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Background: This study aims to build a focal adhesion-related genes-based
prognostic signature (FAS) to accurately predict gastric cancer (GC) prognosis
and identify key prognostic genes related to gastric cancer.

Results:Gene expression and clinical data of gastric cancer patients were sourced
fromGene ExpressionOmnibus and The Cancer Genome Atlas. Subsequently, the
GEO dataset was randomly distributed into training and test cohorts. The TCGA
dataset was used to validate the external cohort. Lasso Cox regression was used to
detect OS-related genes in the GEO cohort. A risk score model was established
according to the screened genes. A nomogram, based on the clinical
characteristics and risk score, was generated to predict the prognosis of gastric
cancer patients. Using time-dependent receiver operating characteristic (ROC)
and calibration performances, we evaluated themodels’ validity. The patientswere
grouped into a high- or low-risk group depending on the risk score. Low-risk
patients exhibited higher OS than high-risk patients (entire cohort: p < 0.001;
training cohort: p < 0.001, test cohort: p < 0.001). Furthermore, we found a
correlation between high-risk gastric cancer and extracellular matrix (ECM)
receptor interaction, high infiltration of macrophages, CD44, and HLA-DOA.

Conclusion: The generated model based on the genetic characteristics of the
focal adhesion prognostic gene can aid in the prognosis of gastric cancer patients
in the future.
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Introduction

Gastric cancer (GC) is one of the most common solid tumors worldwide, responsible for
7.7% of all cancer-related deaths and ranking second only to lung and liver cancers (Sung
et al., 2021). Unfortunately, early-stage GC is often asymptomatic, resulting in most patients
being diagnosed at advanced stages (Sitarz et al., 2018).

Consequently, an accurate understanding of the heterogeneity of GC is crucial for
predicting prognosis and tailoring clinical diagnosis and treatment. Focal adhesion is a
complex of proteins that physically connects the extracellular matrix to the actin
cytoskeleton and comprises several proteins, including integrins, cofilin proteins, and
focal adhesion kinase (FAK) (Paluch et al., 2016). By regulating cell adhesion, migration,
and differentiation, focal adhesion is essential for normal physiological functions, and its
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dysregulation can lead to tumorigenesis and metastasis (Damiano
et al., 1999; Landowski et al., 2003). Focal adhesion has been found
to upregulate B3 and FAK expressions in GC, which can facilitate
cancer cells to resist fluorouracil, leading to treatment failure
(Ngabire et al., 2020). In addition, focal adhesion proteins have
been shown to promote GC cell invasion by enhancing cell
proliferation (Shen et al., 2013). Therefore, inhibiting the focal
adhesion signal pathway could potentially lead to effective
treatment for GC.

Based on the univariate Cox regression analysis, significant
genes associated with prognosis were identified, and a prognostic
signature was constructed using Lasso analysis. ROC and Kaplan-
Meier (KM) analyses were used to evaluate the performance of the
signature.

Next, we constructed a nomogram based on the FAS and
corresponding clinical characteristics. Finally, we validated the
accuracy of our newly developed nomogram that predicts the
prognosis of GC patients using an external validation cohort
from TCGA. Overall, our study highlights the crucial role of
focal adhesion-related genes in GC prognosis and presents a
novel nomogram for predicting OS in GC patients.

Materials and methods

Data collection

The clinicopathological information and corresponding gene
expression data of GC patients were obtained from the GEO

database (http://www.ncbi.nlm.nih.gov/geo/). A total of 684 cases
(GSE13861, GSE29272, GSE62254, and GSE26942) were examined
in the entire cohort. 330 TCGA-STAD samples and their
corresponding clinicopathological data were extracted from the
TCGA (https://portal.gdc.cancer.gov/) to be used for the external
validation cohort. A list of focal adhesion-related genes was retrieved
from the MSigDB database (https://www.gsea-msigdb.org/gsea/
msigdb) to aid this analysis.

