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Background: Pseudouridine (Ψ) is one of the most abundant RNA modifications
found in a variety of RNA types, and it plays a significant role in many biological
processes. The key to studying the various biochemical functions andmechanisms of
Ψ is to identify theΨ sites. However, identifyingΨ sites using experimental methods is
time-consuming and expensive. Therefore, it is necessary to develop computational
methods that can accurately predict Ψ sites based on RNA sequence information.

Methods: In this study, we proposed a new model called PseU-ST to identify Ψ sites
in Homo sapiens (H. sapiens), Saccharomyces cerevisiae (S. cerevisiae), and Mus
musculus (M. musculus). We selected the best six encoding schemes and four
machine learning algorithms based on a comprehensive test of almost all of the
RNA sequence encoding schemes available in the iLearnPlus software package, and
selected the optimal features for each encoding scheme using chi-square and
incremental feature selection algorithms. Then, we selected the optimal feature
combination and the best base-classifier combination for each species through an
extensive performance comparison and employed a stacking strategy to build the
predictive model.

Results: The results demonstrated that PseU-ST achieved better prediction
performance compared with other existing models. The PseU-ST accuracy scores
were 93.64%, 87.74%, and 89.64% on H_990, S_628, and M_944, respectively,
representing increments of 13.94%, 6.05%, and 0.26%, respectively, higher than
the best existing methods on the same benchmark training datasets.

Conclusion: The data indicate that PseU-ST is a very competitive prediction model
for identifying RNA Ψ sites in H. sapiens, M. musculus, and S. cerevisiae. In addition,
we found that the Position-specific trinucleotide propensity based on single strand
(PSTNPss) and Position-specific of three nucleotides (PS3) features play an important
role in Ψ site identification. The source code for PseU-ST and the data are obtainable
in our GitHub repository (https://github.com/jluzhangxinrubio/PseU-ST).
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1 Introduction

Pseudouridine (Ψ) is one of the most abundant RNA
modifications found in many RNAs, such as rRNA, mRNA, tRNA,
and snRNA et al. (Charette and Gray, 2000). Research on Ψ has been
developing since its discovery in 1957. Many studies have shown that
Ψ plays a key role in several bioprocesses, including the maintenance
of RNA construction stability (Boo and Kim, 2020), the metabolism of
RNA (Carlile et al., 2014; Schwartz et al., 2014), and the RNA-protein
or RNA-RNA interactions (Basak and Query, 2014). Previous studies
also found that Ψmutations are related to many cancers, such us lung
and stomach cancer (Itoh et al., 1989; Penzo et al., 2017; Cao et al.,
2021). The key to studying the various biochemical functions and
mechanisms ofΨ is to identify theΨ sites. However, identifyingΨ sites
using experimental methods is time-consuming and expensive
(Adachi et al., 2019). Therefore, it is necessary to develop
computational methods which can accurately predict Ψ sites based
on the RNA sequence information.

In recent years, many computational predictors of Ψ sites have
been developed to complement experimental studies. Li et al. (2015)
established the first computational model to predict Ψ sites in S.
cerevisiae and H. sapiens, named PPUS, using support vector machine
(SVM) algorithms. Similarly, Chen et al. (2016) established a SVM
model called iRNA-PseU by combining the encoding schemes of
pseudo-nucleotide composition and nucleotide chemical property
(NCP) to predict Ψ sites in 2016. Subsequently, He et al. (2018)
developed another SVM classifier called PseUI, which extracts RNA
sequence features using five different encoding schemes. Tahir et al.
(2019) established a convolutional neural network (CNN) model,
named iPseU-CNN, which employs the binary encoding scheme.
In 2020, Liu et al. (2020) proposed XG-PseU using eXtreme
Gradient Boosting (XGBoost) algorithms to predict Ψ sites. In the
same year, Bi et al. (2020) created an ensemble model called
EnsemPseU, which integrates random forest (RF),SVM, Naïve
Bayes (NB), XGBoost, and k-nearest neighbours (KNN). Lv et al.
(2020) developed an RF-based method called RF-PseU, which applies
a light gradient boosting machine (lightGBM) algorithms to identifyΨ
sites. Mu et al. (2020) presented a layered ensemble model designated
as iPseU-Layer, which applies classic RF to predict Ψ sites. Then, Li
et al. (2021b) proposed a computational model called Porpoise, which
selects four optimal types of features and fed them into a stacked
model to predict Ψ sites. Zhuang et al. (2021) proposed PseUdeep, a
deep learning framework, and Wang et al. (2021) proposed a feature
fusion predictor named PsoEL-PseU in the same year; however, their
performance are unsatisfactory. The accuracy scores of the best
existing methods mentioned above are 79.70%, 81.69%, and 89.34%
in H. sapiens, S. cerevisiae, and M. musculus, respectively, so there is
still much opportunity for improvement.

