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Introduction: Systemic lupus erythematosus (SLE) is an autoimmune disorder
characterized by the production of autoantibodies, immune complex deposition,
and tissue/organ damage. In this study, we aimed to identify molecular features
and signaling pathways associated with SLE severity using RNA sequencing (RNA-
seq), single-cell RNA sequencing (scRNA-seq), and clinical parameters.

Methods: We analyzed transcriptome profiles of 45 SLE patients, grouped into
mild (mSLE, SLEDAI ≤ 9) and severe (sSLE, SLEDAI > 9) based on SLE Disease
Activity Index (SLEDAI) scores. We also collected clinical data on anti-dsDNA, ANA,
ESR, CRP, snRNP, AHA, and anti-Smith antibody status for each patient.

Results: By comparing gene expression across groups, we identified 12 differentially
expressed genes (DEGs), including 7 upregulated (CEACAM6, UCHL1, ARFGEF3,
AMPH, SERPINB10, TACSTD2, and OTX1) and 5 downregulated (SORBS2, TRIM64B,
SORCS3, DRAXIN, and PCDHGA10) DEGs in sSLE compared to mSLE. Furthermore,
using the CIBERSORT algorithm, we found that Treg cells were significantly
decreased in sSLE and negatively correlated with AMPH expression, which was
mainly expressed in Treg cells from SLE patients according to public scRNA-seq
data (GSE135779).

Discussion: Overall, our findings shed light on the molecular mechanisms
underlying SLE severity and provide insight into potential therapeutic targets.
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1 Introduction

SLE is a disease of the immune system caused by excessive activation of immune cells and
secretion of large amounts of autoantibodies (Tsokos, 2011). The dysregulation of innate and
adaptive immunity leads to the occurrence of diseases. It has been reported that the imbalance of
T cells, B cells, and dendritic cells are related to the pathogenesis (Li et al., 2021), especially CD4+

T cells imbalance (Yuliasih et al., 2019). The imbalance of the Th17/Treg ratio affects the
occurrence and development of SLE inflammation (Pan et al., 2020). And aggravates organ
damage, so themechanism of regulatory T cells (Treg) defect is constantly explored. For example,
OX40L/OX40 axis leads to Foxp3+ T cells decline (Jacquemin et al., 2018), Oxidative stress
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activates mTORC1 and mTORC2 pathways and inhibits Treg
development. A low dose of IL-2 increased the number of
functional and thymus-derived Foxp3+ T cell populations
(Scheinecker et al., 2020; Grasshoff et al., 2021). Inhibition of
glycolysis, lipid metabolism, and mTOR signaling can reverse Th17/
Treg imbalance (Shan et al., 2020). Direct injection of Treg cells into
lupus mice controlled inflammatory responses and improved
pathological lesions (Scalapino and Daikh, 2009). These studies have
fully demonstrated that enhancing the number and function of Treg
cells is beneficial for SLE patients (Yang et al., 2011). However, the role
of Treg in contributing to the severity of SLE is not well understood.

In order to investigate the pathogenesis of SLE, many high-
throughput sequencing studies have been conducted in recent years.
For example, Nikolaos I Panousis et al. (Panousis et al., 2019)
conducted transcriptome sequencing and gene analysis of SLE
blood mRNAs and found targeted sites for SLE susceptibility and
severity. Evan et al. (Der et al., 2017) identified T cell populations in
the renal tissue of lupus kidneys by sequencing. In a cohort study of
136 lupus patients and 89 healthy controls in an East Asian
population, Nakano et al. (2022) investigated the molecular
characteristics of immune cells in terms of disease status and
disease activity and revealed that disease activity had the greatest
impact on clinical heterogeneity. Here, we explored the
transcriptome characteristics of severe SLE in a Chinese
population using high-throughput sequencing technology.

Here, advanced transcriptome technology is applied to explore
the pathogenesis of SLE, and genes regulating the severity of SLE are
found, as well as changes in the severity of the disease that will affect
the distribution of Treg in SLE.