Data processing

Gene symbols for each gene matrix file were extracted based on
the corresponding platform file used by the Perl software. The batch
effect was adjusted using the Empirical Bayes method (“sva”
package) among the series. Finally, the entire cohort was
randomly divided into a training and a test cohort in a 7:3 ratio.

FAS construction and validation

A total of 199 focal adhesion-related genes were selected from
the MSigDB database. The relationship between these genes and
gastric cancer prognosis was investigated through univariate Cox,
LASSO regression, and multivariate Cox analyses using R packages
“glmnet” and “survival.”

We calculated the risk score of every patient using the regression
coefficient value and expression of each gene, as follows: = Σβi ×
Expi, where Expi refers to the gene expression level of the focal

FIGURE 1
The fow chart showing the scheme of our study on focal adhesion prognostic signatures in GC.
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adhesion-related genes, and β is the LASSO Cox regression
coefficient of the corresponding gene. Based on their risk scores,
samples were categorized as high- or low-risk. The prediction
accuracy of the signature was evaluated using time-dependent
ROC curves and Kaplan-Meier survival analysis.

Establishment and evaluation of a FAS-
based nomogrammodel to predict OS of GC
patients

Based on the focal adhesion risk score, the patient’s gender,
age, and American Joint Committee on Cancer AJCC stage, a
predictive nomogram was developed to accurately predict the OS
of GC patients. The precision of the nomogram was evaluated
using calibration and receiver operating characteristic (ROC)
curves.

Gene set enrichment analysis

The GSEA program was obtained from the GSEA website
(http://www.gseamsigdb.org/gsea/index.jsp) to identify the
functional enrichment pathways regulated by the focal adhesion
-related genes signature. Additionally, the “c2.cp.kegg.v7.4.symbols.
gmt” and “c5.go.v7.4.symbols.gmt” gene sets were extracted from
the molecular signatures database and used as the target enrichment
sets for GSEA analysis.

Calculations of the immune, stromal, and
estimate scores

The Estimation R package was used to estimate the immune and
stromal component scores in the tumor microenvironment (TME)
of each GC sample. The immune and stromal scores were then

calculated and displayed, along with an estimated score. A positive
correlation between the risk score and the immune, stromal, and
overall scores suggests a higher risk score and a greater proportion of
corresponding TME components.

The R packages “survival” and “survminer” were used to analyze
the TME scores. A total of 684 samples with available survival data
were divided into high- and low-scoring groups based on themedian
values of the immune, stromal, and estimated scores for subsequent
survival analysis.

Single-sample gene set enrichment analysis
(ssGSEA)

The single sample gene set enrichment analysis (ssGSEA) in the
“gsva” R package quantifies the infiltration statuses of 16 immune
cells and the activities of 13 immune-related pathways in the high-
and low-risk

Drug sensitivity analysis

The drug sensitivity analysis was conducted using cellminer
(https://discover.nci.nih.gov/SclcCellMinerCDB/) Database data,
screening FDA-approved and clinical trial data, and analyzing
the relationship between focal adhesion-related genes expression
level and drug sensitivity. Spearman’s correlation analysis was
conducted to determine the correlation using R software, and the
top 16 drugs were selected.

Validation of a FAS-Based prognostic model
in a clinical sample

The accuracy of the results was further validated using the STAD
data from the KM-plotter database (https://kmplot.com/).

TABLE 1 Clinicopathological characteristics.

Training cohort 478 Test cohort 206

Variable High-risk Low-risk High-risk Low-risk

N 244 234 111 95

Risk score (median) 14.61 13.96 14.65 13.93

Age (median) 61 61 60 63

Gender Male 175 162 74 68

Female 69 72 37 27

Stage I 24 49 7 19

II 44 51 21 33

III 150 121 73 40

IV 26 13 10 3

Overall survival Alive 105 168 50 66

Dead 39 66 61 29

Survival time (median) 804 1807 881 1821

Frontiers in Genetics frontiersin.org03

Zhao et al. 10.3389/fgene.2023.1122580

http://www.gseamsigdb.org/gsea/index.jsp
https://discover.nci.nih.gov/SclcCellMinerCDB/
https://kmplot.com/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1122580


