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Complex diseases have multifactorial etiologies making actionable diagnostic
biomarkers difficult to identify. Diagnostic research must expand beyond single
or a handful of genetic or epigenetic targets for complex disease and explore a
broader system of biological pathways. With the objective to develop a diagnostic
tool designed to analyze a comprehensive network of epigenetic profiles in
complex diseases, we used publicly available DNA methylation data from over
2,400 samples representing 20 cell types and various diseases. This tool, rather
than detecting differentially methylated regions at specific genes, measures the
intra-individual methylation variability within gene promoters to identify global
shifts away from healthy regulatory states. To assess this new approach, we
explored three distinct questions: 1) Are profiles of epigenetic variability tissue-
specific? 2) Do diseased tissues exhibit altered epigenetic variability compared to
normal tissue? 3) Can epigenetic variability be detected in complex disease?
Unsupervised clustering established that global epigenetic variability in
promoter regions is tissue-specific and promoter regions that are the most
epigenetically stable in a specific tissue are associated with genes known to be
essential for its function. Furthermore, analysis of epigenetic variability in these
most stable regions distinguishes between diseased and normal tissue in multiple
complex diseases. Finally, we demonstrate the clinical utility of this new tool in the
assessment of a multifactorial condition, male infertility. We show that epigenetic
variability in purified sperm is correlated with live birth outcomes in couples
undergoing intrauterine insemination (IUI), a common fertility procedure. Men
with the least epigenetically variable promoters were almost twice as likely to
father a child than men with the greatest number of epigenetically variable
promoters. Interestingly, no such difference was identified in men undergoing
in vitro fertilization (IVF), another common fertility procedure, suggesting this as a
treatment to overcome higher levels of epigenetic variability when trying to
conceive.
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Introduction

In 2003, one of the most profound efforts ever undertaken in the
biological sciences, the Human Genome Project, was completed
(Collins et al., 2003). At the time there was a great deal of hope that
unlocking the genetic code was the key to diagnosing and treating
the vast majority of diseases. While the discoveries made have been
of great interest to many and have opened the door for important
genetic and epigenetic findings, clinically meaningful impacts
remain elusive for many diseases. In large part, this is due to the
complex, multifactorial nature of most disease processes, with
etiologies resulting from a constellation of genetic, epigenetic,
and environmental perturbations.

In hindsight, the lack of clinical efficacy for both genetic and
epigenetic findings is not surprising. While it is common to identify
a genetic or epigenetic association to a given disease, those
associations occur so rarely in a population, or are only one of
many alterations required to generate a pathological phenotype, that
it is unreasonable to produce a highly predictive screening test
capable of impacting clinical care. As a result, better approaches for
analysis of genetic and epigenetic data are needed to identify
clinically actionable predictors of disease or disease progression.
Molecular diagnostic research and technologies need to focus, not
on single genes or independent epigenetic modifications associated
with a pathology, but on a comprehensive screen of alterations to
gene regulatory activity at a myriad of critical genes.

To address this need, we present a novel and simple analytic
method that allows for the molecular (epigenetic) assessment of
complex diseases. As opposed to traditional methylation analyses
that detect differentially methylated regions, this approach analyzes
multi-pathway epigenetic regulation and is based on the concept
that there is stable DNAmethylation variability at gene promoters in
healthy tissue types. Here we outline the development and utility of
this new method in predicting tissue-specific disease states through
the analysis of DNAmethylation array data from over 2,400 samples
and 20 cell types. This work first validates that promoter
methylation variability is tissue-specific, and shows that the most
stable gene promoters are associated with genes critical for specific
tissue function. Second, it establishes that by only looking at
promoter methylation variability we can distinguish between
healthy and diseased tissues. Finally, by looking at a single
specific tissue type (sperm), this method demonstrates direct
clinical utility by showing men with high gene-promoter
methylation variability in their sperm have low pregnancy and
live birth rates.

