have tested a range of ICIs, both independently and in
combination, such as programmed cell death protein 1 (PD-1)/
PD-L1 inhibitors plus chemotherapy. In the Impassion 130 study,
patients with advanced TNBC who were PD-L1 positive and
treated with atezolizumab and nab-paclitaxel had prolonged
progression-free survival (PFS) and OS rates (Schmid et al.,
2018; Iwata et al., 2020; Chen et al., 2022). Similar findings
were reported in the KEYNOTE-355 study, which found that
pembrolizumab in combination with chemotherapy significantly
improved OS in PD-L1 positive patients with advanced TNBC
compared with chemotherapy alone (Cortes et al., 2020; Cortes
et al., 2022). However, ICIs are not appropriate for all advanced
TNBC patients. The KEYNOTE-119 study found that in advanced
TNBC patients, pembrolizumab did not significantly prolong OS
compared with chemotherapy alone (Winer et al., 2021). Similarly,
the IMpassion 131 study discovered that advanced TNBC patients
who received paclitaxel with atezolizumab did not display
significantly improved PFS or OS (Miles et al., 2021). These
results suggest that current ICIs treatment strategies may not be
applicable to all advanced TNBC patients. Therefore, it is necessary
to identify specific biomarkers for ICI treatment effectiveness to
help determine which advanced TNBC patients could possibly
benefit from such therapies.

Currently, the need for real-time illness surveillance cannot
be satisfied by traditional diagnostic methods like CT imaging
(Zhang et al., 2020). Interestingly, there is occasionally a genetic
divergence between the primary tumor cells and metastatic breast
cancer cells (Itakura et al., 2015). Circulating tumor DNA
(ctDNA) is DNA that has been released to blood by primary
and metastatic cancer cells during apoptosis and necrosis
(Swarup and Rajeswari, 2007). Compared with traditional
biopsy methods, examining ctDNA levels offers unique
advantages. For example, ctDNA-based approaches overcome
tumor heterogeneity and provide real-time molecular data on
driver genes, drug resistance genes, and clonal organization
(Abstracts of Presentations at the, 2022; Sant et al., 2022).
Additionally, lesions that are difficult to evaluate using
imaging can be analyzed (Appierto et al., 2017; Hrebien et al.,
2019). These ctDNA-based liquid biopsies, which elucidate
genetic markers in patient plasma using next-generation
sequencing (NGS), can supplement the current screening
techniques and have proven to be a powerful option for
monitoring cancer progression (Heitzer et al., 2019; Pantel
and Alix-Panabieres, 2019). Research on accurate breast
cancer diagnosis and treatment has also recently utilized
ctDNA. Multiple studies in early breast cancer discovered that
ctDNA clearance was related to improved survival after
neoadjuvant treatment (Radovich et al., 2020; Magbanua et al.,
2021; Ortolan et al., 2021). Additionally, Chen et al. found that
ctDNA mutations offer useful information for evaluating the
effectiveness of targeted therapies in breast cancer patients who
are resistant to trastuzumab and chemotherapy (Chen et al.,
2020). Furthermore, their findings demonstrated that gene
amplifications and decreased ctDNA levels were related to
higher PFS in patients with advanced TNBC after
chemotherapy (Wongchenko et al., 2020; Collier et al., 2021).
However, there is a lack of studies predicting the efficacy of ICIs
in advanced TNBC through ctDNA detected by NGS.

In this study, we aim to identify novel biomarkers that predict
the responses to ICI treatments and explore the patterns of ctDNA
mutation changes in relation to immunotherapy efficacy by
analyzing the ctDNA modifications and mutations in plasma of
advanced TNBC patients during ICI therapy.

2 Materials and methods

2.1 Patients and samples

All patients were recruited prospectively from Shandong Cancer
Hospital and Institute, Jinan, Shandong, China, from May 2018 to
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October 2020. The study was approved by the Institutional Review
Board and the Ethics Committee of Shandong Cancer Hospital and
Institute. Eligible cases had progressed TNBC, which was
characterized by ER and PR immunohistochemistry (IHC)
staining of less than 1% of tumor cell nuclei, a HER2 IHC score
of 0-1 or 2+, and fluorescence in situ hybridization was negative.
Pathological examinations were performed by the pathologists in the
Department of Pathology, Shandong Cancer Hospital and Institute.