In this study, we proposed a new model called PseU-ST to identify
Ψ sites in H. sapiens, S. cerevisiae, and M. musculus. First, we
thoroughly tested almost all of the available RNA sequence
encoding schemes in the iLearnPlus software package with seven
most popular machine learning algorithms and selected the best six
types of encoding schemes and four machine learning algorithms (Cui
et al., 2022). We then sorted the feature importance of the six encoding
schemes separately using chi-square and selected the optimal features
for each encoding scheme using incremental feature selection (IFS)
algorithms. We used the cross-validation tests to evaluate and select
the optimal feature and base-classifier combinations for each species.

Next, we employed a stacking strategy to establish a predictive model.
The results demonstrated that PseU-ST achieved better prediction
performance compared with other existing models. Therefore, PseU-
ST is a highly competitive prediction model for identifying RNA Ψ
sites in H. sapiens, S. cerevisiae, and M. musculus.

2 Materials and methods

2.1 The framework of PseU-ST

The general framework design of PseU-ST is shown in Figure 1.
The framework of PseU-ST had five major steps. Step 1, we saved the
training datasets and the independent test datasets from online
databases (Chen et al., 2016). Step 2, we thoroughly tested almost
all of the available RNA sequence encoding schemes in the iLearnPlus
software package with seven most popular machine learning
algorithms and selected the best six encoding schemes and four
algorithms. Step 3, we sorted the feature importance of the six
encoding schemes separately using chi-square and selected the
optimal features for each encoding scheme using IFS algorithms.
We then built models using different combinations of optimal
features and selected the optimal feature combinations for each
species. Step 4, we built RF, SVM, Gaussian Naive Bayes (GaNB),
and logistic regression (LR) models separately using the optimal
feature combination selected in the forward step as the preliminary
base-classifier; LR was used as the meta-classifier, and we built a series
of stacked models by using different base-classifier combinations and
selected the best base-classifier combination for each species. Step 5,
we compared the predictive performance of the optimised stacked
model in 5-fold cross-validation and independent tests with those of
other existing models.

2.2 Dataset collection

Chen et al. (Chen et al., 2016) collected datasets from RMBase
(Sun et al., 2016) to identify Ψ sites by machine learning methods.
First, RNA fragments with uridine (U) in the center were collected
by sliding the (2ξ + 1)-tuple nucleotide window along the RNA
sequences; when the center of RNA sample is confirmed asΨ site by
experiment, it is considered positive, otherwise it is negative. Then,
the samples with ≥60% paired sequence identity were screened out
with any other samples in the same class using CD-HIT software,
and the negative and positive subsets were made to have the same
size using a random-picking procedure. The training datasets
contained three datasets, they were H_990 (H. sapiens), M_944
(M. musculus), and S_628 (S. cerevisiae), while there were only two
species, namely H_200 (H. sapiens) and S_200 (S. cerevisiae) in the
independent testing datasets. Both the training and independent
testing datasets had half-positive and half-negative samples. In
addition, Chen et al. evaluated the performance of the predictor in
identifying Ψ sites with different ξ values and found that when ξ =
10, the accuracy of H. sapiens orM. musculus reached a peak value,
whereas that of S. cerevisiae reached a peak value when ξ = 15. Thus,
the RNA sequence lengths in H_990 and M_944 were both 21 nt,
and that in S_628 was 31 nt. The RNA sequence lengths in H_
200 and S_200 were 21 and 31 nt, respectively. In recent years, the
models mentioned in the introduction have all used the same
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datasets. In our study, we built the PseU-ST models using the same
datasets. Detailed information on these datasets is presented in
Table 1. Benchmark datasets were downloaded from http://lin-
group.cn/server/iRNAPseu/data.

2.3 Feature extraction

In the computational model construction, feature extraction is a
critical step. In our study, we thoroughly tested almost all of the
available RNA sequence encoding schemes in the iLearnPlus software
package (Chen et al., 2021). Then, according to their predictive
performance, the best six encoding schemes were selected to
determine the optimal feature combinations, including enhanced
nucleic acid composition (ENAC), binary features, NCP, position-
specific trinucleotide propensity based on single-strand (PSTNPss),
position-specific of two nucleotides (PS2), and position-specific of
three nucleotides (PS3) (Chen et al., 2017).