2 Materials and Methods

2.1 Sample collection

A total of 45 female SLE patients (n = 45, mean age 43.2 ±
13.85 years) were included in this study, all of whom were from
the Department of Rheumatology and Immunology of the First
Affiliated Hospital of Anhui Medical University from February
2021 to May 2022. All SLE subjects met at least four of SLE
classification criteria of the American College of Rheumatology
(ACR) (Font and Cervera, 1993). Disease activity was assessed
using the SLE Disease Activity Index (SLEDAI) (Liang et al.,
1989). The SLEDAI score was used to classify patients into mild
SLE (mSLE, SLEDAI≤9) and severe SLE (sSLE, SLEDAI >9). To
exclude confounding factors, blood was collected from all
patients on the second day of hospital admission, before
receiving any treatment. There were no other diseases such as
infection, cancer, or pregnancy. All patients had been off
medication for more than 1 year or had not taken any
medication. The study was approved by the Ethics Committee
of the First Affiliated Hospital of Anhui Medical University, and
all subjects provided written informed consent. Clinical
parameters of the patients are shown in Supplementary Table
S1. Whole blood samples (3–10 mL) were collected from each
patient, and PBMCs were extracted from each blood sample
according to the standard centrifugation method and sent to
BGI Genomics Company.

2.2 PBMC and RNA isolation

A total of 6 mL peripheral bloodwas collected from each sample, and
peripheral bloodmononuclear cells (PBMCs) were isolated using density
gradient centrifugation with Ficoll-Paque plus (17144003, Cytiva). After
washing twice in PBS, PBMCs were preserved in serum-free cell
lyophilization solution (abs9417, Absin) and were stored in liquid
nitrogen at −196°C until thawing, and sent to BGI Genomics
Company. Total RNA was extracted from cells using TriZol Reagent
(15596026, Thermo Fisher Scientific) according to the manufacturer’s
instructions. RNA quality control was conducted with a NanoDrop
spectrophotometer and an Agilent 2100 Bioanalyzer (Thermo Fisher
Scientific). Isolated RNA was stored at −80°C for use.

2.3 Sequencing platform and library
preparation

The librarywas prepared according toDNBSEQplatform process.
mRNA molecules were purified from total RNA using oligo (dT)-
attached magnetic beads. The purified mRNA molecules were
fragmented into small pieces using fragmentation reagent after a
certain period of reaction at an appropriate temperature. First-strand
cDNA was generated using random hexamer-primed reverse
transcription, followed by a second-strand cDNA synthesis. The
synthesized cDNA was subjected to end-repair and then was 3′
adenylated. Adapters were ligated to the ends of these 3′
adenylated cDNA fragments, and the resulting cDNA fragments
were amplified with adapters from previous step. PCR products
were purified with Ampure XP Beads (AGENCOURT) and
dissolved in EB solution. The library was validated on the Agilent
Technologies 2100 bioanalyzer. The double stranded PCR products
were heat-denatured and circularized by the splint oligo sequence.
The single-strand circular DNA (ssCir DNA) was formatted as the
final library. The library was amplified with phi29 to make DNA
nanoballs (DNBs), each of which contained more than 300 copies of
one molecular. The DNBs were load into the patterned nanoarray,
and single end 50 (pair-end 100/150) base reads were generated using
the combinatorial Probe-Anchor Synthesis (cPAS) method. The
qualified RNA samples were measured using the DNBSEQ
platform from BGI Genomics Company, and each sample yielded
an average of 6.67 Gb of raw sequencing data. When the samples were
mapped to the human reference genome hg19, the average matching
rate was 94.50%, and the average matching rate for the mapped gene
set was 66.29%. A total of 17,826 genes were detected.

2.4 Differentially expressed genes screening

Cufflinks software calculated gene expression values in fragments
per kb per million (FPKM). Dimension reduction and visualization of
data were generated using principal component analysis (PCA).
Differentially expressed genes (DEGs) were identified by the R
package “limma” (version: 3.40.2) and were visualized in volcano
plots. An adjusted p value of < 0.05 and a |log2FC|≥ 1were considered
to indicate a statistically and biologically significant difference. The
violin plot represents the gene sample according to log10 (gene
expression). A thick line (black) within the box indicates the mean.
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2.5 KEGG and GSEA enrichment analyses

Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analyses of the upregulated and downregulated DEGs
were performed using the R ClusterProfile package. A cutoff
criterion of p < 0.05 was used to indicate significant differences
in the KEGG pathways. The present study reports the KEGG
pathways. To explore the biological signaling pathway, hallmark
gene set enrichment analysis was performed using GSEA (v.4.1.0)
(Subramanian et al., 2005). KEGG pathways with significant
enrichment results were determined based on net enrichment
score (NES), gene ratio, and p value. Gene sets with |NES| > 1,
NOM p < 0.05, and FDR q < 0.25 were considered to be significantly
enriched.

