
LPIH2V: LncRNA-protein
interactions prediction using
HIN2Vec based on heterogeneous
networks model

Meng-Meng Wei1, Chang-Qing Yu1*, Li-Ping Li1,2*, Zhu-Hong You3,
Zhong-Hao Ren1, Yong-Jian Guan1, Xin-Fei Wang4 and
Yue-Chao Li4

1School of Information Engineering, Xijing University, Xi’an, China, 2College of Grassland and Environment
Sciences, Xinjiang Agricultural University, Urumqi, China, 3School of Computer Science, Northwestern
Polytechnical University, Xi’an, China, 4Xijing University, Xi’an, China

LncRNA-protein interaction plays an important role in the development and
treatment of many human diseases. As the experimental approaches to
determine lncRNA–protein interactions are expensive and time-consuming,
considering that there are few calculation methods, therefore, it is urgent to
develop efficient and accurate methods to predict lncRNA-protein interactions. In
this work, a model for heterogeneous network embedding based on meta-path,
namely LPIH2V, is proposed. The heterogeneous network is composed of lncRNA
similarity networks, protein similarity networks, and known lncRNA-protein
interaction networks. The behavioral features are extracted in a heterogeneous
network using the HIN2Vec method of network embedding. The results showed
that LPIH2V obtains an AUC of 0.97 and ACC of 0.95 in the 5-fold cross-validation
test. The model successfully showed superiority and good generalization ability.
Compared to other models, LPIH2V not only extracts attribute characteristics by
similarity, but also acquires behavior properties by meta-path wandering in
heterogeneous networks. LPIH2V would be beneficial in forecasting interactions
between lncRNA and protein.
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1 Introduction

LncRNAs are a group of RNA molecules that are transcribed and do not have the
competence to code for proteins. LncRNAs are normally defined as RNAs over
200 nucleotides long with no potential for symbolic coding, often playing administrative
roles in the regulation of gene expression (Prensner and Chinnaiyan, 2011; Volders et al., 2013).
LncRNAs can act as gene controllers and are involved in many of the biological processes as
other epigenetic mechanisms (Esteller, 2011). LncRNA is poorly identified in the genome and is
known as the “dark matter” of the genome. The function of most ncRNAs remains unclear, and
a lot of lncRNAs may have no apparent function. In recent decades, a growing number of
studies have uncovered that lncRNA plays an influential role in many biological processes
(Wang et al., 2018). With ongoing developments in deep RNA sequencing and advanced
epigenomics technologies, the rate of discovery of new lncRNA genes is quickly outstripping the
rate at which they can be described. When lncRNAs are out of order, they may induce a variety
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of diseases, such as Alzheimer (Ng et al., 2013), autism (Cook and
Scherer, 2008), cardiovascular diseases (Congrains et al., 2012), and
cancer (Chen et al., 2017; Rathinasamy and Velmurugan, 2018). For
instance, genetic deletion of the lncRNA locus on human chromosome
2 leads to serious congenital limb deformities (Allou et al., 2021).
LncRNAs play regulatory roles in immune response in prostate cancer
(Hu et al., 2021). PlncRNA-1 significantly increased in prostate cancer
cells (Cui et al., 2013). ANRIL is obviously associated with coronary
heart disease, type 2 diabetes and many types of cancer (Pasmant et al.,
2011). A new lncRNA, FASRL, was recently discovered to boost the
proliferation of hepatocellular carcinoma (HCC) cells in vitro and in
vivo (Peng et al., 2022).

