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Introduction: A copper-dependent cell death, cuproptosis, involves copper binding
with lipoylated tricarboxylic acid (TCA) cycle components. In cuproptosis, ferredoxin 1
(FDX1) and lipoylation act as key regulators. The mechanism of cuproptosis differs
from the current knowledge of cell death, which may invigorate investigations into
copper’s potential as a cancer treatment. An extremely dismal prognosis is associated
with gliomas, the most prevalent primary intracranial tumor. In patients with glioma,
conventional therapies, such as surgery and chemotherapy, have shown limited
improvement. A variety of cell death modes have been confirmed to be operative
in glioma oncogenesis and participate in the tumor microenvironment (TME),
implicated in glioma development and progression. In this study, we aimed to
explore whether cuproptosis influences glioma oncogenesis.

Methods: Gene expression profiles related to cuproptosis were comprehensively
evaluated by comparing adjacent tissues from glioma tissues in The Cancer
Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/) database. Gene
expression, prognostic, clinical, and pathological data of lower-grade gliomas
(LGG) and glioblastoma were retrieved from TCGA and Gene Expression Omnibus
(GEO) (https://www.ncbi.nlm.nih.gov/geo/) databases. The datasets were
managed by “Combat” algorithm to eliminate batch effects and then
combined. A consensus clustering algorithm based on the Partitioning Around
Medoid (PAM) algorithm was used to classified 725 patients with LGG and
glioblastoma multiforme (GBM) into two cuproptosis subtypes. According to
the differentially expressed genes in the two cuproptosis subtypes, 725 patients
were divided into 2 gene subtypes. Additionally, a scoring system that associated
with TME was constructed to predict patient survival and patient immunotherapy
outcomes. Furthermore, we constructed a prognostic CRG-score and nomogram
system to predict the prognosis of glioma patients. 95 tissue specimens from 83
glioma patients undergoing surgical treatment were collected, including adjacent
tissues. Using immunohistochemistry and RT-qPCR, we verified cuproptosis-
related genes expression and CRG-score predictive ability in these clinical
samples.
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Results: Our results revealed extensive regulatory mechanisms of cuproptosis-
related genes in the cell cycle, TME, clinicopathological characteristics, and
prognosis of glioma. We also developed a prognostic model based on
cuproptosis. Through the verifications of database and clinical samples, we
believe that cuproptosis affects the prognosis of glioma and potentially provides
novel glioma research approaches.

Conclusion: We suggest that cuproptosis has potential importance in treating
gliomas and could be utilized in new glioma research efforts.
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1 Introduction

Cuproptosis is a type of copper-dependent cell death that
occurs by the binding of copper to the lipoylated components of
the tricarboxylic acid (TCA) cycle. Lipoylated protein
aggregation and subsequent loss of iron-sulfur cluster proteins
cause cell death (Tang et al., 2022; Tsvetkov et al., 2022; Wang
et al., 2022). Cuproptosis differs from the currently known
mechanism of cell death and may invigorate research into
copper’s potential as a cancer treatment (Kahlson and Dixon,
2022). Ferredoxin 1 (FDX1) and lipoylation are considered key
regulators of cuproptosis. Six genes related to the lipoic acid
pathway (LIPT1, LIAS, and DLD) and protein targets of
lipoylation (DLAT, PDHA1, and PDHB) (Solmonson and
DeBerardinis, 2018; Tang et al., 2022; Wang et al., 2022) were
thought to be positive regulatory genes. In addition, pyruvate
dehydrogenase complex-related genes, including MTFS, GLS,
and CDKN2A, are considered negative regulators (Tsvetkov
et al., 2022). Protein lipoylation is known to occur on only
four enzymes: DBT, GCSH, DLST, and DLAT (Rowland et al.,
2018; Solmonson and DeBerardinis, 2018). It has been found that
knocking out either FDX1 or lipoylation-related enzymes can
relieve copper toxicity in cells. The copper importer SLC31A1
(CTR1), and exporters ATP7A (Aubert et al., 2020) and ATP7B
are related to the homeostatic mechanisms that maintain
intracellular copper concentrations. SLC31A1 plays a key role
in high-affinity Cu uptake (Lutsenko, 2010; Tang et al., 2022).
ATP7A and ATP7B are closely related to Cu-transportation
(Nevitt et al., 2012; Polishchuk et al., 2019). NFE2L2 and NL
RP3 affect copper metabolism in hepatocellular carcinoma and
Wilson’s disease (Dong et al., 2021; Ren et al., 2021). Thus, we
had reason to believe that the 19 genes mentioned above may be
cuproptosis-related genes and made them the basis of this study.