2.6 Screening clinically relevant DEGs

Based on the patient’s clinical information, we screened DEGs
for six clinical indicators that are highly variable in SLE, namely,
ESR, CRP, SSA52, AHA (Marder, 2019), snRNP(Vollmer et al.,
2005; Marshak-Rothstein, 2006), and anti-Smith (Ahn et al., 2019).
UpSet bar charts were constructed using UpSetR (Conway et al.,
2017). The correlation between upregulated and downregulated
DEGs and SLEDAI was analyzed by Spearman’s correlation
coefficient and plotted using the R package “corrplot.” Protein‒
protein interaction (PPI) networks, assayed by STRING (http://
string-db.org/), were constructed using the top 10 scoring proteins
for further exploration of gene relationships in immune-related
pathways and imported into Cytoscape software for visualization.

2.7 Immune cell composition

The CIBERSORT algorithm (Newman et al., 2015) was used
to calculate the proportions of various immune cells for each
patient. The heatmap displays the proportion of 10 types of
immune cells in all samples. The R package “ggpubr” was
used to visualize the proportions of 10 types of immune cells
in the mSLE and sSLE groups. T-test statistics were used to
evaluate the proportion differences between groups, with p <
0.05 as a significant difference.

2.8 scRNA sequencing data mining

We retrieved the public single cell RNA sequencing (scRNA-
seq) dataset GSE135779, which consisted of 33 children with SLE
and 11 child normal controls. The Seurat (Korsunsky et al., 2019)
format data were merged by the hormony algorithm. After
filtering cells with a percentage of mitochondrial DNA >10%
and featured RNA <200 or >4000, we finally obtained
280,529 cells. We then used Seurat to identify highly variable
genes, dimensionality reduction, and standard unsupervised
clustering algorithms and determine the cell identity using the
marker gene list in the published Nature Immunology (Nehar-
Belaid et al., 2020). T cell subsets were extracted to examine the
expression of the above relevant genes.

3 Results

3.1 Identifying DEGs in severe and mild SLE

To investigate whether altered gene expression leads to the
severity of SLE, all patients were divided into mild SLE (mSLE,
SLEDAI≤9) and severe SLE (sSLE, SLEDAI>9) groups according to
the SLEDAI score. PCA (Figure 1A) showed that the patients in the
mSLE and sSLE groups were scattered and not completely
distinguishable, reflecting the heterogeneity of SLE, in agreement
with previous studies (Panousis et al., 2019).

Using the filtering criteria, we identified 180 upregulated DEGs
and 83 downregulated DEGs in sSLE (Figure 1B). Among them,
RUNDC3A (p = 4.37E−9, log2FC = 2.22), KLC3 (p = 1.77E−8,
log2FC = 3.11) and CA1 (p = 2.60E−8, log2FC = 3.55) were the most
upregulated, and CXXC4 (p = 8.95E−5, log2FC = −1.63), PTGDS
(p = 1.43E−4, log2FC = −1.46) and TSLP (p = 5.16E−3,
log2FC = −2.08) were the most downregulated (Table 1;
Figure 1C). KEGG analysis revealed that the upregulated DEGs
were significantly enriched in the TNF signaling pathway, IL-17
signaling pathway, NF-κB signaling pathway, neutrophil
extracellular trap formation, NOD-like receptor signaling
pathway, and other immune inflammation-related signaling
pathways (Figure 1D). Downregulated DEGs were significantly
enriched in the JAK-STAT signaling pathway, natural killer cell-
mediated cytotoxicity, cytokine‒cytokine receptor interaction,
complement, coagulation cascades, and antigen processing and
presentation (Figure 1E). We also performed GSEA enrichment
analysis, which showed that upregulated DEGs were significantly
enriched in four pathways, including Epstein‒Barr virus infection,
human cytomegalovirus infection, human T cell leukemia virus
1 infection, and influenza A infection (Figure 1F).