In recent years, probing the interactions between lncRNAs and
proteins has been one of the primary ways to deduce the functions of
lncRNAs and to do further research on lncRNAs. LncRNA-protein
interactions (LPIs) throughout their lifetimes, regulating not only
maturation, nuclear export, stability, and eventually translation, but also
the functions of RNAs. Given the critical role of lncRNA in various
biological processes and complex diseases, there is an urgent need to
uncover potential lncRNA-protein associations. Hence, to effectively
predict LPIs, a variety of methods have recently been proposed,
classified into two broad categories, including experimental and
computational methods (Zhang and Fan, 2017; Li et al., 2022). Given
the number and variety of lncRNAand protein, an exhaustive experimental
validation of each lncRNA and protein would be impractical (Alipanahi
et al., 2015). Therefore the need for the use of computational methods to
screen for potential LPIs in these high-throughput assays and then validate
them experimentally. Current computational methods fall into two broad
categories: network-based and machine-learning methods.

Nowadays, several computational methods for predicting LPIs have
been proposed. Muppirala et al. (2011) proposed RPISeq, a family of
classifiers for predicting RNA-protein interactions, using only sequence
information. This model extracts features from lncRNA and protein
sequences using two classifiers, support vector machine (SVM) and
random forest (RF), respectively, and the results show that the SVM
classifier predicts more accurately. Wang et al. (2013) proposed the
model, which is based on a Bayesian classifier that first collects a set of
known RNA-protein interactions as positive criteria and extracts
sequence-based features to represent each RNA-protein pair, selecting
valid features by reducing the likelihood ratio score. These valid features
are used to build an extended Bayesian classifier for training RNA-protein
interaction prediction. Lu et al. (2013) transformed the sequences of
amino acids into numerical feature vectors. This model which is named
lncPro transformed the sequence information of lncRNAs and proteins
into feature vectors then reduced the dimensionality of the lncRNA and
protein feature vectors using Fourier series, and finally integrated the
information of both using matrix multiplication to score each lncRNA-
protein pair. A new sequence distributed representation learning-based
method for potential LPI prediction, named LPI-Pred, was developed by
Yi et al. (2020a) which regarded lncRNA and protein sequences as
“words” in natural language processing and trained the RNA2vec and
Pro2vec models using word2vec. However, the above approach only
considers information about the properties of lncRNAs and proteins and
not their behavior, which has now been demonstrated in many articles in
the field of bioinformatics to be powerful in improving the prediction of
LPIs (Guan et al., 2022; Guo et al., 2022; Ren et al., 2022). Ge et al. (2016)
which proposed and tested a new computational approach, LPBNI, which
constructs a bipartite network of lncRNA-proteins, using information
about LPIs to link lncRNAs and proteins if they are known to interact

with each other. Yang et al. (2016) proposed a model which represented
and analyzed the interactions between lncRNAs and proteins as a
heterogeneous network. The model used a correlation-search
algorithm called HeteSim to predict lncRNA interactions with
proteins. Deng et al. (2018) proposed a model, PLIPCOM, which
constructed a network from known sequence similarities and LPIs
information. First, the model used the random walk algorithm to
extract diffusion features and HeteSim features, then reduced the
dimensionality by the SVD algorithm, respectively. While the above
approach takes into account the acquisition of behavioral information
through network embedding, it does not take into account the role of
meta-paths in heterogeneous networks.

In this article, a novel model for predicting LPIs based on
heterogeneous network embedding, LPIH2V, was proposed. Potential
vectors of nodes in heterogeneous networks are learned and represented
using a neural network-based HIN2Vec (Fu et al., 2017). The extracted
feature vectors are then used to predict LPIs using an SVMclassifier. After
the 5-fold cross-validation test, the results show that LPIH2V has high
accuracy and stability. At the same time, the LPIH2Vmodel achieved the
best prediction accuracy compared to knownmodels for the same dataset.

2 Results and discussion

2.1 Evaluation criteria

In this experiment, we evaluated the performance of LPIH2V
using commonly adopted metrics and the 5-fold cross-validation
method (Yu et al., 2022). The dataset is divided into five equal
subgroups, with data from each subset used for testing in turn and
data from the remaining four subsets used for training data. We
repeated this process to ensure that each part served as the test set.
The mean of the five predictions was ultimately used as the final
evaluation result. Six metrics were used to evaluate LPIH2V
performance: accuracy, precision, recall, F1 score, SPE, and
MCC. For the evaluation criteria above, higher values represent
better performance and better performance.