Glioma has a poor prognosis, and is the most prevalent
primary intracranial tumor (Ostrom et al., 2014). Glioma
patients have had limited prognosis improvement with
conventional treatment options, including surgery and
chemotherapy (Xu et al., 2020). Gliomas are classified into
4 grades in the 2021 World Health Organization (WHO)
classification of central nervous system (CNS) tumors, with
grades 1 and 2 being low-grade gliomas and grades 3 and
4 being high-grade gliomas (Louis et al., 2021). However,
grades 2 and 3 gliomas are named lower-grade gliomas (LGG)
according to the principles of common databases. In this study,
we used naming rules of databases and classified LGG as grade

2 and 3 glioma, HGG as grade 4 glioma. A variety of cell death
modes have been confirmed to be present in glioma and
participate in the tumor microenvironment (TME) (Cai et al.,
2022; Liu et al., 2022). Cuproptosis may play a role in glioma
development and progression of glioma.

In this study, we aimed to explore whether cuproptosis influences
glioma prognosis. We comprehensively evaluated the expression
profiles of cuproptosis-related genes. Using cuproptosis-related genes
from a survey of the literature, we were able to classify 725 patients with
LGG and glioblastomamultiforme (GBM) into two subtypes. And then
they were divided into 2 gene subtypes based on differentially expressed
genes. Finally, our scoring system predicts patient survival and identifies
the TME landscape of gliomas, enabling us to predict the treatment
outcome of patients.

2 Materials and methods

2.1 Data sources

Gene expression, prognostic, clinical, and pathological data of
gliomas were downloaded from The Cancer Genome Atlas (TCGA)
(gene expression: 701 glioma and 5 adjacent samples; clinical:
1,104 samples; mutation: 984 samples) and Gene Expression
Omnibus (GEO) (50 glioma samples) databases. The datasets
were managed by “Combat” algorithm to eliminate batch effects
and then combined.

2.2 Construction and analysis of cuproptosis
subtypes

A consensus clustering algorithm based on Partitioning Around
Medoid (PAM) algorithm was be used to categorize patients into
cuproptosis subtypes. An analysis of patients’ clinicopathological
characteristics and prognosis was carried out in order to determine
the clinical features of the two subtypes. Cohort information
included age, sex, glioma grade, and cuproptosis-related gene
expression. We plotted the Kaplan-Meier curve with “survival”
and “survminer” packages. Using “pheatmap” package, we
generated a heatmap which would intuitively show the patient
characteristics. GSVA and ssGSEA analyses revealed the TME
differences between the two subtypes. ESTIMATE algorithm was
used to calculate the immune and stromal scores of the cohort
patients.
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2.3 Differentially expressed genes
identification and analysis

We used “limma” package to analyze differentially expressed
genes between the two cuproptosis subtypes, with a standard of
logFCfiter = 0.585 and adjusted p-value fliter = 0.05. To determine
the potential functions of these genes, we used “clusterProfiler” and
“enrichplot” to perform functional annotation of GO and analysis of
KEGG pathway enrichment.

2.4 Construction of the cuproptosis-related
genes score (CRG-score)

“Caret” package was used to randomly assigned the cohort
patients to a training and test group (ratio of 1:1). We then
analyzed the differentially expressed genes using LASSO and
multivariate Cox analyses to select prognostic genes related to the
gene subtypes. “Glmnet” package was used to avoid over-fitting.

CRG − score � ∑ i coef i pgene i expression( )

We calculated the CRG-score for each patient. Patients were divided
into a low- and high-risk group based on the median value of CRG-
score.

2.5 Validation of the prognostic CRG-score

The predictive capacity of the CRG-score was verified withmultiple
R packages. We used “ggpubr” package to identify the risk score
difference between cuproptosis subtypes and gene subtypes. Survival
analysis was performed by “survival” and “survminer” packages. The
receiver operating characteristic (ROC) analysis was based on
“timeROC” package. We also used the “pheatmap” package to
reveal CRG-score model genes expression in the low- and high-risk
group. Sankey diagram was based on “ggplot2” and “ggalluvial”
packages, which showed an entire network of the subtypes, risk of
CRG-score, and survival status.

2.6 TME, mutation and cancer stem cell
analysis

Using ESTIMATE algorithm, stromal and immune scores of the
low- and high-risk groups were evaluated. Additionally, we used
CIBERSORT algorithm to calculate human immune-cell subsets of
each patient in the two risk groups. To analyze mutation and tumor
mutation burden (TMB), we used “maftools” and “ggpubr”
packages. Curve of cancer stem cell analysis was made by
“ggpubr,” “ggplot2” and “ggExtra” packages.

2.7 Establishment of a cuproptosis-related
nomogram system

A nomogram was established by the “rms,” “regplot” and
“survival” packages. The patients’ age, sex, glioma grade, and risk

cluster were given a specific score, and the total score of each
patient was the sum of these various factor scores. Based on a
patient’s total score, the nomogram predicted 1-, 3- and 5-year
survival accurately, which has been evaluated by calibration
plots.