3.2 Identifying SLE phenotype-associated
DEGs

To further investigate the correlation between expression levels
and disease severity, we divided 45 SLE patients into phenotype-
positive and phenotype-negative groups according to the clinical
parameters ESR, CRP, SSA52, AHA, snRNP, and anti-Smith
antibody. Differentially expressed genes for six statuses were
classified into upregulated and downregulated DEGs. We used
the “Upset R” package to find the common and overlapping
genes across the six groups. As shown in Figures 2A, B, there
were some overlaps between the different clinical phenotypes.
We found that a large percentage of DEGs, 70.9% (572) of
upregulated DEGs and 78.2% (251) of downregulated DEGs, only
linked with one phenotype (Figures 2A, B). In addition, 1.1% (9) of
upregulated DEGs and only 1.6% (5) of downregulated DEGs were
observed in four phenotypes (Figures 2A, B). Among these genes, we
focused on seven upregulated DEGs (CEACAM6, UCHL1,
ARFGEF3, AMPH, SERPINB10, TACSTD2 and OTX1) and
5 downregulated DEGs (SORBS2, TRIM64B, SORCS3, DRAXIN
and PCDHGA10).

Correlation analysis showed that all 7 upregulated genes were
positively correlated with SLEDAI score (Figure 2C), with the largest
Spearman’s correlation coefficient of 0.33 for AMPH. AMPH showed

Frontiers in Genetics frontiersin.org03

Zhang et al. 10.3389/fgene.2023.1121359

http://string-db.org/
http://string-db.org/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1121359


upregulation in SLE patients with SSA52 (p = 7.8E-3, log2FC = 2.58),
AHA (p = 3.1E−3, log2FC = 2.02), ESR (p = 1.4E-4, log2FC = 3.46), and
CRP (p = 6.3E-4, log2FC = 2.86). All 5 downregulated genes were
negatively correlated with SLEDAI score (Figure 2D), with the highest
Spearman’s correlation coefficient of −0.34 for SORCS3.
SORCS3 showed downregulation in SLE patients with ESR (p =
4.5E−3, log2FC = −1.57), snRNP (p = 2.2E−4, log2FC = −2.10),
AHA (p = 4.8E−4, log2FC = −1.77), and anti-Smith (p = 8.6E−3,
log2FC = −1.53). A PPI network, using the web version of STRING,
showed that AMPH was linked with BIN1, EGF/EGFR, and CLTC
(Figure 2E) and that SORCS3 was linked with NGF, SLC39A12 and
VPS26A (Figure 2F), some of which have been implicated in SLE
etiology.

3.3 Relationship between the severity of SLE
and tregs

SLE patients usually present a disturbed proportion and aberrant
function of a series of immune cells. T cell and B cell abnormalities
have long been described in SLE and are thought to be central to the
disease process. To reveal whether immune cells affect SLE severity,
we introduced a CIBERSORT algorithm to infer the immune cell
proportion. Based on the bulk transcriptome data, CIBERSORT was
employed to calculate the proportions of 10 immune cell types in the
peripheral blood of mSLE and sSLE patients (Figure 3A). The results

showed that the proportions of Tregs in sSLE were significantly lower
than those in mSLE (Figure 3B). Furthermore, AMPH expression was
negatively correlated with the proportion of Tregs (Figure 3C).
Compared with mSLE, monocytes, neutrophils, resting mast cells,
M2 macrophages and memory-activated CD4+ T cells were slightly
higher in sSLE, while CD8+ T cells and resting natural killer (NK) cells
were lower, but they were not significant.

3.4 scRNA-seq validates AMPH-Treg
correlation

Through the analysis of the scRNA-seq dataset (GSE135779), we
obtained transcriptomes of 280,259 cells and identified eight main
subgroups, including T cells, monocytes, natural killing cells (NK cells),
B cells, plasma cells, erythrocytes, megakaryocytes and dendritic cells
(DCs), after removing doublets and correcting batch effects (Figure 4A).
Specifically, the T cells were further classified into 63,861 naive T cells
(SELL), 36,609 CD8+ T cells (CD8B), 28,732 T helper 2 cell (Th2, CD4,
GATA3), 14,845 Th17 (IL17RE) and 2,824 regulatory T cells (Tregs,
FOXP3) (Figures 4B, C). Taking advantage of the scRNA data, we
focused on examining the expression levels of 12 genes associated with
SLE severity in Treg cells. Among these genes, only four upregulated
genes (AMPH, UCHL1, SERPINB10, and TASTD2) and two
downregulated genes (DRAXIN and SORBS2) were observed. The
failure to extract the expression levels of other genes might be