A common description of the ACC is the systematic error, which
indicates the discrepancy between the predicted result and the true
value. PRE refers to the proportion of true positives in statistical and
diagnostic testing. REC measures the proportion of correct positive
identifications, also refers to as sensitivity. F1 scores represent the
summed mean of accuracy and sensitivity. SPEC is the probability of a
negative test result. MCC is the correlation coefficient between true
and predicted values. TP and TN are the numbers of correctly
identified positive and negative samples, respectively. FN and FP
are the numbers of incorrectly identified positive and negative
samples, respectively. These metrics can be defined as:

ACC � TP + TN
TP + TN + FP + FN

PRE � TP
TP + FP

REC � TP
TP + FN

F1 � 2 × PRE × REC
PRE + REC

SPEC � TN
FP + TN
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MCC � TP × TN − FP × FN�������������������������������������
TP + FP( ) TP + FN( ) TN + FP( ) TN + FN( )√

In addition to the above metrics, we also used AUC, the area under
the ROC curve, to evaluate our model. We used the average of the five
results to ensure the accuracy of the prediction results.

2.2 Evaluation of predictive capability

To assess the predictive power of the model, we used the 5-
fold cross-validation and plotted the ROC and PRE curves for the
5 trials, as shown in Figure 1 and Figure 2. The mean
predictive AUC for LPIH2V was 0.974. In addition, Table 1

FIGURE 1
ROC curves plot for LPIH2V.

FIGURE 2
PRE curves plot for LPIH2V.

TABLE 1 5-fold cross-validation results for LPIH2V.

Test set PRE(%) REC (%) SPE (%) ACC(%) MCC(%) F1 (%) AUC(%)

1 94.64 98.47 94.43 96.45 92.97 96.52 97.90

2 91.94 98.47 91.37 94.92 90.06 95.09 97.40

3 93.33 97.92 93.01 95.46 91.04 95.57 97.10

4 93.13 97.81 92.79 95.30 90.72 95.42 97.90

5 92.75 97.81 92.35 95.08 90.30 95.21 97.50

Average 93.16 ± 0.88 98.10 ± 0.31 92.79 ± 0.99 95.44 ± 0.54 91.02 ± 1.03 95.56 ± 0.51 97.56 ± 0.31
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FIGURE 3
Graph embedding methods comparison.

FIGURE 4
Comparison of the performance of LPIH2V and other classifiers.

TABLE 2 Performance comparison of LPIH2V with other tools for predicting lncRNA-protein interactions.

Method PRE REC SPE ACC MCC F1 AUC

CF 0.583 0.894 0.361 0.627 0.301 0.706 0.761

RWR 0.739 0.798 0.717 0.757 0.517 0.767 0.830

LPBNI 0.740 0.840 0.698 0.769 0.548 0.785 0.859

SFPEL-LPI 0.769 0.920 0.724 0.822 0.657 0.838 0.916

LPIHN 0.807 0.966 0.769 0.867 0.750 0.879 0.938

LPLNP 0.832 0.943 0.810 0.876 0.761 0.884 0.944

RPI-SE 0.877 0.974 0.863 0.919 0.843 0.923 0.959

IPMiner 0.886 0.970 0.875 0.922 0.849 0.926 0.961

LncPNet 0.908 0.957 0.903 0.930 0.860 0.932 0.971

LPIH2V 0.932 0.981 0.928 0.954 0.9102 0.956 0.976
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summarizes the results of the model under 5-fold cross-
validation.