2.3.1 Enhanced nucleic acid composition
ENAC calculates the nucleic acid composition based on fixed

length window (the default value is 5) of the sequence, the
window slides from the 5′end of the RNA sequence to the 3′ end
continuously, and encodes the RNA sequence into equal length feature
vectors.

2.3.2 Binary feature (also called one-hot)
In binary encoding, four-dimensional binary vectors are used

to represent nucleotides, for example, the A, C, G, and U in RNA

are encoded to (1 0 0 0), (0 1 0 0), (0 0 1 0), and (0 0 0 1),
respectively.

2.3.3 Nucleotide chemical property
According to the differences of chemical bonds and chemical

structures, the four nucleotides of RNA sequences (ACGU) are
classified into three different classes, as shown in Table 2.

Based on their different chemical properties, we can use three-
dimensional coordinates to encode A, C, G, and U, they are encoded as
(1,1,1), (0,0,1), (0,1,0), and (1,0,0), respectively.

2.3.4 Position-specific trinucleotide propensity
based on single strand

The PSTNPss encodes DNA or RNA sequences using statistical
rule. Generally, there were 43 (i.e. 64) trinucleotides, for example,
AAA, AAC, AAG, UUU (TTT). Thus, for a given RNA sequence of

FIGURE 1
The overall framework of PseU-ST. There are five major steps, including dataset collection, feature extraction, feature selection, stacked model
optimisation, and model evaluation.

TABLE 1 Training and independent dataset information.

Species Datasets Length (bp) Positive samples Negative samples

H. sapiens H_990 (training) 21 495 495

H_200 (testing) 21 100 100

S. cerevisiae S_628 (training) 31 314 314

S_200 (testing) 31 100 100

M. musculus M_44 (training) 21 472 472

— — — —

TABLE 2 Chemical structure of each nucleotide (Chen et al., 2015).

Chemical property Class Nucleotides

Ring Structure Purine A, G

Pyrimidine C, U

Functional Group Amino A, C

Keto G, U

Hydrogen Bond Strong C, G

Weak A, U
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L-bp length, the position specificity of trinucleotide is defined as a 64 ×
(L-2) Matrix:

Z �
Z1,1 Z1,2 / Z1,L−2
Z2,1 Z2,2 / Z2,L−2
..
. ..

.
1 ..

.

Z64,1 Z64,2 / Z64,L−2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (1)

where

Zi,j � F+ 3meri
∣∣∣∣ j( ) − F− 3meri

∣∣∣∣ j( ), i � 1, 2, . . . , 64; j � 1, 2, . . . , L − 2

(2)
F+(3mer i |j) and F

− (3mer i |j) respectively indicate the occurrence
frequency of the ith trinucleotide (3meri) at the jth position in the
positive (S+) and negative (S−) datasets, and where 3mer1 = AAA,
3mer2 = AAC, and 3mer64 = UUU. Thus, an L-bp-long RNA sequence
is denoted as:

S � ∅1,∅2, . . . ,∅L−2[ ]T (3)
where T is the transpose operator and ∅u is expressed as:

∅u �
Z1,u , whenNuNu+1Nu+2 � AAA
Z2,u , whenNuNu+1Nu+2 � AAG

..

.

Z64,u , whenNuNu+1Nu+2 � UUU

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(4)

Thus, in our study, the samples are denoted by 21–2 = 19 PSTNPss
features in H_990 and M_944, and the samples are coded by 31–2 =
29 PSTNPss features in S_628.

2.3.5 Position-specific of two nucleotides (PS2) and
position-specific of three nucleotides (PS3)

There are 16 (i.e. 4 × 4) pairs of adjacent paired nucleotides, e.g. AA/
AT/AG ...; therefore, a single variable representing such a paired nucleotide
can be encoded as 16 binary variables and becomes binary. For example,
AA is expressed as (1000000000000000), AC is (0100000000000000) . . .,
and AAC is (10000000000000000100000000000000). PS3 is encoded by
three adjacent nucleotides (4 × 4 × 4 = 64) in a similar manner.

