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Epigenetics plays an important role in regulating stem cell signaling, as well as in
the oncogenesis of lung cancer and therapeutic resistance. Determining how to
employ these regulatory mechanisms to treat cancer is an intriguing medical
challenge. Lung cancer is caused by signals that cause aberrant differentiation of
stem cells or progenitor cells. The different pathological subtypes of lung cancer
are determined by the cells of origin. Additionally, emerging studies have
demonstrated that the occurrence of cancer treatment resistance is connected
to the hijacking of normal stem cell capability by lung cancer stem cells, especially
in the processes of drug transport, DNA damage repair, and niche protection. In
this review, we summarize the principles of the epigenetic regulation of stem cell
signaling in relation to the emergence of lung cancer and resistance to therapy.
Furthermore, several investigations have shown that the tumor immune
microenvironment in lung cancer affects these regulatory pathways. And
ongoing experiments on epigenetics-related therapeutic strategies provide
new insight for the treatment of lung cancer in the future.
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1 Introduction

Lung cancer is the most prevalent and deadly cancer in the world. Surgery,
chemotherapy, radiation therapy, targeted therapy, and immunotherapy, and targeted
therapy are the primary treatments for lung cancer (Hirsch et al., 2017). Despite some
success with these treatments in the clinic, a significant number of patients with lung cancer
still can not benefit from these therapies.

Cancer is caused by the proliferation and differentiation of aberrant cells (Hanahan and
Weinberg, 2000). Therefore, the signals that could drive cell proliferation and differentiation
during cancer development and progression are of particular importance in the study of
cancer.

The fundamental conditions for the formation of cancer are provided by stem cells,
which are somatic cells with the capacity for self-renewal and differentiation (Soteriou and
Fuchs, 2018). Cells that keep stemness characteristics even after lung carcinogenesis are
known as cancer stem cells (CSCs) (Batlle and Clevers, 2017). These cells play a significant

OPEN ACCESS

EDITED BY

Pengxu Qian,
Zhejiang University, China

REVIEWED BY

Pranabananda Dutta,
Charles R. Drew University of Medicine
and Science, United States
Weijie Zhang,
Zhejiang University, China

*CORRESPONDENCE

Weimin Li,
weimi003@scu.edu.cn

Chengdi Wang,
chengdi_wang@scu.edu.cn

†These authors have contributed equally
to this work

SPECIALTY SECTION

This article was submitted to Stem Cell
Research,
a section of the journal
Frontiers in Genetics

RECEIVED 10 December 2022
ACCEPTED 22 February 2023
PUBLISHED 18 April 2023

CITATION

Wu J, Feng J, Zhang Q, He Y, Xu C,
Wang C and Li W (2023), Epigenetic
regulation of stem cells in lung cancer
oncogenesis and therapy resistance.
Front. Genet. 14:1120815.
doi: 10.3389/fgene.2023.1120815

COPYRIGHT

© 2023 Wu, Feng, Zhang, He, Xu, Wang
and Li. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Review
PUBLISHED 18 April 2023
DOI 10.3389/fgene.2023.1120815

https://www.frontiersin.org/articles/10.3389/fgene.2023.1120815/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1120815/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1120815/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2023.1120815&domain=pdf&date_stamp=2023-04-18
mailto:weimi003@scu.edu.cn
mailto:weimi003@scu.edu.cn
mailto:chengdi_wang@scu.edu.cn
mailto:chengdi_wang@scu.edu.cn
https://doi.org/10.3389/fgene.2023.1120815
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2023.1120815


role in the spread of cancer and resistance to therapy (Yang et al.,
2020). Stem cell differentiation is regulated by driving differentiation
signals called stem cell signals (Huang et al., 2020). It follows that it is
easy to understand the significant regulatory role of this driver signal
in the onset and progression of cancer.

The entire tumor system is composed of the tumor
microenvironment (TME) and cancer cells (Zhang et al., 2022).
The tumor microenvironment contains a significant number of
immune cells, cancer stem cells respond differently to signals as
prompted by their unique microenvironment (Mao et al., 2021).
Therefore, a new approach for treating lung cancer in the future may
depend on the understanding of these regulatory processes. Here, we
focused on how epigenetic inheritance modulates these stem cell
signals in the immune microenvironment, leading to lung cancer
development and treatment resistance.

2 The origin of lung cancer and relative
aging

Subpopulations of cells with undifferentiated or hypodifferentiated
characteristics are likely to become cancerous. Both stem and progenitor
cells could be employed as the original cells for lung cancer when risk
factors for lung cancer are present (Sanchez-Danes and Blanpain, 2018).
Cells that initiate cancer vary depending on the pathology. Lung cancer
is usually divided into small-cell lung cancer (SCLC) and non-small cell
lung cancer, based on the histology (Thai et al., 2021). Approximately
85% of cases are non-small cell carcinomas, the prevalent subtypes
being adenocarcinomas (LUAD), and squamous cell carcinomas
(LUSC). LUAD typically develops from peripherally arising
bronchioles, bronchioles, and alveoli, whereas LUSC and SCLC
frequently develop from the centrally originating proximal segment
bronchus to the main bronchus (Herbst et al., 2008; Ernani et al., 2022)
(Figure 1).