All eligible patients provided written informed consent
before participating in this study. Every two cycles of ICI
treatments, patients were evaluated for a response using the
Response Evaluation Criteria in Solid Tumors (RECIST)
1.1 criteria. Patients’ reactions to ICIs were classified as
complete response (CR), partial response (PR), stable disease
(SD), or progressive disease (PD) using CT scans and the RECIST
1.1 criteria. We collected dynamic peripheral blood specimens
from the patients at baseline, first efficacy assessment, and disease
progression. All eligible patients had baseline blood specimens
and six patients had dynamic blood specimens (Figure 1). The
last follow-up appointment was 29 January 2021. At the time of
the final follow-up, all eligible patients were still alive. All
relevant clinical data were obtained by reviewing patients’
medical records and contacting them over the phone.
The time from registration to illness progression was defined
as PFS.

2.2 Plasma isolation and ctDNA library
construction

Peripheral blood samples were collected in special cell-free DNA
BCT tubes (Streck Laboratories, United States). Plasma supernatant
and blood cell sediment were separated after whole blood samples
were centrifuged at 4°C for 10 min (1,600 x g), then the process was
repeated (16,000 x g). The ctDNA was isolated using the MagMAX
Cell-Free DNA Isolation Kit (Thermo Fisher Scientific,
United States) according to the manufacturer’s instructions. Gel
electrophoresis and a Qubit® 4.0 Fluorometer (Life Technologies,
United States) were used to quantify the purity of the isolated DNA.
The pre-libraries were created using the previously described

technique for targeted sequencing of ctDNA (Lv et al., 2015). To
create a sequencing library, ctDNA fragments were collected using
the NGS gene panel, which includes 457 cancer-associated genes
(Berry Oncology, Peking, China) (Supplementary Table S1). The
Illumina NovaSeq 6000 platform (Illumina, San Diego, CA,
United States) was used to apply the sequencing libraries in
150PE mode.

2.3 Bioinformatics analysis of ctDNA
mutations

FASTP (Chen et al., 2018) was used to trim adapters and
obtain clean results by removing low-quality sequences. By using
Burrows-Wheeler Alignment tool (BWA), the clean reads were
aligned to the Ensemble GRCh37/hg19 reference genome (Li and
Durbin, 2009). PCR duplications were processed by gencore
(Chen et al., 2019), then consensus reads were generated.
SAMtools (Li et al., 2009) was applied for the detection of
single-nucleotide variations (SNVs), insertions, and loss. The
ANNOVAR software (Wang et al., 2010) was used to annotate
the HGVS variant description. After annotation, we eliminated
non-synonymous SNVs with PopFreqMax >0.05 and retained
those with VAF >0.5% or >0.1% in cancer hotspots obtained from
patient databases for further investigation. Tumor mutation
burden (TMB) was defined as non-synonymous coding
mutations per Megabase. For copy number variants (CNVs),
the gene was regarded as gain when the copy number >3 and
regarded as loss when the copy number <1.

2.4 Statistical analysis

R version 3.4.0 was used for all analyses. Survival-related ctDNA
was identified using univariate and multivariate Cox regression
analyses. Kaplan-Meier (KM) survival curve differences were
assessed by log-rank analysis. Fisher’s exact test was performed
to compare the ctDNA variations among patients with advanced
TNBC. Each test was two-sided, andP-values <0.05 were considered
significant.