2.8 Clinical tissue samples

Ninety five glioma tissue samples were donated by 83 patients who
had undergone surgery at Xiangya Hospital, including 27 grade 2,
6 grade 3, 50 grade 4, and 12 adjacent tissues. This study was approved
by the Ethics Committee of Xiangya Hospital of Central South
University.

2.9 RT-qPCR and
immunohistochemistry (IHC)

TRIzol (Invitrogen, 15596018) was used to extract RNA from
glioma tissue after grinding in liquid nitrogen. Then we converted
RNA to cDNA by the RevertAid RT Reverse Transcription Kit
(Thermo Scientific, K1691). The RT-qPCR data were analysed by
the 2−ΔΔCT strategy and values were relative to the housekeeping gene
Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH). A
complete list of the primers used is provided in in
Supplementary Table S1. The 95 glioma tissue samples were
manufactured using a tissue microarray. The following
antibodies were used for IHC: FDX1 (Proteintech, 12592-1-
AP), PDHA1 (ABclonal, A1895), and DLST (ABclonal,
A13297). The grading rules as follows: The intensity was
scored as follows: 0, negative; 1, weak; 2, moderate; and 3,
strong. The frequency of positive cells was defined as follows:
0, less than5%; 1, 5%–25%; 2, 26%–50%; 3, 51%–75%; and 4,
greater than 75%. The final grade of staining was determined by
multiplying the score for staining intensity with the score for the
frequency of positive cells (values, 0–12). This grading rules can
reduce the grading bias caused by different cell density.

2.10 Statistical analyses

We used Student’s t-test, Log-rank test, Cox regression model,
GSVA analysis, ssGSEA analysis, PCA analysis, Least absolute
shrinkage and selection operator (LASSO), multivariate Cox analysis,
Spearman test andWilcoxon test. All the statistical analyses were based
on R (version 4.1.0). And the cutoffs for the Kaplan-meiers in this study
was found by using the R package “survminer”.

3 Result

3.1 Genetic and transcriptional alterations of
cuproptosis-related genes in glioma

19 cuproptosis-related genes were identified based on previous
research. We analyzed the transcriptome profiling data of TCGA-
GBM and TCGA-LGG cohorts to identify differences in mRNA
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expression between glioma and adjacent tissues. The expression of
GLS (p < 0.001), LIPT1, FDX1, SLC31A1 (p < 0.01),DLST,CDKN2A,
PDHA1, ATP7A, ATP7B, and NFE2L2 (p < 0.05) was different

between glioma and adjacent tissues (Figure 1A). A summary
analysis of simple nucleotide variations in the GBM and LGG
cohorts showed that of the 984 samples, 45 (4.57%) had

FIGURE 1
Genetic alterations of cuproptosis-related genes in glioma. (A) Expression of 19 cuproptosis-related genes in glioma and adjacent tissue. (B)
Mutations of 19 cuproptosis-related genes in a cohort of 984 glioma patients’ samples. (C) CNVs frequencies of cuproptosis-related genes. (D) Location
of cuproptosis-related genes on chromosomes and their CNV alterations. (*p < 0.05; **p < 0.01; ***p < 0.001).
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mutations in the cuproptosis-related genes. Only NLPR3, ATP3A,
CDKN2A, ATP3B, MTF1, and GLS had an approximately 1%
mutation frequency (Figure 1B).

Next, we analyzed copy number variations (CNV) and
discovered that all 19 cuproptosis-related genes had CNVs.
Among these genes, CDKN2A, ATP7B, and DLST had

FIGURE 2
(A) 19 cuproptosis-related genes’ Kaplan-Meier analysis based on TCGA-LGG and TCGA-GBM cohorts. (B) Interactions, prognosis and regulator
connections among cuproptosis-related genes in glioma.
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widespread CNV loss, especially CDKN2A, which had a CNV
loss frequency of >40% (Figure 1C). The comparison of
19 cuproptosis-related genes CNV with all CNV was showed

in Supplementary Table S2. Figure 1D shows location of
19 cuproptosis-related genes on the chromosomes and their
CNV alterations. However, the CNV changes do not

FIGURE 3
Analysis of cuproptosis subtypes. (A) Consensus clustering algorithm heatmap with k = 2. (B) Kaplan-Meier analysis of 2 subtypes. (C) PCA analysis.
(D)Heatmap based on cuproptosis-related genes expression and pathology characteristics between 2 subtypes. (E)GSVA analysis of cuproptosis-related
genes subtypes with red represent activated pathway and blue inhibited. (F) ssGSEA analysis of these 2 subtypes. (G) TME score of 2 subtypes. (*p < 0.05;
**p < 0.01; ***p < 0.001.)
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adequately explain differences in mRNA expression between the
adjacent and glioma tissues. This suggests that not only CNVs
affecting the expression of cuproptosis-related genes, but other
factors, such as DNA methylation and transcription, may affect
the mRNA expression of cuproptosis-related genes. There is an
association between CDKN2A mutations and the development
and recurrence of gliomas (Varn et al., 2022). It could be an
important indicator for molecular diagnosis, such as IDH
mutation or MGMT methylation.