Materials and methods

Data collection

Several publicly available datasets were used in this study.
Infinium HumanMethylation450 Bead Chip data was obtained
for tumor and healthy tissue samples (n = 494) from The Cancer

Genome Atlas (TCGA) Program as compiled by the University of
California Santa Cruz Xena Functional Genomics Explorer
(Goldman et al., 2020) (https://xenabrowser.net/datapages/).
Infinium HumanMethylation450 Bead Chip data for CD4+ T cell
(n = 11), CD8+ T cell (n = 14), Alzheimer’s disease and control brain
(n = 190), lung (n = 6), liver (n = 26), and skin methylation data (n =
18) from healthy and diseased individuals were accessed from the
NIH Gene Expression Omnibus (GSE130029, GSE130030,
GSE66351, GSE51077, GSE61258, GSE115797, respectively).

Sperm Infinium HumanMethylation450 Bead Chip data from
fertile sperm donors as well as patients undergoing in vitro
fertilization (IVF) (n = 166) was used from a previously
published single-site study by Aston, et al. (Aston et al., 2015) as
well the sperm InfiniumMethylationEPIC Array data from a clinical
multi-site study of patients being seen by physicians for fertility care
(n = 1,287) as published by Jenkins et al. (Jenkins et al., 2021).

It is important to note that data in this study were only ever
analyzed, visualized, and compared to data run on the sample
microarray platform; i.e., samples run on the Infinium
HumanMethylation450 Bead Chip were only compared to and
visualized with other samples run on the Infinium
HumanMethylation450 Bead Chip.

Sample collection

Semen samples were procured from the University of Utah
Andrology department from consented patients undergoing fertility
care (n = 63), as well as two independent fertile sperm donor cohorts
(n = 64). Semen samples from consented patients seeking fertility
care were also procured from the Urology Department at Baylor
College of Medicine (n = 49).

Sample preparation

For all semen samples, somatic cell lysis, sperm isolation, DNA
extraction, and bisulfite conversion were performed as described by
Aston, et al. (Aston et al., 2015). The bisulfite converted sperm DNA
was hybridized to Illumina Infinium HumanMethylationEPIC
microarrays and ran as recommended by the manufacturer
(Illumina) at Infinity BiologiX.

Data preprocessing

Figure 1 contains a flow chart of data processing and statistical
analysis. The raw methylation microarray data available (data from
the sperm, neuron, glia, skin, CD4+ T cell, and CD8+ T cell samples)
were preprocessed using the minfi R package (Aryee et al., 2014)
using SWAN normalization to produce beta and m-values for each
cytosine-guanine dinucleotide (CpG). Beta values are described as
[methylated probe intensity/(methylated + unmethylated probe
intensity + 100)] and range from 0-1 with values around 0 being
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unmethylated and values around 1 being methylated. M-values are
described as (log (methylated probe intensity/unmethylated probe
intensity) and are useful measures of methylation to prevent bias
arising from heteroscedasticity seen when analyzing beta values (Du
et al., 2010) (Supplemental Figure S1).

Raw data for the TCGA datasets as assembled on the UCSC
Xena platform and the lung and liver datasets (GSE51077 and
GSE61258, respectively) were not available, so the available beta
values were used. These beta values were logit-transformed to obtain
the m-values for these samples.

Statistical analysis

We define a given gene promoter as the genomic region one
kilobase upstream and one kilobase downstream from the
transcription start site of a given gene. A gene promoter needed
to contain five or more methylation array probes to be used in any
downstream analysis. Gene methylation promoter variability (or
“promoter variability”) is defined as the standard deviation of the
m-values of the methylation array probes present in a defined
promoter region (Supplementary Figure S2).

Hierarchical clustering was performed on all promoter
variability values of samples from various tissue types using the
R software package “pheatmap” (R version 4.0.3) with default
parameters. In cases where more than 20 samples existed for a
given tissue, 20 samples were randomly selected for inclusion in the
clustering analysis to give a more uniform number of samples per
tissue type. Principal component analyses were performed on all
promoter variability values using the “sklearn” library in Python
(Python version 3.7.3).

We found the most epigenetically stable promoters of a given
tissue type by identifying the promoters with the lowest levels of
variability in healthy samples of that tissue type. We did this by first

calculating a stability threshold for each promoter in a given tissue.
A promoter stability threshold represents the highest level of
variability we expect to see in a given promoter of a healthy
sample of a given tissue (Supplementary Figure S2). Then, the
promoters were rank ordered by the stability threshold values in
ascending order. For the analyses comparing promoters across tissue
types (Figures 2B, C, F, G), we defined the most stable promoters as
the top first percentile of promoters with the lowest stability
thresholds in healthy samples of the given tissue. The most stable
promoters used for the analyses on sperm from men suffering from
infertility were defined as the top 10th percentile of promoters with
the lowest stability thresholds in fertile sperm donors.