FIGURE 1
The timepoints for collection of venous blood specimens. The numbers represent the cycles of treatment.
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3 Results

3.1 Characteristics of enrolled patients

Using the eligibility criteria, 11 advanced TNBC patients who
received ICIs were enrolled in this study. Among these 11 patients,
the median age at diagnosis was 46 years (range 34–67 years). Most
patients (54.5%, 6/11) were diagnosed with stage III disease, while
27.3% (3/11) and 18.2% (2/11) of patients were stage II and stage I,
respectively. According to the pathological classification,

10 individuals were grade III, while just one patient was grade II.
Additionally, 81.8% (9/11) of patients were diagnosed with invasive
ductal carcinoma. The median PFS for the 11 patients was
6.1 months (95% confidence interval (CI): 3.877–8.323 months).
All eligible patients received a combination treatment of ICIs
plus chemotherapy as first-line treatment (63.6%, 7/11), second-
line treatment (18.2%, 2/11), and third-line treatment (18.2%, 2/11).
During the treatment procedure, the best efficacy was CR in one case
(18.2%), PR in two cases (18.2%), and SD in six cases (54.5%). The
clinicopathologic characteristics of the patients are shown in Table 1.

3.2 Mutant genes in ctDNA may predict the
efficacy of ICIs

A total of 11 baseline blood specimens were analyzed by NGS,
with 457 genes detected (Supplementary Table S1). We observed
48 genetic variants in the 11 baseline blood specimens, with the
mutation types primarily including frame shift indels, synonymous
SNVs, frame indel missenses, splicing, and stop gains. Within the
SNVs, the most frequently mutated gene was TP53 (73%, 8/11), with
the other SNV frequencies<20%.

Furthermore, we identified CNVs with mutation
frequencies>20% (Figure 2) and found that 64% of patients have
HLA-A and HLA-C gain. HLA-B gain and CYP2D6 loss were
present in 45% and 27% of patients, respectively. In addition,
27% of patients have HLA-E, MCL1, MYC, NBN, PTPN1,
RAD21, and SNHG16 gain. The predictive power of ctDNA in
ICI treatment management was then assessed. By univariate Cox
regression analysis, we found that CYP2D6 loss and GNAS,
BCL2L1, H3F3C, LAG3, FGF23, CCND2, SESN1, SNHG16,
MYC, HLA-E, and MCL1 gain were associated with short PFS
(p < 0.05) (Figure 3). The results indicate that patients with these
particular mutations might not fully benefit from ICI therapy.
However, multivariate Cox regression analysis did not identify
statistically significant mutated genes associated with PFS.

3.3 Dynamic changes of mutant genes in
ctDNA during ICI treatment

Considering that ctDNA genomic traits change dynamically
with therapy (Garcia-Murillas et al., 2015), we analyzed ctDNA
collected from six patients with dynamic blood samples. We also
analyzed the changes in carcinoembryonic antigen (CEA),
carbohydrate antigen 125 (CA125), and carbohydrate antigen 153
(CA153) levels (Figure 4).

For patients with the best CR, PR, or SD efficacy evaluations, we
observed two patterns of ctDNA mutations: 1) the copy number or
mutation frequency declined at first response evaluation, while the
copy number or mutation frequency rose again at disease
progression; 2) the copy number or mutation frequency rose at
first response evaluation, while the copy number or mutation
frequency declined at disease progression. From these two
patterns of mutations, we observed that during ICI treatment, the
CNV or SNV initially rises and then falls or initially falls and then
rises. When this occurs with changing ctDNA mutations, it possibly
indicates that the patients are responding to ICI treatment.

TABLE 1 Clinical and pathological features of enrolled patients (N = 11).

Clinical and pathological features n (%)

Age

<50 yearss 6 (54.5%)

≥50 years 5 (45.5%)

Clinical stage

Ⅰ 2 (18.2%)

Ⅱ 3 (27.3%)

Ⅲ 6 (54.5%)

Invasive ductal
carcinoma

Yes 9 (81.8%)

No 2 (18.2%)

Pathologic grade

Ⅱ 1 (9.1%)

Ⅲ 10
(90.9%)

Lines of therapy

1 7 (63.6%)

2 2 (18.2%)

3 2 (18.2%)

Treatment regimens

PD-1 inhibitora + nab-paclitaxel 7 (63.6%)

PD-1 inhibitor + platinum + paclitaxel 1 (9.1%)