Validating the expression of focal adhesion-
related genes using scRNA-seq data

Download theGSE112301 dataset from theGEOwebsite and use the
CreateSeuratObject function from the SeuratR package to create a Seurat
object that contains the basic information of the single-cell dataset. Next,
quality control is performed on the data, including filtering out low-
quality cells, followed by reducing the dimensionality of the data using
principal component analysis (PCA). Visualize the PCA results to better
distinguish the differences between cells in different tissue. Finally, use the

FindConservedMarkers function of Seurat to analyze the gene expression
of GC samples and normal samples.

Statistical analyses

The statistical analyses were conducted using R software version
4.0.0, and KM survival analysis assessed the differential OS
durations between the high- and low-risk groups. p < 0.05 was
set as the significance threshold.

FIGURE 2
(A) Determination of the number of factors by the LASSO analysis. Risk score distribution (B), survival status (C), and eight focal adhesion-related
genes expression profiles (D) for patients in high-risk and low-risk groups in training cohort.
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Results

Patient characteristics and establishment
of FAS

As illustrated in Figure 1, upon exclusion of cases with a survival
time of fewer than 30 days and normal cases, 684 samples were
collated in the four GEO datasets (GSE13861, GSE26942, GSE29272,
and GSE62254). These cases were randomly divided into a training
(478) or test cohort (206) in a 7:3 ratio. Table 1 summarizes the
patient clinical characteristics. The “limma” package extracted genes
associated with focal adhesion in the GEO database. In the training
cohort, the univariate Cox and LASSO regression analyses were
conducted to screen eight genes associated with GC patient OS, as
depicted in Figure 2A. The risk score was calculated according to a
linear combination of the expression levels of the eight focal
adhesion-related genes and corresponding regression coefficients
(Table 2).

Risk score = CMOP × (0.3294) + FLNC × (0.2545) + ITGB5 ×
(0.7737) + LAMC1 × (0.8969) + TBHS1 × (0.5076) + THBS4 ×
(0.0156) + VEGFB × (0.8368) + VWF × (0.2495).

Based on the optimal cut-off value of the risk score determined
using the Survminer R package, the patients were categorized into
either a high- or low-risk group. Further independent prognostic
analysis of all the key genes revealed a significant association
between high expression levels of these genes and poor prognosis
in the training cohort (Supplementary Figure S1).

The distribution of the risk scores and the survival statuses of
patients in the training cohort are displayed in Figures 2B–D. KM
analysis determines the differences between the two groups in the
training cohort (Figure 3A). Lastly, time-dependent ROC exhibits
the prognostic values of our signature (Figure 3D).

Validation and evaluation of the prognostic
gene signature

Test and external validations were conducted. Consistent with
the training cohort results, OS was lower in high-risk patients than
in low-risk patients (Figure 3B, p < 0.001 in test cohort; Figure 3C,
p = 0.007 in TCGA cohort). The area under the ROC curve
demonstrated that the signature could precisely predict GC

prognosis (Figures 3E, F). The AUCs for the test and external
validation cohorts were 0.667 and 0.627 at 3 years, respectively,
and 0.652 and 0.701 at 5 years, respectively. The accuracy of the
signature was evaluated using PCA and t-SNE analyses. Both PCA
and t-SNE plots revealed that the high- and low-risk groups had
different directions in the training (Figures 3G, J), test (Figures 3H,
K), and external cohorts (Figures 3I, L).