Sperm analyses were performed by finding the most stable
promoters in a cohort of fertile sperm donors and counting the
number of dysregulated promoters in each sample. We defined a
dysregulated promoter as a promoter that fell above the
corresponding variability threshold. Samples with the lowest
number of dysregulated promoters are most similar to healthy
controls.

Statistical differences in the pregnancy and live birth rates of
men undergoing intrauterine insemination (IUI) and in vitro
fertilization (IVF) with the least and greatest number of
dysregulated promoters were calculated with two-sided t-tests.

Tissue-specific gene ontology enrichment analyses were
performed by running the PANTHER Overrepresentation Test
(http://pantherdb.org/webservices/go/overrep.jsp) on the gene
names of the first percentile of most stable promoters in a given
tissue. Each test was run using a background gene set that consisted
of all genes with promoters containing five or more methylation
array probes.

The differentially methylated region (DMR) analysis between
sperm of fertile sperm donors and patients with unsuccessful IUI
treatments was performed using the Methylation Array Scanner
application from the USeq collection of bioinformatics software

FIGURE 1
Data processing and statistical analysis workflow. Processing and analysis of Illumina’s InfiniumHumanMethylation450 and HumanMethylationEPIC
array data from multiple tissue types to derive promoter variability and promoter stability thresholds and analyze their relationships among tissue types
and between healthy and diseased tissues.
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(https://github.com/HuntsmanCancerInstitute/USeq). This analysis
was performed on the beta values of the sperm samples from these
two sample cohorts and uses a sliding window approach to identify
DMRs. A cutoff was created by multiplying the average beta value of
the fertile sperm donors at the specified DMR by two standard
deviations.

Results

Tissues have unique methylation variability
signatures

Using microarray DNA methylation data, we explored the
differences in gene promoter methylation variability of various
healthy tissues. Unsupervised clustering of all gene promoter
variability values showed tissue specificity and also revealed
similarities among related tissues (Figure 2A). For example,
gastrointestinal tissue samples such as those from the esophagus,
stomach, colon and rectum, clustered closely together. We likewise
saw clustering of samples associated with the immune system (CD4+

T cells, CD8+ T cells, thymus), female reproduction (endometrium,
cervix), and brain (glia, neurons).

Lower promoter variability seen at tissue-
specific biological pathways

We sought to identify how promoter variability differs among
various tissue types. We identified the most stable promoters in
sperm and assessed the average methylation variability values for
these promoters in many samples across several tissue types as seen
in Figure 2B. At promoters indicated as most stable in the male
germline, sperm samples have significantly lower mean variability
values than other tissue samples. Gene ontology analysis of these
sperm promoters show significant enrichment for sperm-related
biological processes (Figure 2F). We also looked at the mean of the
promoter variability values of the known sperm-related genes
protamine 1 (PRM1), protamine 2 (PRM2), and protamine 3
(PRM3) which are genes expressed exclusively in sperm and
replace the majority of histones to achieve extreme nuclear
compaction in this specialized cell (Balhorn, 2007). As expected,

FIGURE 2
Tissues have unique patterns of gene methylation promoter variability. (A) Hierarchical clustering of promoter variability of 18 sample types
representing five biological systems. (B,C) Average promoter variability of 6 distinct cell types in the most stable promoters (top first percentile) in sperm
and neurons, respectively. One dot represents one sample, and boxplots are overlaid to show the distribution of average promoter variability of each
tissue. All p-values comparing methylation variance between sperm and neuron to other tissues types were ≤5.16E-14. (D) Average promoter
variability in the 6 cell types of three sperm-specific protamine promoters. (E) Promoter variability from one neuron-specific apoptosis promoter in the
6 cell types. All p-values for panels D and E when comparing sperm and neurons to other cell types were ≤9.99E-17. (F,G) Gene ontology enrichment of
the most stable promoters for sperm and neurons, respectively.
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sperm samples displayed significantly less variability in these
promoters than other tissues (Figure 2D). These same analyses
were performed for the most stable promoters in neurons
(Figures 2C, E) and a known neuron-specific gene, CASP8
(Figure 2G) with similar results. Supplementary Figure S4
contains the results of these same analyses performed for several
other tissue types. It is important to note that while the most stable
promoters in a given tissue are generally characterized by very low
promoter variability in samples from the given tissue, these
promoters all have varying degrees of absolute methylation
(hypo, mid, or hyper-methylation), a feature missed by
traditional differentially methylated region (DMR) analyses
(Supplementary Figure S5). It is also conceivable that this
method can help overcome technical biases inherent to
methylation microarrays such as batch effects.