3.2 Prognostic related cuproptosis-related
genes and identification of cuproptosis
subtypes in glioma

We collected 3 eligible glioma cohorts (TCGA-LGG, TCGA-
GBM, and GSE43378) to further study the expression patterns of
cuproptosis-related genes that partake in tumorigenesis. A total
of 725 patients were integrated from the 3 cohorts for further
analysis (31 samples were removed because of the lack of
complete clinical or gene expression information). Detailed
patient information is presented in Supplementary Table S3.
“Survival” and “survminer” packages were used to process the
clinical data. The results of Kaplan-Meier analysis revealed the
prognosis of cuproptosis-related genes, with p < 0.05. 14 of the
19 genes were thought to be associated with the prognosis of
gliomas. Higher expression of ATP7A, CDKN2A, DLAT, DLD,
DLST, FDX1, GLS, LIPT1, NFE2L2, NLRP3, and SLC31A1
predicted poorer survival. ATP7B, LIAS, and PDHA1 showed
the opposite trend (Figure 2A). The Cox regression models of
19 cuproptosis-related genes were constructed to improve the
survival analyses (Supplementary Table S4). The cuproptosis-
related gene interactions, prognosis, and regulator connections
are comprehensively illustrated in the cuproptosis network
(Figure 2B).

With the aim of examining the role of cuproptosis-related
genes in glioma, a consensus clustering algorithm based on the
PAM algorithm was used to categorize patients with glioma by
analyzing their cuproptosis-related gene expression conditions.
According to the algorithm results, it appears that when k = 2 the
glioma cohort was optimally sorting into subtypes A and B
(Figure 3A). The other consensus matrix, where k is valued
from 3 to 9 were showed in Supplementary Figure S1. Subtype A
included 333 patients, and subtype B included 392 patients. We
used Kaplan-Meier analysis to compare the 2 subtypes, and the
curves showed that compared to patients with subtype B, those
with subtype A had a better survival probability (p < 0.001,
Figure 3B). PCA analysis also revealed that there were
differences between the 2 subtypes on cuproptosis-related
gene expression profiles (Figure 3C). The heatmap showed
that both cuproptosis-related gene expression and
pathological characteristics are clearly different in the
2 subtypes (Figure 3D). More patients with grade 4 glioma
were classified as subtype B, whereas more patients with
grade 2 glioma were classified as subtype A. The heatmap also
showed that most of cuproptosis-related genes were highly
expressed in subtype B, while LIAS, ATP7B, PDHA1, and

CDKN2A were expressed higher in subtype A. Also subtype B
had more patients aged >65. These characteristics may explain
the prognostic differences between the 2 cuproptosis subtypes.

GSVA analysis was used to explore the TME differences between
the 2 cuproptosis subtypes (Figure 3E). Subtype A converged on
lipid metabolism, particularly linoleic acid and retinol. Subtype B
converged on pathways associated with the metabolism and damage
repair of hereditary substances, including mismatch repair,
homologous recombination, and nucleotide excision repair
significantly. In addition, cell cycle and protein metabolism
pathways are worthy of attention in subtype B. GSVA analysis
revealed that the cell cycle and metabolism may cause different
prognoses between the 2 cuproptosis subtypes.

In tumorigenesis and development of glioma, tumor
immune microenvironment plays a critical part.
Understanding how cuproptosis relates to the immune
landscape in the tumor microenvironment may provide new
avenues to treat cancer (Klemm et al., 2020). Therefore, we used
ssGSEA to determine whether there was an immune infiltration
difference between the cuproptosis subtypes (Figure 3F). A
significant difference was found in the level of immune
infiltration based on the analysis. Subtype B showed a higher
infiltration level, especially in activated CD4+ and CD8+ T-cell,
gamma delta T-cell, natural killer (NK) T-cell, and NK cells. We
then used “estimate” package to compute the TME score of two
subtypes (Figure 3G). In contrast to patients with Subtype A,
those with Subtype B got higher stromal, immune, and
ESTIMATE scores (p0.001). This suggests that the TME of
patients with Subtype B has a higher proportion of stromal cells
or immune cells.

The results showed an association between cuproptosis-related
genes expression and glioma prognosis. We constructed 2 subtypes
based on cuproptosis. The analysis revealed that the cell cycle, tumor
metabolism, and immune infiltration may be related to cuproptosis
in glioma.