FAS is an independent predictor of GC

The Cox regression analysis demonstrates the relationship
between the risk scores acquired from the prognostic model with
other clinical parameters. Based on the uni- and multivariate
regression analyses, stage (p < 0.001, HR = 3.369; p < 0.001,
HR = 3.050, respectively) and risk score (p < 0.001, HR = 3.314;
p < 0.001, HR = 2.980, respectively) were independent OS prognostic
factors in the training cohort (Figures 4A, B). The test cohort was
validated, whereby both stage (p < 0.001, HR = 3.248; p < 0.001,
HR = 2.903, respectively) and risk score (p < 0.001, HR = 3.025; p =
0.002, HR = 2.676, respectively; Figures 4C, D) were demonstrated to
be independent risk factors for OS in GC patients.

Subgroup analysis of the prognostic value
of FAS

To investigate the prognostic value of the developed model in
different patient populations based on their clinical characteristics,
the training cohort was further divided into subgroups, and OS was
estimated between high- and low-risk groups in each subgroup. The
KM analysis showed that the risk score could distinguish differences
between various subgroups, such as age, gender, and stage (Figures
5A–F). Similarly, in the test cohort, the high- and low-risk groups
demonstrated differences in age and gender, but no significant
differences were observed in the stage I-II subgroup, which may
be attributed to the relatively small sample size in our study
(Supplementary Figures S2A–F).

The relationship between risk score and corresponding clinical
characteristics of GC patients (n = 684) in the GEO dataset was
analyzed. The risk scores of stage I + II patients were significantly
lower than those of stage III + IV patients (p = 1.7e-09, Figure 6A).

TABLE 2 Details of the eight focal adhesion-related genes in the prognostic model.

Gene name Coefficient HR HR.95L HR.95H p value

COMP 0.329464 2.436025 1.552258 3.822958 0.000108

FLNC 0.254581 2.802215 1.614737 4.862965 0.000249

ITGB5 0.77376 39.25463 9.107316 169.1965 8.50E-07

LAMC1 0.896998 16.40379 6.121545 43.95691 2.66E-08

THBS1 0.507687 7.57718 3.451558 16.63413 4.47E-07

THBS4 0.015673 2.370891 1.678713 3.348471 9.54E-07

VEGFB 0.836806 16.9152 4.07668 70.18554 9.79E-05

VWF 0.249564 7.56926 2.922742 19.60272 3.06E-05
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FIGURE 3
(A) Differences in survival between high-risk and low-risk groups of the training cohort (p < 0.001). Differences in survival between high-risk and
low-risk groups of the test cohort (p < 0.001) (B) and external cohort (p=0.007) (C). (D) Time-dependent ROC analysis of the FAS in the training cohort. (E)
Time-dependent ROC analysis of the FAS in the test cohort. (F) Time-dependent ROC analysis of the FAS in the external cohort. (G) The t-SNE plot in the
training cohort. (H) The t-SNE plot in the test cohort. (I) The t-SNE plot in the external cohort. (J) The PCA plot in the training cohort. (K) The PCA plot
in the test cohort. (L) The PCA plot in the external cohort.
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Similar results were shown in the age subgroup (p = 0.0095,
Figure 6B). No significant relationship between the risk score and
gender (p = 0.72, Figure 6C).

Generation of a prognostic nomogram that
predicts OS in GC patients

To accurately predict the prognosis of GC patients, a
nomogram was developed based on uni- and multivariate
regression analyses to predict 1-, 3-, and 5-year OS rates
(Figure 7). Additionally, 3 years time-dependent ROC
analysis revealed that the sensitivity of the nomogram was
higher than other clinicopathological features in training
cohort (Figure 8A), test cohort (Figure 8B), entire cohort
(Figure 8C) and external cohort (Figure 8D). 5 years time-
dependent ROC analysis for nomogram in training cohort
(Figure 8E), test cohort (Figure 8F), entire cohort
(Figure 8G) and external cohort (Figure 8H). The calibration
plots for the training, test, entire cohort and external cohort
were in agreement between the actual OS and the predicted
from the nomogram (Figures 8I–8L).

The nomogram generated to predict the 1-, 3-, and 5-year OS
rates of GC patients was found to be accurate, as evidenced by the 3-
year and 5-year time-dependent ROC analysis and the calibration
plots. These results suggest that the nomogram is a reliable tool for
predicting the prognosis of GC patients.