2.3 Comparison with graph embedding
methods

Behavioral attributes are a very important feature. To
demonstrate the predictive power of our model, we compared
three heterogeneous network graph embedding methods based
on meta-path theory (Yi et al., 2022). GATNE uses base
embedding and edge embedding to extract hidden properties of
different types of edges between nodes. Metapath2vec travels
through the network through custom meta-paths to capture
potential behavioral features. HIN2Vec computes meta-paths in
heterogeneous networks, then travels across the calculated meta-

paths to capture properties of each node across the board. In the
same dataset, as shown in Figure 3, the results show that the
HIN2Vec method used in our model is effective in predicting LPIs.

2.4 Comparing with different base classifiers

Machine learning has been applied successfully to predict LPIs. In
the LPIH2V, we used the SVM to classify the integrated features. SVM
is one of the well-known algorithms based on statistical learning
theory. In order to fully demonstrate the superiority of fusing
information from attribute features and behavioral features, four
classical machine learning algorithms were tested on LPIH2V,
including SVM, RF, Gaussian NB (NB), and Logistic Regression
(LR). As we can see in Figure 4, the proposed model achieved the
best results according to precision, recall, SPE, accuracy, MCC, F1, and

FIGURE 5
Pipeline of the framework of LPIH2V. (A) Calculation of similarity between lncRNA-lncRNA and protein-protein. (B) Construction of heterogeneous
networks using similarity information obtained from (A) and extraction of node features using HIN2Vec. (C) Use of multiple classifiers to predict LPIs.

FIGURE 6
HIN2Vec flowchart: Extraction of node eigenvectors using HINs and meta-paths.
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AUC. These results indicate that the SVM classifier is a good fit for the
proposed model and can predict LPIs effectively.

2.5 Comparison with other models

In addition, to verify the validity and stability of LPIH2V, we
compared LPIH2V with other computational methods include CF
(Sarwar et al., 2001), RWR (Köhler et al., 2008), LPBNI (Ge et al.,
2016), SFPEL-LPI (Zhang et al., 2018a), LPIHN (Li et al., 2015), LPLNP
(Zhang et al., 2018b), RPI-SE (Yi et al., 2020b), IPMiner (Pan et al., 2016),
and LncPNet (Zhao et al., 2021a). The CF model uses cosine similarity
and Pearson correlation similarity to calculate the correlation between the
two users based on collaborative filtering recommendation algorithms. To

define the similarity of nodes in networks, the RWR model uses random
walk with restart to calculate the distance between nodes in the network.
LPBNI used information on known RNA-protein interactions to build a
lncRNA-protein bipartite network. Following this, a propagation method
was performed in the bipartite network to score and rank the candidate
proteins for each lncRNA. The SFPEL-LPI model extracts lncRNA and
protein sequence features using linear neighborhood similarity, then
predicts LPIs using the feature projection ensemble learning method.
The LPIHN model constructs a heterogeneous network by linking the
lncRNA-lncRNA similarity network, protein-protein interaction network,
and lncRNA-protein interaction network. LncRNAs and proteins were
scored in heterogeneous networks using random walk with restart.
LPLNP calculates linear neighborhood similarities in feature spaces
and transfers them to interaction space to predict unknown

FIGURE 7
An example of a simple heterogeneous network of lncRNA-protein interactions.

FIGURE 8
HIN2Vec NN model includes input layer, hidden layer and output layer.

Frontiers in Genetics frontiersin.org06

Wei et al. 10.3389/fgene.2023.1122909

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1122909


interactions through the label propagation process. RPI-SE integrates
three independent models, including XGBoost, SVM, and ExtraTree, to
predict ncRNA-protein interactions using sequence information and fully
exploit the potent properties of RNA and protein employing PWM and
K-mer sparse matrices. The IPMiner model extracts the 3-mers and 4-
mers from protein and RNA sequences, respectively, and then uses a
stacked autoencoder to derive high-level features from the retrieved RNA
and protein sequence features, respectively. The above stacked
autoencoders were fine-tuning using the label information from the
training data to change the index of the network. The LncPNet model
constructs a heterogeneous network by calculating the similarity between
lncRNA-lncRNA and protein-protein, then extracts features using
metapath2vec. Table 2 shows that our model achieved the highest
AUC value of 0.976. LPIH2V performed the best on other metrics
because we used the HIN2Vec method to extract features that capture
rich relational semantics and details of the network structure to learn the
representation of nodes in HIN. In addition, the model learns the
representation of meta-paths for meta-path analysis.