3.3 Identification of gene subtypes based on
differentially expressed genes in cuproptosis
subtypes

We used the “limma” package to analyze differentially
expressed genes in the 2 cuproptosis subtypes, with
logFCfliter = 0.585 and adjusted p-value fliter = 0.05. We
identified 2,486 differentially expressed genes, and we believe
that these genes are related to potential biological differences
between the cuproptosis subtypes. A volcano plot showed all
differentially expressed genes and highlighted the cuproptosis-
related genes (Supplementary Figure S2). Functional enrichment
analysis was be conducted by a gene ontology database
(Figure 4A). And those cuproptosis subtype-related genes were
enriched for cytokine production, cell cycle, cell adhesion, and
extracellular environment. An analysis of KEGG revealed the
enrichment of proteoglycans in cancer, cell cycle, senescence,
cell adhesion, and p53 signaling (Figure 4B). We could find that
GO and KEGG are similar in the following ways: cell cycle, cell
adhesion and extracellular environment (Figures 4A, B). We also
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believed that GO and KEGG confirmed GSVA results (Figure 3E),
which shows different pathways between two cuproptosis subtypes
such as KEGG_CELL_CYCLE, KEGG_PROTEIN_EXPORT and
KEGG_MISMATCH_REPAIR. In addition, it was revealed that
cuproptosis subtype-related genes may influence glioma cell
characteristics and TME, and may contribute to glioma
oncogenesis. To learn more about the significance of
cuproptosis subtype-related genes in glioma prognosis, we used
a consensus clustering algorithm based on the PAM algorithm.
The 725 cohort patients were divided into 2 new subtypes: gene
subtypes A and B with 459 and 266 patients, respectively
(Figure 4C; Supplementary Figure S2). Kaplan-Meier analysis
illustrated a significantly difference in prognosis between the

2 gene subtypes (p < 0.001, Figure 4D). The heatmap of gene
subtypes showed that most elderly patients and patients with grade
4 glioma were classified as gene subtype B, explaining the
prognostic differences in cuproptosis gene subtypes (Figure 4E).
Significant differences were also found in cuproptosis-related gene
expression between the 2 cuproptosis gene subtypes (Figure 4F).

3.4 Construction and validation of the
prognostic CRG-score

The CRG-score was constructed using differentially expressed
genes among the gene subtypes. Using "caret" package, we randomly

FIGURE 4
Identification of the gene subtypes. (A,B) KEGG and GO enrichment analysis of cuproptosis subtype related genes. (C) Consensus clustering
algorithm heatmapwith k = 2 decided on 2 gene subtypes. (D) Kaplan-Meier analysis of 2 gene subtypes. (E)Heatmap of gene subtypes. (F)Differences of
cuproptosis-related genes expression between 2 gene subtypes. (*p < 0.05; **p < 0.01; ***p < 0.001).
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distributed the cohort patients (4 patients were excluded due to
incomplete survival and gene expression data) into training (n =
360) and test (n = 361) groups. Our next step was to select the

appropriate prognostic genes related to the gene subtypes through
LASSO analysis and multivariate Cox analysis. Following result of the
former with the minimum partial likelihood deviance, we kept 34 genes

FIGURE 5
(A,B) Differences of CRG-score between 2 cuproptosis-related genes subtypes and gene subtypes. (C,D) Relationships between CRG-score and
patients’ survival status. (E) The heatmap of the CRG-score related genes expressions and CRG-score. (F) The PCA analysis of low-risk and high-risk
groups. (G) Kaplan-Meier analysis of low-risk and high-risk groups. (H) Expression of cuproptosis-related genes in low-risk and high-risk groups. (I) The
entirety network of the subtypes, risk of CRG-score and survival status based on the corhorts. (J) The ROC curve showed 1-, 3-, and 5-year AUC
values. (*p < 0.05; **p < 0.01; ***p < 0.001).
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(Supplementary Figures S3A, B). And result of the latter revealed
11 genes, including 2 low-risk genes (NOG and MKX) and 9 high-
risk genes (NBPF8, TSKU, AURKB, SLC25A43, P2RY6, STEAP1, CDK4,

RARRES1, and KCNN4). The CRG-score was established as follows
using the multivariate Cox regression analysis (Supplementary Table
S5). The coefficients were kept 4 decimal places.