FIGURE 1
Differential analysis of the blood transcriptomes between mSLE and sSLE. (A) PCA showed the characteristics of gene expression levels in
45 samples. Each dot indicates a sample. The red dot represents mSLE, whereas the blue dot represents sSLE. The proportion of variance explained is
indicated in parentheses. (B) Volcano plot describing the distribution of downregulated and upregulated DEGs. Green and red represent lower and higher
expression of genes in the corresponding group, respectively. X-axis: fold change; Y-axis: −log10 p value. (C) Violin plot analysis comparing the
distribution of the most significantly upregulated and downregulated five DEGs in sSLE and mSLE. (D,E) KEGG enrichment analysis of upregulated DEGs
(D) and downregulated DEGs (E). KEGG pathway enrichment analysis of key targets (top 10 are listed); the abscissa label represents the rich factor of
pathways. The colors of the dots represent the p values of enrichment, and the size of the dots represents the number of enriched genes. (F) Hallmark
gene set enrichment analysis (GSEA) showing pathways enriched in sSLE compared tomSLE. NES: normalized enrichment score; NOM p value: nominal p
value; FDR q-value: false discovery rate.
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attributed to the limited number of annotated Treg cells in this dataset
(Figure 4D).When comparing the expression levels of these genes in the
SLE groups and control groups, we consistently found that the
expression levels of AMPH and SERPINB10 were upregulated in the
SLE groups, indicating their potential involvement in Treg development
(Figure 4E).

5 Discussion

SLE is a complex autoimmune disease that involves multiple
immune cells. In this study, we compared the transcriptome profiles
for the sSLE and mSLE groups and identified 180 upregulated DEGs
and 83 downregulated DEGs in sSLE patients. KEGG and GSEA
pathway enrichment analyses revealed that DEGs were significantly
enriched in the TNF, NF−kappaB and IL−17 signaling pathways. By
overlapping phenotype-specific DEGs, we identified seven
upregulated DEGs (EACAM6, UCHL1, ARFGEF3, AMPH,
SERPINB10, TACSTD2, and OTX1) and five downregulated DEGs
(SOBS2, TRIM64B, SORCS3, DRAXIN and PCDHGA10). Among
them, we found that AMPH was positively correlated with the
SLEDAI and negatively correlated with the proportion of Tregs.
scRNA-seq data verified that AMPH is involved in Treg development.

Measuring the severity of SLE is a critical way to evaluate the
activity of SLE development, but the detailed mechanism remains

largely unknown. Recently, several groups set out to find genetic
markers or signaling pathways underlying this clinical feature. In a
remarkable milestone, Masahiro et al. conducted a large-scale
transcriptome study with 6,386 RNA sequencing data points
covering 27 immune cell types from 136 SLE and 89 healthy
donors. All immune cells were sorted from PBMCs according to
specific cell markers. They comprehensively profiled cell type-
specific transcriptomic features and observed several disease-state
and disease-activity signatures, most of which reflected the
characteristics of both disease establishment and exacerbation
(Nakano et al., 2022). In contrast to Masahiro et al., we used bulk
RNA sequencing from 45 PBMCs to evaluate the severity of SLE and
further dissected the immune cell proportion using a mathematical
strategy.

Our result showed that AMPHwas linked with BIN1 (Deng et al.,
2006), EGF/EGFR (Lee et al., 2015;Mejia-Vilet et al., 2021), andCLTC
(Figure 2E), some of which have been implicated in SLE etiology.
BIN1 and CLTCwere both associated with antigen processing rapture
in SLE patients (Armstrong et al., 2014; Xie et al., 2022). EGFR (Xie
et al., 2023) is expressed in lupus kidney and can be used as a target for
drug therapy, and EGF (Ngamjanyaporn et al., 2022) is an indicator to
assess the effectiveness of lupus kidney treatment. We have
highlighted AMPH in our study due to several lines of evidence
that suggest its fundamental role in SLE. Firstly, AMPH, also known
as AMPH-1, encodes a protein that is associated with the cytoplasmic

TABLE 1 Detailed information of 20 top DEGs in sSLE group.