It has been shown previously that a clear relationship exists
between gene promoter CpG density and absolute methylation state.
More specifically, the majority of gene promoters are CpG-rich and
in turn are typically unmethylated. However, the minority of gene
promoters that are CpG-poor tend to have a wider range of
methylation states (Bestor et al., 2014). When analyzing

sperm-specific and neuron-specific promoters in sperm and
neuron samples, we see this same relationship. However, we do
not see a clear relationship between promoter CpG density and
promoter methylation variability in these same gene promoters
(Supplementary Figure S6).

Methylation variability can differentiate
between healthy and diseased tissue

In addition to distinguishing between tissue types, analysis of
promoter methylation variability can enable the differentiation of
diseased and healthy tissue samples of the same tissue type. One
notable example is the ability to distinguish between tumor and
healthy tissue based on promoter variability signatures. Figure 3A
depicts the first two principal components of promoter variability
values for colon primary tumor tissue and healthy colon tissue. The
healthy colon tissue samples appear to be tightly clustered together,
whereas the tumor samples are widely distributed throughout the plot.
Figure 3B shows the difference in promoter variability between
psoriatic skin lesions and adjacent healthy skin samples from the

FIGURE 3
Diseased tissue samples have unique patterns of gene methylation promoter variability compared to healthy tissue samples. (A) Principal
component analysis of promoter variability values from primary colon tumors and normal colon tissue. (B) Principal component analysis of promoter
variability values from matched psoriatic lesion and healthy skin samples. (C) Principal component analysis of promoter variability among neurons, glial
cells, and bulk cells from postmortem brains of individuals with Alzheimer’s disease as well as controls. The colors of themarkers on the plot (purple,
blue, brown) refer to the different cell types (glia cells, neuron cells, bulk cells) and the shape of the marker (circle, “x”) refer to the disease state of the
sample (Alzheimer’s disease, healthy control).
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same individuals. Figure 3C shows a principal component analysis of
neurons, glial cells, as well as bulk cell samples from postmortem brain
tissue of individuals with Alzheimer’s disease and controls. The plot
shows clear separation among the neurons, glial cells, and bulk cell
samples indicating a difference in promoter variability among different
cell types in the same tissue. There is also separation between control
and Alzheimer’s disease samples in neuron and glial cell samples but
such separation is not apparent among the bulk cell samples whichmay
suggest subtle differences in promoter variability might be more
apparent when samples are sorted for individual cell types.

Methylation variability of sperm can identify
a subset of men with male factor infertility

We performed analyses on over 1,500 sperm samples from fertile
sperm donors as well as men being treated for male factor infertility.
Figure 4A shows there was a significantly higher number of dysregulated
promoters in men being treated for male factor infertility compared to
fertile sperm donors. Supplementary Figure S9 shows the number of
dysregulated promoters inmultiple cohorts of sperm samples, including
the spermdonor cohort used to find themost stable promoters in sperm
as well as the stability thresholds. To give a visual explanation of
promoter methylation, Figure 4B depicts the promoter variability
values (red dots) of the most stable sperm promoters and the
corresponding stability thresholds for these promoters (black line) in

an individual fertile sperm donor sample as well as an individual patient
being treated for male factor infertility (Figure 4C). It is clear that the
patient being treated for male factor infertility has many more
dysregulated promoters than the fertile sperm donor. This suggests
that some male factor infertility may be more related to a global shift in
methylation variability at promoters important for sperm cells rather
than single nucleotide changes or epimutations.