FIGURE 6
Evaluation of immune correlation and TME. (A) The connections between CRG-score and immune cells abundance. (B)Wilcoxon test of CRG-score
and immune cells abundance. (C) The connections between the genes in CRG-score model and abundance of immune cells. (D) The TME score of 2 risk
groups. (*p < 0.05; **p < 0.01; ***p < 0.001).
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CRG − score � −0.2885 *NOG( ) + −0.2045 *MKX( )
+ 0.2943 *NBPF8( ) + 0.3126*TSKU( )
+ 0.1503 *AURKB( ) + 0.2898 * SLC25A43( )
+ 0.2731 *P2RY6( ) + 0.1496 * STEAP1( )
+ 0.1252 *CDK4( ) + 0.1361 *RARRES1( )
+ 0.1671 *KCNN4( )

The CRG-score showed a significant difference between gene
subtypes (Figure 5A). Patients with subtype A generally had a lower
CRG-score, which means that these patients had a lower risk and
better prognosis. Similar differences were found between the
2 cuproptosis subtypes (Figure 5B). This indicates that the CRG-
score may have relevance to immune infiltration, metabolism, and
cell cycle.

Compared with the median risk score, patients with a lower CRG-
score were divided as the low-risk group (n = 356), and a higher score
were divided as the high-risk group (n = 365) (Figure 5C). According to
the distribution plot of the CRG-score risk, death rate from glioma rises
while survival times decrease withmounting risk score (Figure 5D). The
heatmap of the CRG-score-related gene expression in the 2 risk groups
was also consistent with the formula of the CRG-score (Figure 5E). PCA
analysis showed the dimensions of the low-risk and high-risk group
(Figure 5F). Kaplan-Meier analysis indicated that patients in the high-
risk group had a significantly poor prognosis (Figure 5G). The
expression of cuproptosis-related genes varied widely, which
confirmed the prospective connection between the CRG-score and
cuproptosis (Figure 5H). Sankey diagram illustrates entire network of
the subtypes, risk of CRG-score, and survival status (Figure 5I). The
ROC curve represented the survival rate of the CRG-score with area
under the curve (AUC) values of 0.874, 0.924, and 0.875, which contain
respectively the 1-, 3-, and 5- year (Figure 5J).

To validate the prognostic performance of the CRG-score, we
computed the CRG-score of an external validation group
(GSE83300) and the test group which was randomly chosen from
the cohort by “caret” packages. The distribution plot, heatmap,
Kaplan-Meier analysis, and ROC curve analysis are shown in
Supplementary Figures S5, S6. Consistent with the previous
results, the low-risk group had better prognosis. The AUC values
at the 1-, 3-, and 5-year were relatively high, which indicates that the
CRG-score had a satisfactory capability to predict the survival of
patients with glioma patients.

3.5 The validation of CRG-score related
genes’ expression by clinical samples

We used RT-qPCR to analyze the expression of 11 CRG-score-
related genes in gliomas and adjacent tissues (n = 5). The results are
shown in Supplementary Figure S7.

3.6 Evaluation of immune correlation and
TME between low- and high-risk groups

With the CIBERSORT algorithm, we further explored the potential
role of immune infiltration by evaluating the association between the
CRG-score and the abundance of immune cells. The CRG-score was

positively correlated with Tregs, CD8+ T-cell, follicular helper T-cell,
resting NK cells, neutrophils, M0, M1 and M2 macrophages. It
presented negative correlation with resting memory CD4+ T-cell,
plasma cells, activated NK cells, monocytes, activated mast cells, and
eosinophils (Figure 6A). And a vioplot used Wilcoxon test was more
significantly showed the relationship between immune infiltration and
CRG-score (Figure 6B). Further, the CRG-score model genes were also
correlated to the abundance of most immune cells significantly
(Figure 6C). Using “estimate” package, we evaluated the TME score
of low- and high-risk group (Figure 6D). A high CRG-score was
associated with a high stromal and immune score, which indicated a
close relationship between the CRG-score and TME.

3.7 Mutation and cancer stem cell analysis

The mutation data of the TCGA-LGG and GBM cohorts
revealed a higher TMB index in the high-risk group (Figure 7A).
Spearman correlation analysis indicated that the CRG-score was
positively correlated with TMB (Figure 7B). We analyzed the
somatic mutations in low- and high-risk group (Figures 7C, D).
Differences in classical genes related to oncogenesis and
development in gliomas, such as IDH1, TP53, ATRX, PTEN,
EGFR, CIC, and PIK3CA, were observed. The low-risk group had
higher mutation frequency of IDH1, TP53, ATRX, and CIC, in
contrast to the high-risk group that had higher mutation
frequency of PTEN, EGFR, MUC16, and PIK3CA. The somatic
mutation results were consistent with the existing researches
about prognosis of the gliomas (Rasheed et al., 1997; Cancer
Genome Atlas Research et al., 2015; Chen et al., 2019; Bjorkblom
et al., 2022; Ferrer, 2023). We also found that there was negative
correlation between the CRG-score and the cancer stem cell
index, indicating that gliomas with higher CRG-score had less
stem cell characteristics and a higher degree of cell differentiation
(Figure 7E).