Gene name Official full name Chr* Log2FC# Padjust(<0.05) Trend

SERPINB1 serpin family B member 1 6 1.47 7.77 × 10−4 Up

AMPH Amphiphysin 7 1.77 1.06 × 10−2 Up

RUNDC3A RUN domain containing 3A 17 2.22 4.37 × 10−9 Up

HBA1 hemoglobin subunit alpha 1 16 2.59 2.66 × 10−7 Up

IFIT1B interferon induced protein with tetratricopeptide repeats 1B 10 2.96 2 × 10−7 Up

HBM hemoglobin subunit mu 16 3.01 1.75 × 10−7 Up

KLC3 kinesin light chain 3 19 3.11 1.77 × 10−8 Up

AHSP alpha hemoglobin stabilizing protein 16 3.35 1.77 × 10−8 Up

GYPA glycophorin A (MNS blood group) 4 3.35 4.54 × 10−8 Up

CA1 carbonic anhydrase 1 8 3.55 2.6 × 10−8 Up

RSPH6A radial spoke head 6 homolog A 19 −2.51 1.92 × 10−4 Down

PRSS35 serine protease 35 6 −2.41 4.04 × 10−4 Down

TSLP thymic stromal lymphopoietin 5 −2.08 5.16 × 10−3 Down

CLEC4F C-type lectin domain family 4 member F 2 −2.07 3.82 × 10−4 Down

S100B S100 calcium binding protein B 21 −1.77 1.68 × 10−4 Down

NFIB nuclear factor I B 9 −1.66 5.84 × 10−4 Down

CXXC4 CXXC finger protein 4 4 −1.63 8.95 × 10−5 Down

C19orf33 chromosome 19 open reading frame 33 19 −1.62 6.54 × 10−4 Down

PTGDS prostaglandin D2 synthase 9 −1.46 1.43 × 10−4 Down

LGALS9B galectin 9B 17 −1.41 4.16 × 10−4 Down

Chr*: Chromosome; Log2FC#: |log2 fold change| ≥ 1; Padjust: The value after correction for the significance P value.

Frontiers in Genetics frontiersin.org05

Zhang et al. 10.3389/fgene.2023.1121359

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1121359


surface of synaptic vesicles. Breast cancer has been linked to decreased
AMPH-1 expression and activation of EMT and ERK pathways (Chen
et al., 2018). Similarly, knockdown of AMPH-1 has been shown to
lead to abnormal cell proliferation, which is also associated with
activation of the Ras-Raf-MEK-ERK signaling pathway (Yang et al.,
2019). Autoimmune diseases and cancer are often related, and some
autoimmune diseasesshare similar inflammatory pathways with
cancer (Elkoshi, 2022). SLE patients are known to be at risk of
hematological or nonhematological tumors, such as leukemia, lung
cancer and liver cancer (Masetti et al., 2021). It is speculated that this
related pathway is also pathogenic in SLE, but further experiments are
needed to verify it.

Secondly, we observed that AMPH was upregulated in SLE
patients. Both our bulk RNAseq and Masahiro et al. datasets from
Treg cells showed that AMPHwas upregulated in the sSLE group.Most
importantly, AMPH also showed increased expression in patients with
SSA52, AHA, ESR and CRP but not in patients with snRNP and anti-

Smith, suggesting that AMPH is most likely involved in promoting
some but not all phenotypes. Thirdly, we found that AMPH was
commonly expressed in CD4+ T cells and significantly upregulated in
Treg. scRNA sequencing showed that the expression level of the AMPH
in SLE was higher than that in the healthy control group. AMPH and
Tregs showed a negative linear correlation, and the expression level of
the AMPH in Tregs was also low, whichwas consistent with the positive
correlation between AMPH and the SLEDAI. Finally, rTregs belong to
a subset of CD4+ T cells that inhibit T cell immunity to avoid damage
caused by excessive T cell activation (Cai et al., 2019). In tumor cells,
activation of the MEK/ERK pathway increases the levels of serum
interleukin-10 (IL-10) and transforming growth factor-β (TGF-β),
which is key for Treg conversion (Zdanov et al., 2016; Cheng et al.,
2019). Based on the upregulated AMPH in Tregs and the negative
correlation between AMPH and the Treg proportion, we suspected that
AMPH may be important for Treg proliferation and differentiation
though the MEK/ERK pathway.