To interrogate the clinical utility of this analysis, we then looked
at the relationship between dysregulated promoters in sperm
compared to pregnancy and live birth rates. We analyzed the
sperm-specific epigenetics of the male partner in 1,287 couples
being seen by a physician for infertility care. Table 1A shows
that in men from couples undergoing intrauterine insemination
(IUI), those with least number of dysregulated promoters (lowest
10th percentile of patients) had significantly higher pregnancy and
live birth rates than men with the greatest number of dysregulated
promoters (top 10th percentile of patients). However, we saw no
difference in pregnancy and live birth rates of couples undergoing
in vitro fertilization (IVF) where the male partner had either the least
or greatest number of dysregulated promoters, suggesting IVF
should be the preferred fertility treatment option for men with
high levels of methylation dysregulation.

To compare this new method of methylation analysis to current
methods, we performed a differentially methylated region analysis
between sperm from fertile men and men from couples failing to
conceive with IUI. The largest DMR found was in the gene

FIGURE 4
Dysregulated promoters are enriched in men seeking fertility care compared to fertile controls. (A) Dysregulated promoters in samples from five
independent studies. The most stable sperm promoters and corresponding stability thresholds were calculated from a cohort of fertile sperm donor
samples. Circle colors represent the following: blue—Jenkins et al. (Jenkins et al., 2021), green—Baylor College ofMedicine, purple—fertile sperm donors,
red and orange - University of Utah Andrology two independent collections. (B) Promoter variability at the most stable sperm promoters in a single
fertile donor sperm sample (red dots). The stability threshold for these promoters is shown in black. A red dot above the black line indicates a dysregulated
promoter. (C) Same analysis as in (B) but for a single patient being treated for male factor infertility.
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SNORD115 (chr15: 25425615-25494878, GRCh37) with the cohort
of fertile men having lower mean methylation levels of CpGs in this
DMR than men from couples failing IUI (Supplementary Figure
S10). We then created a cutoff two standard deviations above the
average methylation value of the fertile cohort at this DMR. Men
with a mean methylation value above this cutoff at this DMR would
be predicted to be less fertile than men with a mean methylation
value below the cutoff. Then, we examined the methylation of this
DMR in the separate cohort of 1,287 couples seeking infertility care.
In this large cohort, we saw no difference in the pregnancy and live
birth rates between couples receiving IUI regardless of the
methylation state of this DMR in SNORD115 in the male
partner’s sperm (Table 2).

Discussion

Here, we introduce a novel method to assess complex disease. This
method analyzes gene promoter DNA methylation variability to
identify highly regulated genes in multiple tissue types and how
these can be impacted in various disease states. Hierarchical
clustering of gene promoter variability from many tissues
demonstrates how unique these patterns are in different tissues and
how these patterns remain largely consistent in related, but distinct
tissues. For example, numerous tissues from the gastrointestinal tract
cluster together as do tissues important to the function of the immune
system.

We also found that the most stable promoters in a given tissue
have significantly lower methylation variability than the same
promoters in other tissues highlighting the importance of unique
genes and gene networks to any given tissue’s function. Importantly,
when assessing DNA methylation variability within the same tissue
type, we were also able to visualize differences between healthy and
diseased tissues such as in cancer, psoriasis, and Alzheimer’s disease.

To highlight the potential clinical impact of the assessment of
promoter level DNA methylation variability, we examined the
pattern’s utility in an assessment of male factor infertility and
found that the sperm of men being seen by a physician for
infertility had much higher levels of dysregulated promoters. In
addition, couples undergoing IUI treatments where the man had a
greater number of dysregulated promoters had significantly lower
pregnancy and live birth rates compared to couples undergoing IUI
treatments where the male partner had a low number of
dysregulated promoters. However, this stark difference in
pregnancy and live birth rates was not seen between couples
receiving IVF. This finding has great clinical significance because
it suggests that if a man is struggling with infertility and has a high
level of promoter dysregulation, he has much better odds at having a
child with his partner after undergoing IVF than if they simply went
through multiple rounds of IUI. We do note that men from couples
who were unable to conceive a child through IUI had slightly lower
total motile sperm counts than men who conceived a child through
IUI, however the difference was small and not statistically significant
(Supplemental Tables 5A, 5C).