GSEA

To explore the functional and signaling pathway differences
between the high- and low-risk score groups, GSEA was performed
on the gene sets “c5.go.v7.4.symbols.gmt” and
“c2.cp.kegg.v7.4.symbols.gmt.” The top five pathways and gene
functions in the high- and low-risk groups are displayed in
Figures 9A–D.

Immune cells infiltration and immune-
related pathways

The tumor microenvironment (TME) plays a critical role in
regulating tumor treatment resistance and is associated with tumor
occurrence, development, and metastasis. It includes various
components such as tumor cells, immune cells, stromal cells, and
a variety of cytokines Changes in the TME, including alterations in
the immune cell components, can promote tumor progression. To
analyze the distribution of immune cells in the GC TME and
investigate the interaction between GC tumors and immune cells,
we utilized the ssGSEA tool to predict 16 common immune cells and
13 immune-related functional components based on GC gene
expression profile data.

The low-risk group of patients showed higher ratios of B cells, T
regulators, and follicular helper T cells than the high-risk group
(Figure 10A). In addition, the low-risk group exhibited higher levels

FIGURE 4
Univariate and multivariate Cox regression analysis showed the relationship between age, gender, stage, risk score, and overall survival, and
indicated that risk score could be used as an independent prognostic factor for training cohort (A,B), test cohort (C,D).
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of antigen-presenting cell (APC) co-inhibition, inflammation
promotion, and T cell inhibition compared to those with a high-
risk score (Figure 10B). Additionally, we demonstrated that the
expression levels of CD200, CD28, CD40, CD44, CD86, LAIR1,
NRP1, TNFRSF4, TNFRSF8, TNFSF18, TNFSF4, and VTCN1 in the

high-risk group were higher than those in the low-risk group
(Figure 10C). The findings suggest that the immune
microenvironment may be partly associated with the OS
prognosis of GC patients with high expression of focal adhesion-
related genes.

FIGURE 5
The high-risk group in training cohort showed a poor prognosis than the low-risk group in different clinical stratification like age (A,B), gender (C,D),
stage (E,F).
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Correlation of m6A expression

N6-methyladenosine (m6A) is the most abundant RNA
modification in eukaryotic cells (Yue et al., 2015). Extensive RNA
processing and metabolism research revealed that m6A is a key

contributor to cancer development. m6A is a potential prognostic
marker involved in multiple aspects of cancer treatment (Ma et al.,
2019). To assess the relationship between m6A expression and our
GC prognostic signature, the levels of 13 m6A genes in different GC
samples were estimated. It is found that an elevated expression of

FIGURE 6
Stratified analysis of the prognostic signature in the training cohort. The relationships between the FAS and age (A), gender (B), stage (C).

FIGURE 7
Nomogram for the prediction of 1-, 3-, and 5-year survival probability in patients GC.
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FTO, METTL3, YTHDC1, and YTHDF1 genes in the high-versus
low-risk group (Figure 10D).

Correlation between TME subcomponents
and the focal adhesion-related genes risk
score and outcome of GC patients

TME consists of diverse immune and stromal cells linked to
disease development, prognosis, and treatment outcome. Based on
our ESTIMATE algorithm, TME was separated and scored into
stromal, immune, and estimate subcomponents to investigate
potential relationships between this study’s risk scores and TME.
A high immune or matrix score indicates a high proportion of the
immune or matrix components in the TME. The ESTIMATE score
is the sum of the immune and stromal scores, indicating the

combined proportion of these two components in TME. In our
study, patients in the high-risk group in entire cohorts had higher
stromal, immune, or ESTIMATE scores (Figure 11A) than those in
the low-risk group.