3.8 Construction of a nomogram to predict
survival of glioma patients

Based on the CRG-score and clinicopathological characteristics,
1-, 3-, and 5-year survival could be predicted by a nomogram, which
was constructed by “rms” package (Figure 8A). The calibration
curve suggested that the nomogram was competent enough
(Figure 8B).

3.9 Validations by clinical samples

83 glioma tissue samples, including 27 grade 2 samples, 6 grade
3 samples, 50 grade 4 samples, and 12 adjacent tissues, were made
into tissue microarrays. FDX1, DLST and PDHA1 were chose for
immunohistochemistry. FDX1 and lipoylation act as key regulators
in cuproptosis. DLST is one of the enzymes where lipoylation occur.
PDHA1 was one of the protein targets of lipoylation. So, we believed
that these three indicators are representative in cuproptosis. The
expression of FDX1, DLST, and PDHA1 was detected and graded
(Supplementary Figure S8). The results showed a general difference
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between LGG, GBM, and adjacent tissues, which is consistent with
the database analysis (Figure 9).

4 Discussion

Glioma is the most common malignant intracranial tumor, and
has a poor prognosis. Most patients with GBM succumb to the

disease within a year while approximately 5% have a 5-year survival
rate (Ostrom et al., 2014). A large number of grade 2 and grade
3 glioma patients experienced tumor recurrence and increased
tumor grade after surgery and radiochemotherapy. Targeted
therapies, particularly genotype-targeted therapies are minimally
effective (Chen et al., 2017; Nicholson and Fine, 2021). With
increasing cell death research, multiple cell death models have
been associated with tumor occurrence and development

FIGURE 7
(A) Tumor mutation burden of low- and high-risk groups. (B) Spearman correlation analysis of CRG-score and tumor mutation burden. (C,D)
Somatic mutations differences of the low and high-risk groups. (E) The correlation between the CRG-score and the cancer stem cell index.
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(Mou et al., 2019; Hou et al., 2020). A close relationship between
cuproptosis and tumor development has been demonstrated since
its discovery (Kahlson and Dixon, 2022; Tsvetkov et al., 2022).
Because the combined effects of glioma pathogenesis and
development by multiple cuproptosis-related genes have not been
elaborated, we collected and comprehensively analyzed
19 cuproptosis-related genes to reveal the potential association
between cuproptosis and glioma. We found changes at the
genetic and transcriptomic levels of cuproptosis-related genes in
LGG and GBM. Immunohistochemistry of FDX1, DLST, and
PDHA1, which included 95 clinical tissues, verified genetic
differences at the protein level. Based on this discrepancy, we
identified two cuproptosis molecular subtypes in a cohort of
725 patients. Multiple analyses revealed notable differences
between the 2 subtypes. In contrast with patients with subtype A,
those with subtypes B had a lower survival probability. PCA also
supported the differences between subtypes A and B. GSVA, KEGG,
and GO analyses revealed that the 2 subtypes had differences in cell
cycle, metabolism, immune infiltration, and other TME
characteristics, which revealed the role of cuproptosis in glioma.
We further investigated 2 gene subtypes identified by differentially
expressed genes in cuproptosis subtypes. By analyzing the gene
subtypes, we constructed a CRG-score to predict patient prognosis.
We used the CRG-score to grade the patients in the cohort and
divided them into a low- and high-risk group. The low- and high-
risk group showed significant differences in prognosis, cuproptosis-
related gene expression, infiltrated immunocytes, mutations, and
other TME characteristics. To make the CRG-score more accurate
and operable, we constructed a nomogram additionally. This
cuproptosis-related model could explain the molecular

mechanism of glioma to a certain extent and provide potential
cuproptosis-related therapies for glioma.

Different from other types of tumor samples, in neurosurgery,
we will try to remove tumors and avoid damaging any normal brain
tissue. Collecting unnecessary normal brain tissue is ethical
transgression. Therefore, in most researches related to glioma,
adjacent tissues were used to replace normal brain tissues. In this
study, clinical samples of patients we used were all adjacent tissues or
glioma tissues needed to be surgically removed. And in TCGA
databases, the naming of samples follows a principle, which a “-11A”
tag represents normal tissue sample in all kinds of tumors. We could
not determine whether the samples in TCGA-LGG and GBM
database is normal or adjacent tissues. Although adjacent tissues
were unlikely to be completely unaffected cells and signaling
molecules from either immune response or the tumor itself, the
glioma researches using TCGA databases and clinical samples nearly
all used the same methods. So, we believed it did not affect our
analyses.