2.4 Feature selection

A helpful method to remove redundancy and avoid over-fitting
in computational modelling is feature selection as it plays a crucial
role in improving the model performance (Jones et al., 2021; Suresh
et al., 2022). To effectively represent sequences, in this study, we
first sorted the feature importance of the six encoding schemes
separately using a chi-square test and selected the optimal feature
set for each of them using IFS algorithms (Lv et al., 2020; Zhang
et al., 2021). Subsequently, we determined the optimal feature
combinations. We trained the optimal features of the six
encoding schemes using the best four algorithms selected in the
stacking ensemble learning model section and ranked them
according to accuracy (ACC). Then, we used the first-ranked
feature to build the PseU-ST model, added the second feature to
build a new model, and then added the third feature until all
obtained features were added. Finally, we selected the optimal
feature combinations for each species.

2.5 Stacking ensemble learning models

The stacking strategy can combine information from multiple
classifiers to generate a more stable stacking model. It is a very useful
integrated learning method that has been successfully applied to
bioinformatics (Mishra et al., 2019; Li et al., 2021a). The “mlxtend”
package in python (Raschka, 2018) provides a stacking cross-
validation algorithm, which prepares input data for meta-level
classifier by extending the standard stacking cross-validation
algorithm. Moreover. The stacking strategy can be implemented
using this algorithm. The stacking strategy can minimise the
generalisation error rate of several predictive models (Su et al.,
2020) and effectively avoids over-fitting (Sherwani et al., 2021). In
this study, we employed a stacking strategy to establish a predictive
model for RNAΨ sites. The stacking learning strategy has two major
steps. Step 1, we built a series of classifiers, called base-classifiers. Step
2, we used the outputs obtained in the previous step of the base-
classifiers as the input to train another classifier, called meta-classifiers.

In our study, we assessed the seven most popular algorithms: RF,
LR, SVM, GaNB, Adaptive Boosting (AdaBoost), XGBoost, and
Gradient Boosting Decision Tree (GBDT). RF is an integrated
learning algorithm based on a decision tree. It can obtain accurate
and stable predictions by building multiple decision trees and merging
them. RF is one of the commonly used algorithms in bioinformatics
(Lv et al., 2020; El Allali et al., 2021; Yin et al., 2021). LR is a generalised
linear classification algorithm, it uses the sigmod function for non-
linear mapping of all data to limit the prediction value to [0,1] and
reduces the prediction range to classify samples. LR is a common
machine learning method (Wei et al., 2020; Li and Wang, 2021; Zhu
et al., 2021). SVM is another linear classification algorithm that is one
of the most popular algorithms in computational biology (Chen et al.,
2016; He et al., 2018). The decision boundary of SVM is to find an
optimal separating hyperplane to segment samples. GaNB classifies
sample data using probability and statistical methods based on the
Bayesian theorem, assuming that the feature conditions are
independent of each other. GaNB is also a commonly used
algorithm (Yan et al., 2020; Shah et al., 2022). AdaBoost, XGBoost,
and GBDT are all boostingmodels. They learn using different methods
and form a strong classifier. They are widely used in bioinformatics

FIGURE 2
The accuracy of the fourmodels trained using the best six encoding
schemes for H. sapiens, S. cerevisiae, and M. musculus.
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(Liu et al., 2020; El Allali et al., 2021; Jayashree et al., 2022; Niu et al.,
2022).

For each algorithm, we selected default parameters for training.
For example, we set the tree numbers as 100 and the tree range as 100:
1000:100 for RF. For SVM, the kernel function selected rbf, the penalty
parameter selected 1.0, and the penalty range and gamma range was
1.0:15.0:1.0 and −10.0:5.0:1.0, respectively. For XGBoost, the booster
parameter selected gbtree, the max depth was set as 3, and the penalty
range was 3:10:1. Based on these parameters, we selected the best four
algorithms for training the stacked models through an extensive
performance comparison. Subsequently, we trained the optimal
feature combinations of the three species that were previously
determined using the best four algorithms as the candidate base
classifier. We trained the stacked models using LR as the meta-
classifier, and we evaluated the different combinations of base
classifiers to select the best base-classifier combination as the final
model.

2.6 Evaluation metrics

We used several widely used performance metrics to evaluate and
compare the function of PseU-ST and other existing methods. The
metrics are sensitivity (Sn), specificity (Sp), accuracy (ACC),
Matthew’s Correlation Coefficient (MCC), and area under the

receiver operating curve (AUC) (Mu et al., 2020; Li et al., 2021a;
Zhuang et al., 2021). Sn, Sp, ACC, and MCC are defined as follows:

Sn � TP
TP + FN

(5)

Sp � TN
FP + TN

(6)

ACC � TP + TN
TP + TN + FP + FN

(7)

MCC � TP × TN − FP × FN�������������������������������������������
TP + FP( ) × TP + FN( ) × TN + FP( ) × TN + FN( )√

(8)
where TP, TN, FP, and FN represent the true positive, true negative,
false positive, and false negative, respectively. We drew receiver
operating characteristic (ROC) curves with 1-Sp as abscissa and Sn
as ordinate and calculated AUC values.