TABLE 1 Assisted reproductive technology outcomes and gene promoter variability in sperm. A) Pregnancy and live birth rates from couples undergoing
intrauterine insemination (IUI) cycles (cumulative average of 2-3 cycles across the patient population) where the male partner had either among the least or the
greatest number of dysregulated promoters in sperm. B) Pregnancy and live birth rates from couples undergoing in vitro fertilization (IVF) cycles (cumulative
average of 2-3 cycles across the patient population) where the male partner had either among the least or the greatest number of dysregulated promoters in
sperm.

A

Patient cohort Pregnancy rate from IUI Live birth rate from IUI

Male partners (N = 54) with among least number of dysregulated promoters (bottom 10th percentile) 48.1% 40.7%

Male partners (N = 50) with among greatest number of dysregulated promoters (top 10th percentile) 28.0% 18.0%

p = 0.035 p = 0.011

B

Patient cohort Pregnancy rate from IVF Live birth rate from IVF

Male partners (N = 36) with among least number of dysregulated promoters (bottom 10th percentile) 75.0% 61.1%

Male partners (N = 24) with among greatest number of dysregulated promoters (top 10th percentile) 75.0% 62.5%

p = 1.00 p = 0.915

TABLE 2 Intrauterine insemination (IUI) outcomes and methylation state of IUI sperm DMR. Pregnancy and live birth rates from couples undergoing intrauterine
insemination (IUI) cycles (cumulative average of 2-3 cycles across the patient population) where the male partner had a methylation state below or above the
methylation cutoff of the SNORD115 DMR in sperm.

Patient cohort Pregnancy rate from IUI Live birth rate from IUI

Methylation of male partner’s (N = 467) sperm sample was below DMR cutoff 45.0% 32.5%

Methylation of male partner’s (N = 61) sperm sample was above DMR cutoff 47.5% 36.1%

p = 0.705 p = 0.583
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Importantly, our additional analysis of a more conventional
approach to identify a clinically actionable diagnostic based on
targeted differential methylation failed to result in significant findings
when applied to a large independent cohort. In contrast, our approach to
identify methylation variability across genes important in sperm were
indicative of clinically meaningful phenotypes. We believe that assessing
DNA methylation in this way will offer improved predictive power for
many disease states because it is focused on more widespread alterations
to gene regulation as opposed to single site alterations.

Of additional value in our assessment of this approach and its
translational capacity is the ability to perform these analyses at an
individual level. Specifically, because we are assessing intra-
promoter variability within a single individual, we are able to
reliably assess variability in a single individual with limited
concerns of batch effects which would require normalization.
While this has yet to be fully vetted in the current work, it does
appear that these analyses, if proven to have high predictive power,
could be translated to a diagnostic tool.

While we did perform one of the largest analyses to date in terms of
tissue types and sample numbers, many questions still remain to be
answered. Among the most critical is the utility of this analysis in many
different tissues and disease states. Because we were only able to perform
a deep analysis in sperm due to the large numbers of samples, similar
work needs to be done in other tissues to determine if this analysis can
provide clinically actionable information. Even in our sperm study, this
work needs to be replicated in independent cohorts to determine its
efficacy. One area of concern for this type of analysis is the fact that not all
tissues are able to be purified as easily as sperm. In fact, we found that
when looking at bulk tissues in the brain, we lost any ability to
discriminate between healthy and diseased tissue. Thus, future work
needs to focus on as pure of tissue as possible to yield meaningful results.
We also believe future work with single cell methylation detection
technologies will be useful to identify subpopulations of cells that give
rise to a disease phenotype. In addition, these types of future studies
could help identify and study possible mechanisms of disease.

These findings provide a novel means to define which genes each
cell and tissue type tightly regulate to ensure their unique phenotype
and function. Because these signals have potential utility in both the
basic understanding of tissue-specific epigenetic patterns and in the
clinical assessment of diseased tissues, as well as the prediction of
outcomes, this work provides important foundational findings upon
which tissue and disease-specific assessments can be constructed in the
future.Whilemuchwork remains to determine clinical actionability for
various applications, the results here are encouraging and may offer
another tool with which we can assess the health of tissues and,
importantly, predict the outcomes from various clinical interventions.
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