To further investigate the impact of different components of the
TME on GC patient survival, the entire cohort was divided into
subgroups based on the median immune, stromal, and ESTIMATE
scores as cutoff points. As shown in Figures 11B, D, patients with
high stromal and ESTIMATE scores had worse overall survival than
those with low stromal and ESTIMATE scores (p < 0.001, p = 0.01,
respectively). However, the survival rate was similar between
patients with high and low immune scores (p = 0.933)
(Figure 11C). To better understand the association between the
immune microenvironment and GC prognosis, a heatmap was
generated to display the distribution of immune cell scores in the
high- and low-risk groups, as shown in Figure 12.

FIGURE 8
(A–D) 3 years time-dependent ROC analysis for nomogram in GC. (A) Time-dependent ROC analysis of the nomogram in the training cohort. (B)
Time-dependent ROC analysis of nomogram in the test cohort. (C) Time-dependent ROC analysis of the nomogram in the entire cohort. (D) Time-
dependent ROC analysis of the nomogram in the external cohort. (E–H) 5 years time-dependent ROC analysis for nomogram in GC. (E) Time-dependent
ROC analysis of the nomogram in the training cohort. (F) Time-dependent ROC analysis of nomogram in the test cohort. (G) Time-dependent ROC
analysis of the nomogram in the entire cohort. (H) Time-dependent ROC analysis of the nomogram in the external cohort. (I) The calibration plot for
training cohort. (J) The calibration plot for test cohort. (K) The calibration plot for entire cohort. (L) The calibration plot for external cohort.
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Drug sensitivity prediction

The correlation between drug Z score and genes was analyzed,
and the top 16 significant drug-gene pairs are displayed in
Figure 13. A total of 246 drugs showed statistical differences, as
shown in Supplementary Table S2. Among them, Dasatinib, XAV-
939, and Staurosporine exhibited the most positive correlation
with hub gene expression. In contrast, Palbocic, Oxaliplatin, and
Ribavirin were negatively correlated with the expression of hub
genes (Figure 13).

Verification of a focal adhesion-based
prognostic model in a clinical sample

To investigate the prognosis of patients with different hub genes
expressions, the clinical data of STAD in the KM-plotter database
were analyzed. Patients with high hub genes expression had better
overall survival (OS) than those with low expression, except for
THBS1 (Figure 14).

Verification the expression of hub genes
using scRNA-seq data

The Single-cell RNA sequencing dataset GSE112302 was used
for further analysis in high resolution. A total of three GC and three
normal samples were included in our study.

After quality control of the data, standardization and
normalization were performed, followed by PCA and UMAP
(Supplementary Figures S3A, B). A total of 305 normal cells and
401 tumor cells were included in the analysis. The UMAP plots of
each gene in different tissues are displayed in Supplementary Figure
S3C. Most genes exhibited high expression in tumor cells, except for
ITGB5, which may be due to the limited sample size (Figure 15).

Discussion

Patients with GC often do not experience symptoms in the early
stages of the disease andmaymiss the opportunity for surgery due to
local or distant metastasis at the time of diagnosis.

FIGURE 9
Significantly enriched GO pathways and KEGG pathways in the entire cohort by GSEA. (A) The GSEA analysis for GO pathway in the low-risk group.
(B) The GSEA analysis for GO pathway in the high-risk group. (C) The GSEA analysis for KEGG pathway in the low-risk group. (D) The GSEA analysis for
KEGG pathway in the high-risk group.
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The development of the disease is influenced by multiple factors,
and relying on a single factor or gene may not be a dependable
prognostic marker. In this study, we systematically analyzed a group
of genes related to patient survival and identified a strong association
between the expression of focal adhesion-related genes and gastric
cancer prognosis. The formation and turnover of focal adhesion are
critical to tumor cell migration and progression (Eke and Cordes,
2015; Maziveyi et al., 2018; Wu et al., 2021). Therefore, evaluating
the prognostic value of focal adhesion-related genes in GC patients is
essential.