3 Results and discussion

3.1 Determine the optimal feature
combinations

First, we thoroughly tested almost all of the RNA sequence
encoding schemes available in the iLearnPlus software package
with seven widely used machine learning algorithms, and built
models for each algorithm with default parameters. Then, the best
six encoding schemes and four machine learning algorithms were
selected to build the stacked models. The best six encoding schemes
were ENAC, binary feature, NCP, PSTNPss, PS2, and PS3, and the best
four algorithms were LR, RF, SVM, and GaNB. For each algorithm, we
trained six separate classifier features and ranked them according to
the ACC. The ACC of each model is shown in Figure 2.

As shown in Figure 2, RF achieved the highest ACC for H_990 and
M_944, whereas LR reached the highest ACC for S_628. The PSTNPss
and PS3 features formed more contributions to model than the other
features. For H_990 and M_944, the RF model trained using PSTNPss
features outperformed the other features. Whereas the LR model
trained using PS3 features outperformed the other features for S_
628. Overall, the contributions to the model performance of the six
features were PSTNPss > PS3 > PS2 > binary > ENAC > NCP for H.
sapiens, PS3 > PSTNPss > PS2 > binary > ENAC > NCP for S.

FIGURE 3
The accuracy curves forH. sapiens (A), S. cerevisiae (B), andM.musculus (C) of the position-specific of three nucleotides encoding schemes. (Due to the
excessive dimensions of position-specific of three nucleotides features, 1000 features were selected for drawing for convenience).

FIGURE 4
The performances of the four base-classifiers for H. sapiens, S.
cerevisiae, and M. musculus.
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cerevisiae, and PSTNPss > PS3 > ENAC > PS2 > binary > NCP forM.
musculus. However, no single type of feature consistently
outperformed other features for any species, and no single
algorithm consistently outperformed other algorithms for any
species. We can see that a single model using a single feature is
unsatisfactory; therefore, we may need to integrate learning strategies
to improve model performance.

In the experiment, we found that the PS3 features made a
considerable contribution to the model performance, and the
feature vector dimensions of PS3 were particularly high, up to
more than 1000 dimensions. In theory, the more features, the more
likely it is to provide features with strong discrimination ability in
limited training samples. However, too many features may cause
redundancy and “dimension disaster” (Suresh et al., 2022), which
will lead to a long training time of the model and the risk of over-
fitting, and reduce the generalisation ability of the model. Feature
selection can remove some redundant features, reduce training time,

select truly relevant features, and enhance the prediction performance
of the model (Jones et al., 2021; Zhang et al., 2021; Suresh et al., 2022).

Based on the LR algorithm, we employed a chi-square test and the
IFS strategy to determine the optimal features (Dao et al., 2019; Lv
et al., 2020; Zhang et al., 2021) were employed. We first ranked the
feature importance of the six encoding schemes using a chi-square test
separately, then set a whole ranked features set, named F: F = {f 1, f 2, ...f

n−1, f n}, where n represent the features number. We tested the training
dataset using the IFS by performing 5-fold cross-validation tests. In
each iteration, IFS added a feature in F to the preliminary feature
subset to build n feature subsets. When the highest ACC value was
achieved, optimal feature subsets were obtained. The ACC curves for
H. sapiens, S. cerevisiae, andM. musculus of PS3 encoding schemes are
shown in Figure 3. When the number of features was the top 124, 276,
and 115, we obtained the best predictive accuracies of 71.62%, 80.57%,
and 76.86% for identifying Ψ sites in H. sapiens, S. cerevisiae, and M.
musculus, respectively (Figure 3).

TABLE 3 The performances of the base-classifier combinations for the three species.