3 Materials and methods

3.1 Datasets

In this experiment, lncRNA sequence data were obtained from
NONCODE (Zhao et al., 2021b), protein sequence data from UniProt
(UniProt Consortium, 2021), and known lncRNA-protein interaction
data from NPInter (Teng et al., 2020). UniProt provides a complete
compilation of all known protein sequence data and links it to a
summary of validated experience or computational predictions of the
protein’s functional information. To avoid data redundancy, the
UniProt database consolidated the same protein stored in different
databases into one and gives it a unique and specific identifier. The
number of entries contained in UniProt had grown to over 65 million
records. NPInter incorporated 600,000 new experimentally
determined ncRNA interactions, primarily by hand mining the
literature and processing high-throughput sequencing data to
collect interaction data. Researchers integrated data from different
sources and eliminated redundant entries. NONCODE was a
comprehensive database of assembled and illustrated non-coding
RNAs, typically animal lncRNAs. NONCODE not only provides
access to the names and NONCODE IDs of commonly used
lncRNAs, but some lncRNAs also support other database names
for conducting searches. The number of lncRNAs has rapidly
increased to 644,510, of which 173,112 were human lncRNAs.
First, the LPIs information extracted from NPInter were limited to
“Homo,” “lncRNA” and “protein” respectively, and filtered for
operationally proven human LPIs information. The resulting
lncRNA ID and protein ID were then plotted as NONCODE ID
and UniProt IDs, respectively. Finally, invalid lncRNA and protein
information was deleted from the sequence information, leaving
4,578 pairs of known LPIs information.

3.2 Overview of methods

In this paper, we propose a prediction framework based on fusing
attribute features and behavioral features, called LPIH2V. As shown in
Figure 5, LPIH2V is divided into three parts. In the first part, we

compute Jaccard similarity and BLAST similarity for the lncRNAs and
proteins, respectively, given the lncRNA-lncRNA and protein-protein
sequence information in the dataset, as well as the known LPIs
information. In the second part, we construct two heterogeneous
networks of lncRNA-protein and use the HIN2Vec method to extract
behavioral features of the nodes in the network based on meta-paths.
The features derived from the two heterogeneous networks were
integrated. In the third part, we predict the LPIs by multiple
classifiers. The feature vectors are fed into the classifiers to produce
predictions. It is worth noting that many models ignore the semantic
relationships between different node types. We fully learn the
structural information of the nodes embedded in the network by
constructing a heterogeneous network and HIN2Vec method. The
feature information obtained through learning is fused to retain the
sequence information of the nodes.

3.3 Sequence similarity calculation

The calculation of similarity is an important part of gene
association prediction. Basic Local Alignment Search Tool (BLAST)
(Fu et al., 2018) is a dual sequence local alignment algorithm proposed
by Altschul et al., in 1990. As a set of analytical tools for similarity
comparisons in protein databases or DNA databases, which contains
several separate procedures. These programs are defined depending on
the query and the database. For example, if the query is for nucleic acid
and the query database is a nucleic acid sequence database, then the
blastn program should be selected. The basic concept of BLAST is to
increase the speed of comparison by generating fewer but better-
quality enhancement points. In this paper, we performed BLAST to
obtain the similarity between every two lncRNAs and every two
proteins. Jaccard similarity (Lu et al., 2018) is a popular
approximation measure used to calculate the similarity between
two objects. Jaccard similarity can be used to find the similarity
between two asymmetric binomial vectors or to find the similarity
between two sets. The Jaccard coefficient is often used between
sequence-order insensitive texts. The higher the value of the
Jaccard coefficient, the higher the similarity of the sample. We
calculated lncRNA-lncRNA similarity and protein-protein
similarity by using Jaccard similarity principle. The Jaccard
coefficient is defined as the size of the intersection of the sample
set divided by the size of the merge set. For example, Li and Lj are
datasets of two lncRNAs. The Jaccard similarity between any two sets
of lncRNAs is computed as follows:

J Li, Lj( ) � Li ∩ Lj

∣∣∣∣ ∣∣∣∣
Li ∪ Lj

∣∣∣∣ ∣∣∣∣
Jacquard similarity of proteins is calculated in the same way as

lncRNA.

3.4 Heterogeneous network construction

In recent years, the precise extraction of personalization factors
from data has become increasingly difficult due to the rapid growth of
Big Data. Heterogeneous information networks (HINs) can represent
the attribute information and structure information completely, which
not only assumes two nodes are related but also distinguishes between
different relationships among nodes and retains more contextual
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information by learning the relationship vectors jointly. In detail, the
training data is represented using a bipartite graph � (m, n, r, j/b),
wherem and n are two nodes in the same category, and the r is the link
between two nodes. The Jaccard and BLAST values of the two nodes
are indicated by j and b respectively. For lncRNA, samples with
Jaccard similarity greater than 0.5 and BLAST similarity less than
0.001 were selected. On the protein side, samples with Jaccard
similarity greater than 0 and BLAST similarity less than 0.01 were
selected. The heterogeneous networks are made up of these two
similarity networks and known LPIs.

3.5 Heterogenous network embedding

To capture the rich semantics embedded in heterogeneous
networks by exploiting the different types of relationships among
nodes, we employed the HIN2Vec method. Unlike metapath2vec,
which follows a given meta-path pattern, HIN2Vec selects nodes
randomly. In particular, as illustrated in Figure 6, the HIN2Vec
framework consists of two phases: training data preparation and
representation learning. The HIN2Vec matching target relation
data is generated based on random wandering and negative
sampling to represent the learning for the nodes in the network.
To learn the node vectors and relationships between pairs of nodes, we
maximized the likelihood of jointly predicting the relationships
between lncRNAs and proteins.

Figure 7 shows a simple HIN consisting of four lncRNAs (L) L1,
L2, L3, L4, and two proteins (P) P1 and P2. In this figure, edges
represent the relationship that exists between nodes. We restricted the
meta-path length to be at most 2. Giving R denotes a collection of
targets that includes all relations between nodes. Thus, R �
L − L, L − P, P − L, L − L − L, L − L − P, L − P − L, P − L − L,{ P − L−
P}, L1 to P1 as L − P, L − L − P{ }, entering training data is
x: L1, y: P1, output: [0, 1, 0, 0, 1, 0, 0, 0]{ }. From the above example,
it is straightforward to see that the HIN2Vec method traverses all the
meta-paths in the heterogeneous network and then learns each
potential feature vector.

To reduce the time required to traverse all the meta-paths, the
HIN2Vec based on a neural network (HIN2Vec NN) will predict the
probability of the relationship between two nodes in advance. A three-
layer feedforward neural network model adopted by HIN2Vec as a
binary classifier. As shown in Figure 8, input the two nodes m, n and
the relationship r betweenm and n into the binary classifier. The three
parameters at the input layer are mapped into three one-hot feature
vectors �m, �n, �r, which mapped into potential vectorsW′

M �m,W′
N �n and

W′
R �r. In the hidden layer, considering that the semantics of nodes and

relations are different, and therefore their representation space should
not be the same, which applied a regularization function f01(.) to limit
the potential vector for r to be between 0 and 1, then use the
Hadamard function and apply Identity function to activate the
three vectors. The output layer uses the Summation function as
input, summing up three values. To realize logistic classification,
the Sigmoid function is used as the activation function.