This study employed a bioinformatics approach and publicly
available TCGA and GEO databases to identify focal adhesion-
related genes. A risk score was assigned to each case to predict
their prognosis, and high-risk cases were found to have a worse
prognosis than low-risk ones. Furthermore, a nomogram was
developed by combining risk scores and relevant clinical
characteristics to demonstrate the accuracy of the prognostic
model in predicting 3- and 5-year survival rates in GC patients.
The focal adhesion-related genes identified in this study were
highly predictive of GC prognosis and accurately characterized
individual patient informationPrevious studies have established
the association of the focal adhesion-related genes with cancer,
specifically GC. In colon cancer, COMP levels were found to be

significantly elevated, and were strongly associated with cell
adhesion and tumor progression (Nfonsam et al., 2020).
IGF1R signaling regulates the biological process of GC by
increasing β-Catenin activation, epithelial-mesenchymal
transition, and cell proliferation (Xu D et al., 2017). Yang
et al. (2021) demonstrated that reducing the expression of
ITGB5 using CRISPRa and CRISPRi technologies led to
inhibition of cell proliferation. One prior study found that
ITGB5 promotes lymph node metastasis in colorectal cancer
patient (Capriotti et al., 2020). Another study by Han et al.
(2021) showed that knockdown of LAMC1 inhibits GC cell
proliferation, migration, invasion, and the Warburg effect by
suppressing AKT and MEK/ERK pathways. Additionally,
extracellular matrix proteins THBS1 and THBS4 strongly
regulate key tumor cell processes, such as proliferation,
attachment, adhesion, and migration. Elevated expressions of
THBS1 and THBS4 may be closely associated with higher tumor
grading and poorer prognosis in GC patients (Chen et al., 2019;
Zhang et al., 2021). Filamin C is an essential component of the
actin cytoskeleton and is encoded by the FLNC gene. As a
member of the filamin family, it forms dimers and plays a
crucial role in regulating cell motility, adhesion, and migration
(Eden and Frey, 2021). In recent years, studies have found that

FIGURE 10
(A) The immune cell between high-risk and low-risk groups in entire cohort; ***p < 0.05, **p < 0.01, *p < 0.001; (B) The immune related function
between high-risk and low-risk groups in entire cohort; ***p <0.05, **p < 0.01, *p < 0.001; (C) The checkpoint differences between high-risk and low-risk
groups in entire cohort; ***p < 0.05, **p < 0.01, *p < 0.001; (D) The m6A expression differences between high-risk and low-risk groups in entire
cohort.***p < 0.05, **p < 0.01, *p < 0.001.
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FIGURE 11
Comparison of stromal score, immune score, ESTIMATE scores, between high- and low-risk groups in the entire cohort (A). (B) Kaplan–Meier curves
for overall survival of 684 GCpatients according to stromal score. Log-rank test, p < 0.001. (C) Kaplan–Meier curves for overall survival of 684 GCpatients
according to immune score. Log-rank test, p = 0.933. (D) Kaplan–Meier curves for overall survival of 684 GC patients according to ESTIMATE score. Log-
rank test, p = 0.01.

FIGURE 12
Heatmap revealing the scores of immune cells in the high-risk and low-risk groups.
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the expression of FLNC is dysregulated in several types of cancer,
including gastric cancer, glioma, liver cancer, and prostate
cancer, and it is involved in tumor invasion and metastasis
(Kokate et al., 2018; Kamil et al., 2019).

GO analysis was performed to identify the biological functions
that are more relevant to high-risk patients. The analysis revealed that
high-risk patients exhibit increased ameboidal type cell migration,
axon development, blood vessel morphogenesis, circulatory system
process, and collagen fibril organization. Furthermore, high-risk
patients also undergo cellular processes such as cell division,
proliferation, and formation of new cells, indicating a high rate of
tumor cell division and proliferation in this patient group. These
findings are consistent with the previous clinical conclusion that
patients in the high-risk group generally have a poor prognosis.
Using our 8-gene signature risk model, we investigated the KEGG
functional pathways in high- and low-risk GC patients. Our analysis
revealed that the five major pathways identified are generally
associated with cancer development. Namely, cell adhesion

molecules, complement and coagulation cascades, ECM receptor
interaction, focal adhesion and hypertrophic cardiomyopathy were
high in the high-risk patients (Francavilla et al., 2009; Jurcak et al.,
2019; Yang et al., 2020; Zhang et al., 2020).