Species Base classifiers
combination

5-Fold cross- validation Independent testing

ACC
(%)

MCC
(%)

Sn
(%)

Sp
(%)<

AUC
(%)

ACC
(%)

MCC
(%)

Sn
(%)

Sp
(%)

AUC
(%)

H. sapiens RF + LR 93.64 87.28 94.34 92.93 98.56 89.00 79.02 97.00 81.00 96.51

RF + LR + SVM 93.43 86.88 94.34 92.53 98.42 86.50 73.84 94.00 79.00 95.47

RF + LR + SVM + GaNB 92.93 85.88 93.94 91.92 98.41 86.00 74.17 97.00 74.00 95.56

S. cerevisiae RF + LR 87.74 75.49 86.94 88.54 95.95 83.50 67.00 83.00 84.00 89.00

RF + LR + SVM 87.74 75.49 86.94 88.54 95.25 82.50 65.00 82.00 83.00 87.64

RF + LR + SVM + GaNB 88.06 76.13 86.94 89.17 95.17 81.50 63.00 81.00 82.00 86.48

M. musculus RF + LR 89.60 79.21 90.66 88.54 96.20

RF + LR + SVM 87.47 74.96 88.32 86.62 95.29

RF + LR + SVM + GaNB 87.37 74.74 88.11 86.62 95.28

Notes: Bold values indicate the best performance in terms of the corresponding measure.

FIGURE 5
Receiver operating characteristic curves for the base classifiers and the stacked models of different base-classifier combinations during 5-fold cross-
validation. The vertical coordinate is the true positive rate (sensitivity), while the horizontal coordinate is the false positive rate (1-specificity). [(A)H. sapiens, (B)
S. cerevisiae and (C) M. musculus].
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The ACC curves of the ENAC, binary, NCP, and PS2 encoding
schemes are shown in Supplementary Figures S1–4. The optimal
features are: the top 46 from 80 of ENAC, top 23 from 84 of binary,
top 34 from 63 of NCP, and top 100 from 320 of PS2 forH. sapiens, the
top 21 from 120 of ENAC, top 40 from 124 of binary, top 37 from 93 of
NCP, and top 116 from 480 of PS2 for S. cerevisiae, and the top 17 from
80 of ENAC, top 49 from 84 of binary, top 44 from 63 of NCP, and top
63 from 320 of PS2 for M. musculus. The feature dimension of the
PSTNPss is small; therefore, all PSTNPss features are selected.

Next, we examined the best combination of features. We used the
first-ranked feature to build the PseU-STmodel, added the second feature
to build a new model, and then the third feature, until all of the obtained
features were added. The performances of the feature combinations forH.
sapiens, S. cerevisiae, and M. musculus are displayed in Supplementary
Table S1. The optimal feature combination was PS3 + PSTNPss for S.
cerevisiae, and that for M. musculus was PSTNPss + PS3, which both
achieved the best performance of all metrics in either 5-fold cross-
validation or independent testing (Supplementary Table S1). For H.

TABLE 4 Performance comparison of PseU-ST and other existing methods on the same benchmark training datasets.

Species H. sapiens S. cerevisiae M. musculus

Method ACC (%) MCC (%) Sn (%) Sp (%) ACC (%) MCC (%) Sn (%) Sp (%) ACC (%) MCC (%) Sn (%) Sp
(%)

PseU-ST 93.64 87.28 94.34 92.93 87.74 75.49 86.94 88.54 89.60 79.21 90.66 88.54

PseUdeep 66.99 35.00 74.47 60.71 72.73 45.00 61.75 78.13 72.45 44.00 66.70 77.36

PsoEL-PseU 70.80 42.00 66.90 74.70 80.30 62.00 69.10 91.40 76.50 53.00 82.20 70.80

Porpoise 78.53 58.45 89.11 67.94 81.69 63.38 81.21 82.17 77.75 55.55 77.83 77.67

iPseU-Layer 79.70 60.00 71.18 88.22 80.08 60.00 77.92 81.82 89.34 79.00 84.68 93.76

RF-PseU (10-
fold)

64.30 29.00 66.10 62.60 74.80 49.00 77.20 72.40 74.80 50.00 73.10 76.50

RF-PseU (LOO) 64.00 29.00 65.90 62.60 75.80 52.00 78.20 73.40 74.50 48.00 72.70 75.20

EnsemPseU 66.28 33.00 63.46 69.09 74.16 49.00 73.88 74.45 73.85 48.00 75.43 72.25

XG-PseU 65.44 31.00 63.64 67.24 68.15 37.00 66.84 69.45 72.03 45.00 76.48 67.57

iPseU-CNN 66.68 34.00 65.00 68.78 68.15 37.00 66.36 70.45 71.81 44.00 74.79 69.11

PseUI 64.24 28.00 64.85 63.64 65.13 30.00 62.74 67.52 70.44 41.00 74.58 66.31

iRNA-PseU 60.40 21.00 61.01 59.80 64.49 29.00 64.65 64.33 69.07 38.00 73.31 64.83

Notes: 10-fold–10-fold cross-validation; LOO—leave-one-out cross-validation. Bold values indicate the performance of PseU-ST.