HIN2Vec uses backpropagation training algorithms and
stochastic gradient descent to optimize the model. Assuming a
training set D(m, n, r, L(m, n, r)), which include m, n and the
relationship r between m and n. We denote by L if there is any
interaction between nodes m and n, expressed as 0 or 1. A
maximization objective function O is used to adjust the weights of

each parameter WM , WN and WR , and then maximize logO. Given
an objective function O and a derivation of logO such that:

O∝ log O � Σm,n,r∈Dlog Om,n,r m, n, r( )
In particular, for an input of training data (m,n, r, L(m,n, r)), when

L(m,n, r) is 1, Om,n,r(m,n, r) intends to maximize P(r |m,n) , Or else,
Om,n,r(m,n, r) intends to minimize P(r |m,n). Here B(m,n, r), a binary
value, indicates whether m and n have r. Therefore, Om,n,r(m,n, r),
logOm,n,r(m,n, r) and P(r |m,n) as follows:

Om,n,r m, n, r( ) � P r |m, n( ) if L m, n, r( ) � 1
1 − P r |m, n( ) if L m, n, r( ) � 0

{
log Om,n,r m, n, r( ) � B m, n, r( )log P r |m, n( )

+ 1 − B m, n, r( )[ ]log 1 − P r |m, n( )[ ]
P r |m, n( ) � sigmoid ∑W ′

M �m⊙ W ′
N �n⊙ f 01 W ′

R �r( )( )
Finally, for each training data entry, the algorithm reverses weights

inW′
M �m ,W′

N �n andW′
R �r based on the gradients of logOm,n,r(m, n, r)

differentiating with respect to W′
M �m, W′

N �n and W′
R �r, respectively, as

follows:

W ′
M �m: � W ′

M �m + dlog OFm,n,r m, n, r( )
dW ′

M �m

W ′
N �n: � W ′

N �n + dlog OFm,n,r m, n, r( )
dW ′

N �n

W ′
R �r: � W ′

R �r +
dlog OFm,n,r m, n, r( )

dW ′
R �r

4 Conclusion

With the rapid development of computer performance, traditional
wet experiments have limitations compared to computational
methods. The cost of experiments can be greatly reduced and
experimental time saved. The computational method not only
reduces the interference of other factors in the experiment but also
provides specific ideas for biological experiments. Most lncRNAs exert
their effects by interacting with proteins, so the prediction of LPIs is
critical for the proper functioning of lncRNAs.

The purpose of the study was to propose a model for predicting
lncRNA-protein interactions that combines sequence characteristics
and behavioral properties to fully exploit node information, and we
constructed heterogeneous networks using similarity principles.
LPIH2V builds heterogeneous networks through the principle of
sequence similarity. HIN2Vec is used to learn the behavioral
features of the nodes in the network. This takes into account both
the sequence characteristics and the behavioral characteristics of the
nodes. We also used a sparse automatic encoder to upgrade the
eigenvectors, converting vectors from 64 dimensions to
128 dimensions for comparison, and using different classifiers to
predict vectors for elevation. The results show that the recall score
of 0.98 using stochastic forest classifiers indicates that the model can
identify positive and negative samples more accurately by raising the
dimensions. To verify the robustness and reliability of the proposed
method, we used multiple classifiers to compare predictions and found
that SVM worked best. An additional 5-fold comparison test was
performed to test the accuracy of the prediction model. Then used the
best SVM classifier to compare with other advanced methods, and
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finally concluded that our approach has superiorities in predicting
LPIs. Undoubtedly, our proposed model has the potential to provide a
useful guide for biomedical research in LPIs prediction. With advances
in technology, more efficient feature extraction strategies and
incorporation of other information into the model could lead to
greater accuracy and improved performance, such as disease and
miRNA.

However, LPIH2V has some shortcomings. Learning node
features using HIN2V can be time-consuming. The number of
datasets also has an impact on the model results. The following
will look for ways to optimize the learning time of the model and
to further expand the number of datasets.
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