FIGURE 2
Analysis of clinical indicator-related differentially expressed genes. (A,B) Upset plot indicates overlapping genes between ESR, CRP, SSA52, AHA,
snRNP, and anti-Smith. DEGs shared between the six phenotypes are indicated by linked dots below the x-axis. The top number above each bar
represents the number of DEGs that are unique to each group. (C,D) Heatmap of Spearman’s correlation coefficients of SLEDAI and upregulated (C) and
downregulated (D) genes. Red represents a positive correlation, and blue represents a negative correlation. (E,F) PPI network of AMPH (E) and
SORCS3 (F). Circles represent genes, and lines represent interactions between genes.
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FIGURE 3
The proportion of immune cells in SLE patients and the correlation between the expression of AMPH and the proportion of Tregs. (A) The heatmap
shows the proportion of 10 types of immune cells in 43 SLE patients. (B) The box plot shows the difference in the proportion of 10 immune cell types in
mSLE and sSLE. (C) Negative linear relationship between AMPH and Tregs. *p < 0.05 and **p < 0.01.

FIGURE 4
Upregulated AMPH in Treg cells from the GSE135779 dataset. (A) UMAP plot of the eight cell subpopulations. (B) UMAP plot of the five T-cell
subpopulations: naive T cells (63,861), CD8+ T cells (36,609), Th2 (28,732), Th17 (14,845) and Treg (2,824). (C) The dot plot shows cell type-specific
markers for each T-cell subset. (D) The dot plot indicates the expression level and percentage of expressed cells for the six target genes. (E) Expression
levels of the six target genes between the SLE and control groups.

Frontiers in Genetics frontiersin.org07

Zhang et al. 10.3389/fgene.2023.1121359

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1121359


Another interesting marker, SORCS3, which was negatively
associated with the SLEDAI, was significantly downregulated in
the sSLE group. SORCS3 is a member of the vacuolar protein sorting
10 protein (VPS10p) receptor family and uses the NGF/p75NTR
pathway in glioblastoma (GBM) to suppress cell invasion and
proliferation (Zhang et al., 2022). Transcriptomic sequencing in
patients with refractory diffuse large B cell lymphoma (DLBCL)
showed increased expression of SORCS3 (Park et al., 2016). In
addition, genetic analysis of the isolated Faroe Islands revealed
SORCS3 as a potential multiple sclerosis risk gene (Binzer et al.,
2016). SORCS3 is associated with both autoimmunity and tumors,
but the specific pathway regulating SLE pathogenesis, perhaps NGF/
p75NTR or other pathways, needs to be further explored.

Our immune infiltration analysis revealed that only Treg cells
were significantly lower in sSLE than in mSLE. Although the
pathogenesis of SLE has not been fully clarified, recent studies
suggest that the disruption of CD4+ T cell immune homeostasis
triggers autoimmune disorders and is one of the important
mechanisms triggering the development of SLE (Ma et al., 2010;
Lai et al., 2013). Th17 and Treg cells are two important immune
regulatory cells developed by CD4+ T cells. Studies have demonstrated
that Th17/Treg cell imbalance is closely related to the pathogenesis
and disease activity of SLE (Kleczynska et al., 2011), and further
experiments revealed that the reduction in Treg cell number or
diminished function is the principal factor of their imbalance
(Bonelli et al., 2008; Pan et al., 2012). Reports of Treg numbers are
controversial, with most studies showing a decrease in the proportion
of Tregs in patients with SLE (Zhao et al., 2019; Li et al., 2020; Wiesik-
Szewczyk et al., 2021), while other studies have shown that the
number of Tregs did not change or increase in patients with SLE
(Jacquemin et al., 2018; Ferreira et al., 2019; Hanaoka et al., 2020). A
recent meta-analysis suggested that the proportions of Treg/PBMC
andTreg/CD4+T cells were significantly reduced in patients with SLE
(Zhu et al., 2019). Several recent studies (Talaat et al., 2015; Mizui and
Tsokos, 2018) have confirmed that Treg cells in SLE patients exhibit
both reduced numbers and functional defects compared to those in
healthy individuals. We believe that increasing the quantity or
enhancing the function of Treg cells may be the key to remission
in patients with severe SLE.

There are several limitations to this study that should be
acknowledged. Firstly, the sample size was relatively small, which
may limit the generalizability of our findings. Additionally, although
we identified AMPH as a hub gene associated with SLE severity, we
did not perform further functional experiments to validate its role in
the disease. In conclusion, our study suggests that multiorgan
functional impairment and upregulation of AMPH may
contribute to decreased proportion of Treg cells, which in turn
play a critical role in the severity of SLE. Therefore, targeting Treg
cells may represent a promising therapeutic strategy for patients
with severe SLE. However, further studies with larger sample sizes
and functional experiments are needed to confirm our findings and
elucidate the underlying mechanisms of SLE pathogenesis.
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