TABLE 5 Performance comparison of PseU-ST and other existing methods on the same independent test datasets.

Species H. sapiens S. cerevisiae

Method ACC (%) MCC (%) Sn (%) Sp (%) ACC (%) MCC (%) Sn (%) Sp (%)

PseU-ST 89.00 79.02 97.00 81.00 83.50 67.00 83.00 84.00

PseUdeep 66.18 33.00 73.53 58.82 80.88 62.00 77.45 84.31

PsoEL-PseU 75.50 51.00 76.00 75.00 82.00 64.00 83.00 81.00

Porpoise 77.35 55.13 82.30 72.40 83.50 67.27 88.00 79.00

iPseU-Layer 71.00 43.00 63.00 79.00 72.50 45.00 68.00 77.00

RF-PseU (10-fold) 75.00 50.00 78.00 72.00 77.00 54.00 75.00 79.00

RF-PseU (LOO) 74.00 48.00 74.00 74.00 74.50 49.00 70.00 79.00

EnsemPseU 69.50 39.00 73.00 66.00 75.00 51.00 85.00 65.00

XG-PseU 67.50 35.00 68.00 67.00 71.00 42.14 75.00 67.00

iPseU-CNN 69.00 40.00 77.72 60.81 73.50 47.00 68.76 77.82

PseUI 65.50 31.00 64.85 68.00 68.50 37.00 65.00 72.00

iRNA-PseU 61.50 23.00 58.00 65.00 60.00 20.00 63.00 57.00

Notes: 10-fold–10-fold cross-validation; LOO—leave-one-out cross-validation. Bold values indicate the performance of PseU-ST.
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sapiens, PSTNPss + PS3 achieved the best performance in 5-fold cross-
validation, but the MCC and Sn of PSTNPss + PS3 + PS2 were better in
independent testing, the ACC and Sp of PSTNPss + PS3 + PS2 + binary +
ENAC were better in independent testing, but just 0.28%, 1.00%, 0.5%,
and 7% higher, respectively. Therefore, PSTNPss + PS3was selected as the
optimal feature combination for H. sapiens.

3.2 Evaluation of the base-classifier
combinations

We built integrated learning models using the stacking strategy.
First, we built the RF, LR, SVM, and GaNB models separately as the
candidate base classifier using the optimal feature combination
selected in the forward step, namely, PSTNPss + PS3 for H.
sapiens, PS3 + PSTNPss for S. cerevisiae, and PSTNPss + PS3 for
M. musculus. We compared the performance of the four models for
each species and ranked them according to ACC. The performances of
the four models for each species are exhibited in Figure 4. The order of
best performance the four models for each species was RF, LR, SVM,
and GaNB (Figure 4). The performances of the RF models were good,
but there was obvious over-fitting inH. sapiens and S. cerevisiae, so we
employed the stacking strategy. We trained the stacked model using
LR as the meta-classifier to determine the optimal base-classifiers. We
assessed three different base-classifier combinations, which were RF +
LR, RF + LR + SVM, and RF + LR + SVM + GaNB. The performances
of the three combinations for each species is listed in Table 3. For H.
sapiens, the combination of RF + LR achieved the best performance of
all metrics in either cross validation or independent testing (Table 3).
For M. musculus, the combination of RF + LR achieved the optimal
performance of all metrics in cross validation too. For S. cerevisiae, the
combination of RF + LR + SVM + GaNB achieved the best
performance for almost all of the metrics in cross validation, but
the performance of RF + LR had the best performance for all metrics in
independent testing. Comparing the performance of the two
combinations, it was found that in cross validation, the ACC,
MCC, and Sp of RF + LR + SVM + GaNB were 0.32%, 0.64%, and
0.63% higher than those of RF + LR, but the AUC was lower by 0.78%,
and the Sn was equal. In independent testing, the performance of RF +
LR was better than that of RF + LR + SVM + GaNB in terms of all
performance metrics, with ACC, MCC, Sn, Sp, and AUC being 2.00%,
4.00%, 2.00%, 2.00%, and 2.52% higher, respectively. Therefore, RF +
LR was selected as the optimal base-classifier combination for S.
cerevisiae.