Moreover, high-risk patients showed a higher population of
macrophages and neutrophils. Tumor-associated macrophages and
neutrophils are generally associated with a poor prognosis in GC
patients (Li et al., 2019; Gambardella et al., 2020). Macrophages are
present at all stages of tumor progression at the primary site and are
closely associated with tumor cell invasion (Nielsen and Schmid, 2017).

In addition, the high-risk group exhibited lower APC co-
inhibitory effect scores than the low-risk group, indicating
weakened antitumor immunity, which may contribute to poor
prognosis. Tumor m6A research has recently gained attention,
and the levels of FTO, METTL3, and YTHDC1 were significantly
higher in the high-risk group compared to the low-risk group. FTO
plays a critical role in the progression and metastasis of GC and is
associated with low differentiation, lymph node metastasis, TNM

FIGURE 13
Correlations between focal adhesion-related genes expression and drug sensitivity. The figure shows the top 16 significant drug-gene pairs with
significant correlation. X-axis: gene expression; y-axis: drug sensitivity Z scores.
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FIGURE 14
Univariate survival analysis of the focal adhesion-related genes using Kaplan-Meier curves.

FIGURE 15
Verification results of four hub genes’ expression using scRNA-seq data. (A)COMP; (B) FLNC; (C) ITGB5, (D) LAMC1, (E) THBS1, (F) THBS4, (G) VEGFB,
(H) VWF.
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stage, and poor prognosis, making it an important molecular marker
for monitoring GC (Xu L et al., 2017). Yue et al. (2019) found that
overexpression of METTL3 is associated with a poor prognosis in
GC patients and promotes epithelial-mesenchymal transition and
metastasis in vivo. Another study analyzed various biological
information from different human cancer databases and
discovered that YTHDF1 mutations are present in approximately
7% of GC patients. Elevated YTHDF1 levels are linked with
increased cancer proliferation, invasiveness, and poorer overall
survival in patients (Pi et al., 2021).

The KM survival curve also confirmed that differences in gene
expression levels have varying effects on patient prognosis, with
most patients exhibiting poor survival times when the gene
expression is high. n addition, we predicted drugs that are closely
related to the gene expression of our hub genes in order to explore
their therapeutic effects on tumors. Positive correlation indicates
that high expression of hub genes in GC is directly proportional to
drug sensitivity. Negative correlation indicates that high gene
expression in GC may affect drug efficacy. This study is the first
to develop a prognostic model involving focal adhesion in GC
patients, which was validated as an excellent predictor of patient
overall survival (OS). Moreover, our model provides additional
insights into immune infiltration, immune checkpoint markers,
and pathway enrichment in different subgroups.

Although the model was validated in various aspects, there are
still some limitations that need to be addressed. Firstly, the data used
in this study were obtained from the TCGA and GEO databases, and
thus, the generalizability of the model to other patient cohorts needs
further validation. Additionally, further investigation is required to
determine if the genes in the model act synergistically to influence
GC patient prognosis. This study investigated the prognostic
relevance of focal adhesion genes in GC patients using
retrospective analysis. However, its predictive ability needs to be
tested in prospective studies to validate its clinical application.
Unlike traditional biological research methods, this method was
based on a large dataset and possessed the advantages of enhanced
efficiency, flexibility, and pertinence. With the continuous
development of sequencing technology, this model has the
potential for clinical application.

Conclusion

In this study, we developed a prognostic model based on the
focal adhesion genes COMP, FLNC, ITGB5, LAMC1, THBS1,
THBS4, VEGFB, and VWF to differentiate clinical features and
predict the prognosis of GC patients. Our results provide a valuable
foundation and direction for future basic experimental and clinical
research on GC.
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