In our study, we also found that cuproptosis cluster B
overlapped heavily with the HGG and older patients could be
framed as a confounder of the analysis. In order to verify
whether age affected the cuproptosis subtypes. We counted the
number of the elderly patients (>65 years old) and non-elderly
patients in each glioma grade. We also counted their cuproptosis
subtypes. We used chi-square test to verify whether age was relevant
with cuproptosis subtypes in each glioma grade. And it showed no
significant difference in all three grades (grade 2: p = 0.952; grade 3:
p = 0.5626; grade 4: p = 0.7498). The age of the patients did not affect
the cuproptosis subtypes in each glioma grades. We believed that
TCGA-GBM database collected more elderly patients than

FIGURE 8
Construction of a nomogram. (A) Prediction of 1-, 3-, and 5-year survival, based on the CRG-score and clinicopathological characteristics by a
nomogram. The corresponding values of Gender, Grade, Age and Risk group were obtained by using their positions at the “Points” abscissa. A patient’s
total point is the sum of the four values. And by using the total points coordinate scale, we can get the prognosis prediction of the patient. (B) The
calibration curve of the nomogram. The more the prediction curve matches the grey curve, the better the prediction effect will be proved.
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non-elderly patients which led to a bias. The cluster B had more
GBM patients which reflected a false image of more elderly patients.

CDKN2A is considered a negative regulator of apoptosis
(Tsvetkov et al., 2022). CDKN2A is located at 9p21, which is also

known as multiple tumor suppressor l (MTS1) or p16INKa. CDKN2A
binds to and inactivates the CDK4 complex, leading to cell cycle
arrest (Liggett and Sidransky, 1998; Monzon et al., 1998). As a tumor
suppressor, CDKN2A can affect tumor development when silenced

FIGURE 9
Immunohistochemical results of tissue microarrays. (A–C) Immunohistochemistry of DLST, FDX1, PDHA1. (D–F) Statistical analysis of
immunohistochemical grades. (*p < 0.05; **p < 0.01; ***p < 0.001).
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by deletion, methylation, or other mechanisms (Clurman and
Groudine, 1998; Liggett and Sidransky, 1998). Many intracranial
tumors are associated with changes in CDKN2A (Ichimura et al.,
1996; Bostrom et al., 2001; Sievers et al., 2020). Multiple research
teams have analyzed CDKN2A as an independent predictor of poor
survival in both LGG and GBM (Lassaletta et al., 2017; Aoki et al.,
2018; Shirahata et al., 2018; Appay et al., 2019). In the 2021 WHO
classification of CNS tumors, CDKN2A/B homozygous deletion
became one of the bases of glioma classification, which
emphasized the importance of CDKN2A in the development of
glioma (Louis et al., 2021; Komori, 2022). In this study, we observed
differences in CDKN2A expression. We also discovered that
cuproptosis affects cell cycle-related pathways in glioma,
indicating that it may be involved in glioma development. These
findings confirmed a potential connection between cuproptosis and
glioma, which offers novel explanation in the progression of glioma.

Glioma development is often accompanied by immune-cell
infiltration. Due to the lack of better treatments for glioma,
studies on the immune microenvironment of glioma are
gradually increasing (Lim et al., 2018; Xun et al., 2021; Li et al.,
2022). Macrophages and monocytes are associated with glioma
prognosis (Pyonteck et al., 2013; Ochocka et al., 2021). In the
microenvironment of gliomas, monocytes may arrive as
antitumor cells and differentiate into protumor macrophages
(Ochocka et al., 2021). M0, M1 (antitumor), and M2 (protumor)
subpopulations of macrophages play a vital role in glioma prognosis
and immunotherapy (Komohara et al., 2008; Wei et al., 2020).
Transformation between macrophage subpopulations can change
glioma prognosis (Wang et al., 2022). Other immune cells, such as
Tregs, CD8+ T-cell, and NK cells, also affect the biological history of
glioma (Hussain et al., 2006). Activation of NK cells can enhance the
effect of killing glioma cells (Lupo and Matosevic, 2020). Mast cells
are believed to play an important role in angiogenesis and TME
remodeling (Huang et al., 2008; Liu et al., 2011). The high level of
mast cells may cause a better prognosis (Chen et al., 2022). The
increases of neutrophils and M2 macrophages were also observed in
a IDH-WT cohort, which means may be poor prognosis (Wang
et al., 2017). In our study, we analyzed TME based on the CRG-
score. The immune-cell infiltration status of the low- and high-risk
group was consistent with current research results. Validating the
prediction accuracy of the CRG-score and showing that cuproptosis
was closely associated with glioma immune infiltration. Providing a
new perspective on the association between cuproptosis and
gliomas.

5 Conclusion

Our study revealed extensive regulatory mechanisms of
cuproptosis-related genes in the cell cycle, TME,
clinicopathological characteristics, and prognosis of glioma.
Moreover, we constructed a prognostic CRG-score and
nomogram system to predict the prognosis of patients with
glioma. This suggests the potential importance of cuproptosis in
the treatment of glioma and potentially providing novel glioma
research approaches.
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