We further drew ROC curves to assess the performance of base
classifiers and stacked models of different combinations. As seen in
Figure 5, in cross validation, the combination of RF + LR reached the
optimal performance of the AUC in all three species, H. sapiens, S.
cerevisiae, and M. musculus, which is 98.56%, 95.95%, and 96.20%,
respectively. Taken together, we selected RF + LR as the optimal base-
classifier combination for the stacked model and named this stacked
model PseU-ST.

3.3 Comparison with the other existing
methods

To further examine the performance of PseU-ST, we compared it
with other existing methods using the same benchmark training, listed
in Tables 4, 5. As shown in Table 4, compared with other existing
methods using the same training datasets, PseU-ST performed best in
three important measures across all three species, that is, ACC, MCC,
and Sn. For H_990, the ACC and MCC of PseU-ST were 13.94% and
27.28% higher, respectively, than those of the second-best method,
iPseU-Layer. The Sn of PseU-ST was 5.23% higher than that of the
second-best method, Porpoise. For S_628, the ACC, MCC, and Sn of
PseU-ST were 6.05%, 12.11%, and 5.73% higher, respectively, than
those of the second-best method, Porpoise. For M_944, the ACC,
MCC, and Sn of PseU-ST were 0.26%, 0.21%, and 5.98% higher,
respectively, than those of the second-best method, iPseU-Layer. In
addition, for H_990, the Sp of PseU-ST was 4.71% higher than that of
the second-best method, iPseU-Layer.

To examine if PseU-ST models are subjected to over-fitting, we
performed independent testing on independent test datasets to
validate the models. The performance comparison of PseU-ST and
other existing methods is presented in Table 5. As indicated, PseU-ST
performed the best in all four measures for H_200. The ACC, MCC,
and Sn of PseU-ST was 11.65%, 23.89%, and 14.70% higher,
respectively, than those of the second-best method, Porpoise, and
the Sp of PseU-ST was 2.00% higher than that of the second-best
method, iPseU-Layer.

Besides, there was little difference between the prediction
performance of independent and cross validation tests, for instance,
the ACC and MCC of PseU-ST on H_200 was 89.00% and 79.02%,
respectively, which is close to those of H_990 (93.64% and 87.28%,
respectively). PseU-ST obtained an ACC of 83.5% andMCC of 67.00%
on S_200, which are also very close to those of S_628 (87.74% and
75.49%, respectively), and there was no over-fitting.

FIGURE 6
Top 20 features of PseU-ST ranked according to feature scores for predicting RNA Ψ sites of (A) H. sapiens, (B) S. cerevisiae, and (C) M. musculus.
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In summary, compared with other existing models, PseU-ST
achieved better prediction performance and had obvious
advantages. PseU-ST is a highly competitive model for
identifying RNA Ψ sites in H. sapiens, S. cerevisiae, and M.
musculus.

3.4 The interpretation of model

To interpret the feature importance for the performance of the
PseU-ST models. We ranked the features in the model of all three
species according to feature scores and mapped the top 20 ranked
features of each species in Figure 6. The PSTNPss features played
an important role in the PseU-ST models; the top three
important features for all three species models were PSTNPss
features, and their scores were significantly higher than those of
other features (Figure 6). This indicates that the PSTNP features
plays a crucial role in PseU-ST models and makes more
contributions to the performance of PseU-ST. Owing to the
large proportion of PS3 features in the PseU-ST models, the
contribution of these features to the prediction performance
cannot be ignored.

4 Conclusion

In our study, a novel stacked ensemble-learning method named
PseU-ST (available at https://github.com/jluzhangxinrubio/PseU-ST)
was developed to identify RNA Ψ sites in H. sapiens, S. cerevisiae, and
M. musculus with a more stable and accurate performance. We
thoroughly evaluated almost all of the RNA sequence encoding
schemes available in the iLearnPlus software package and tested
seven most popular machine learning algorithms to determine the
optimal feature and best base-classifier combinations. Finally, we
developed an optimised model for each of the three species. Owing
to the adoption of a stacking strategy and the employ of optimal
feature selection algorithms, PseU-ST achieved better performance on
either cross-validation or independent tests compared with the other
existing models. In addition, we interpreted the feature importance for
the PseU-ST models, in which PSTNPss features were shown to play
an important role.

The strategies used in this study are universal and they can be
employed to predict other DNA/RNAmodification sites, such as DNA
N4-methylcytosine and 5-methylcytosine sites. We believe PseU-ST
will be a powerful tool for promoting a community-wide works for
identifying Ψ sites and supplying high-quality identified Ψ sites for
biological validation.
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