PD-1 inhibitor + capecitabine 1 (9.1%)

PD-1 inhibitor + platinum +
gemcitabine

1 (9.1%)

PD-L1 inhibitorb + paclitaxel 1 (9.1%)

Best efficacy

CR 1 (9.1%)

PR 2 (18.2%)

SD 6 (54.5%)

PD 2 (18.2%)

aPD-1 inhibitor: Toripalimab, Tislelizumab, Sintilimab.
bPD-L1 inhibitor: Atezolizumab.
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Additionally, Patient C6 experienced disease progression at the first
response evaluation, at which point the mutation frequency or copy
number rose. However, we did not observe this pattern of changes in
CEA, CA125 or CA153 associated with ICI efficacy among these six
patients.

In future studies, the sample size should be increased and
additional blood collection points should be included to further
verify the relationship between the dynamic changes of ctDNA and
ICI treatment efficacy.

4 Discussion

ICIs are a promising treatment method that has significantly
improved TNBC patient treatment outcomes (Cortes et al., 2020;
Iwata et al., 2020; Emens et al., 2021; Chen et al., 2022). However,
not all patients with advanced TNBC can benefit from ICIs (Miles et al.,
2021; Winer et al., 2021), so timely monitoring of ICI efficacy and
choosing appropriate patients are essential. Using NGS technology, we
dynamically evaluated peripheral blood ctDNA alterations in patients
with advanced TNBC during treatment. Concurrent tumor load and
tumor marker changes in the included patients were also recorded. We
found that 48 genetic mutations occurred in the 11 baseline samples.

For the SNV, TP53 was the gene with the highestmutation frequency in
advanced TNBC. These results were consistent with previous reports
(Jiang et al., 2021; Chen et al., 2022). Furthermore, in advanced TNBC
patients who received ICIs, CYP2D6 loss and GNAS, BCL2L1, H3F3C,
LAG3, FGF23, CCND2, SESN1, SNHG16, MYC, HLA-E, and
MCL1 gain were related to shorter PFS. Our results suggest that
advanced TNBC patients with one of these 12 mutated genes are
possibly not suitable candidates for ICI treatment. As shown in the
literature, BCL2L1, LAG3, CCND2, SNHG16, MYC, HLA-E, MCL-1,
and GNAS have regulatory effects on apoptosis, anti-tumor immunity,
the tumor cell cycle, cell growth, or metastasis. Among them,
BCL2L1 and MCL-1 had an inhibitory effect on apoptosis in TNBC
(Kelly and Strasser, 2011; Goodwin et al., 2015). Other studies found
that LAG3 andHLA-Ewere associated with immunosuppressive effects
and tumor immune evasion in breast cancer, gastric cancer, and ovarian
cancer, among others (Woo et al., 2012; Tuncel et al., 2013; Morandi
et al., 2014; Zheng et al., 2015; Su et al., 2016; Andrews et al., 2017; Du
et al., 2020). In addition, upregulated CCND2, SNHG16, MYC, and
GNAS levels were associated with accelerating cell cycle progression, as
well as promoting growth and metastasis in lung cancer, breast cancer,
and colon cancer (Cai et al., 2017; Fallah et al., 2017; Teng et al., 2017;
Batistatou et al., 2018; Hung et al., 2018; Han et al., 2019; Jin et al., 2019;
SM, 2020). Additionally, to explore the linkage among these 12mutated

FIGURE 2
Genes with a mutation frequency greater than 20%.
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genes, we utilized the KEGG database to examine the signaling
pathways in which these genes are located. We found that several of
the mutant genes are implicated in numerous important signaling
pathways, both upstream and downstream, including the PI3K-AKT,
MAPK, Ras, and JAK-STAT signaling pathways (Christov et al., 2011;

Hernandez-Varas et al., 2011; Clinkenbeard et al., 2016; Wang et al.,
2017; Luo et al., 2018; Wang et al., 2018; Wu et al., 2019; Zhang et al.,
2019; Chang et al., 2020; Schafer et al., 2020; Umehara et al., 2020; Ho
and Bergwitz, 2021) (Figure 5). These signaling pathways are involved
in the regulation of cancer-related phenotypes, including cell cycle

FIGURE 3
Correlation of circulating tumor DNA (ctDNA) gene mutations with progression-free survival (PFS) in advanced triple negative breast cancer (TNBC)
patients receiving immune checkpoint inhibitor (ICI) treatment.
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progression, cell survival, cell migration, signal transduction, and more.
Therefore, the regulatory interactions between CCND2, FGF23, MCL1,
MYC, GNAS, and BCL2L1 may alter the efficacy of ICIs. We
hypothesize that the effects of these mutant genes on drug efficacy
result from their promoting malignant cellular phenotypes. Future cell
experiments will be conducted to confirm this regulatory impact.

Serum CEA, CA153, and CA125 are tumor markers that are
frequently used in breast cancer screening and therapy efficacy
monitoring (Cheung and Robertson, 2000; Seregni et al., 2004;
Duffy, 2006; Duffy et al., 2010). However, traditional tumor
markers still have some drawbacks. First, tumor load,
physiological and pathological conditions of the body, basic
diseases, and medicines can all alter serum tumor marker levels,
resulting in lower sensitivity and specificity. Second, the critical
value of serum tumor marker levels that insinuate disease
progression is unclear (Seregni et al., 2004). Third, 30% of
patients who respond to therapy may see a paradoxical increase

in tumormarker levels following the start of chemotherapy. This rise
could be attributed to the severe neoplastic cell necrosis caused by
cytotoxic treatments, and marker levels can remain elevated for up
to 3 months (Seregni et al., 2004). Overall, these reasons indicate that
traditional tumor markers do not effectively reflect the efficacy of
ICIs. Our results suggest that the changes in CEA, CA153, and
CA125 levels may not be consistent with the tumor load trends.
Because of the small sample size of this study, the connection
between traditional tumor markers and ICI efficacy needs to be
verified in a larger population.

Currently, previous research has shown that the dynamic
changes of ctDNA levels correlate with treatment efficacy in
hepatocellular carcinoma, pancreatic cancer, and breast cancer
(Cai et al., 2019; van der Sijde et al., 2019; Liu et al., 2022).
However, there is a lack of studies on the relationship between
ctDNA dynamic changes and ICI efficacy. By monitoring the
changes of ctDNA-related mutations at several timepoints during

FIGURE 4
The dynamic changes of circulating tumor DNA (ctDNA) features (copy number variants (CNVs) and single-nucleotide variations (SNVs)), tumor
burden, and CEA, CA125, and CA153 levels in six triple negative breast cancer (TNBC) patients.
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the patient treatment period, we found that some changes in ctDNA
were similar to tumor load changes, such as pattern 1. By
dynamically monitoring the changes of ctDNA-related mutations
during the ICI treatment period of advanced TNBC patients, we
found that the elimination of ctDNA mutations or a decreased
mutation rate often represented a better ICI efficacy. In contrast, as
the disease progressed, the ctDNA mutation pattern revealed that
the copy number or mutation frequency rose. However, we also
observed that the copy number or mutation frequency rose in
patients treated with ICIs despite being effective, such as in
pattern 2. Considering the source of ctDNA, we hypothesize that
this is the result of chemotherapy effectively triggering tumor cell
death. This causes more ctDNA to be released into the blood and
allows mutations that were not previously found in the blood to be
detected throughout the treatment process (Diaz and Bardelli, 2014).
Our results indicate that plasma ctDNA-based liquid biopsy could
potentially be used as an additional test to monitor disease in TNBC
patients.

In conclusion, our data demonstrate that CYP2D6 loss and
GNAS, BCL2L1, H3F3C, LAG3, FGF23, CCND2, SESN1, SNHG16,
MYC, HLA-E, and MCL1 gains were predictive of ICI effectiveness

in patients with advanced TNBC. In addition, dynamic monitoring
of ctDNA in patients with advanced TNBC might provide a timely
indicator of sensitivity to ICI treatment. In the future, further studies
are necessary to validate our observations.
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