Using a Cre mouse model, it was discovered that non-squamous
epithelial basal, secretory, and alveolar epithelial type Ⅱ cell (AT2)
cells are the origin of LUSC (Ferone et al., 2016). One of the most
frequent genetic changes in lung LUSC is SOX2. Deletion of SOX2 in
human lung epithelial cells has been reported to reduce their ability
to self-renew and repair tissue injury (Bass et al., 2009). Therefore,
these key genes are crucial for preserving the phylogeny and stability
of mature airways. SOX2 overexpression and deletion of the tumor
suppressor genes, PTEN, CDKN2A, and/or CDKN2B resulted in the
conversion of lung basal cells, secretory cells, and AT2 cells into lung
squamous cells (Ferone et al., 2016; Sanchez-Danes and Blanpain,
2018). The dominant negative of the Maml1 mutation in secretory
and AT2 cells, accompanied by KrasG12D expression and NOTCH
inhibition, also causes SOX2 expression and alveolar proliferative
lesions containing squamous markers (Xu et al., 2014). In addition,
the activation of PIK3CA, P63, and deletion of LKB1 are mutations
associated with squamous cell carcinoma (McCaughan et al., 2010;
Mukhopadhyay et al., 2014) (Figure 1).

It has been demonstrated that AT2 cells serve as the main origin
of LUAD, by using a KRAS-driven mouse model of lung cancer (Xu
et al., 2012; Mainardi et al., 2014). The oncogenes, EGFR, KRAS,
BRAF, and PIK3CA are frequently mutated in LUAD (Swanton and
Govindan, 2016). LUAD can be triggered directly by independent
KrasG12D expression. A limited number of LUAD could develop
when SOX2 expression in combination with deletion of Trp53 or
dual deletion of Trp53 and Rb1 in a mouse model that was
constructed by the lentiviral approach. In mouse models
constructed using a lentiviral approach, SOX2 expression and
deletion of Trp53 or dual deletion of Trp53 and Rb1 could lead
to a small number of mouses with LUAD (Sanchez-Danes and
Blanpain, 2018).

Inactivating mutations in the tumor suppressor genes TP53 and
RB transcriptional corepressor 1 (RB1) are common in SCLC
(Korsen et al., 2022). By conditional knockout of TP53 and RB1,

FIGURE 1
Lung cancer cells of origin. It was demonstrated by Cre mice that lung squamous cancer (LUSC) originates from basal cells with secretory cells,
AT2 cells, while AT2 cells may also evolve into lung adenocarcinoma (LUAD). And small-cell lung cancer (SCLC) originates from neuroendocrine cells.
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it was confirmed that SCLC originates mainly from neuroendocrine
cells (Sutherland et al., 2011) (Figure 1). These studies suggest that
the cells of origin allow for specific types of lung carcinogenesis by
selecting the expression of particular genes.

3 Epigenetic regulation of stem cells in
lung cancer oncogenesis

In addition to lung carcinogenesis being directly guided by
genetic alterations, epigenetics could also control lung
carcinogenesis by controlling the ability to initiate tumors. The
patterns of epigenetic changes during cellular senescence and
tumorigenesis are similar, with the major abnormalities being
DNA and histone methylation (Xie et al., 2018; Yu et al., 2018).
However, cellular senescence and tumorigenesis involve different
pathways. When CPG islands are hypermethylated, they mostly
affect genes that control cell synthesis and metabolism in senescent
cells, and genes that control the growth and differentiation of
malignant cells (Xie et al., 2018). According to this phenomenon,
the epigenetic landscape is crucial because of its regulatory role in
stem cell differentiation (Teschendorff and Feinberg, 2021).

Mutations in chromatin-modifying enzymes that lead to
methylation modifications in DNA and histones are common in
lung cancer. For example, lung cancer stem cells carry loss-of-
function mutations in nuclear receptor-binding SET domain
protein 1 (NSD1), which is capable of methylation-modifying
histones (Garraway and Lander, 2013; Cancer Genome Atlas
Research Network, 2014).

DNA methylation, histone modifications, and non-coding RNA
alterations could activate multiple stem cell signals, including WNT,
NOTCH, and Hedgehog, to regulate lung cancer oncogenesis and
progression (Lytle et al., 2018).

This review describes how epigenetic mechanisms regulate the
activation and expression of stem cell signaling pathways leading to
lung carcinogenesis, mostly from two time periods: before and after
gene transcription.

3.1 Pre-transcriptional regulation

DNA methylation was one of the first epigenetic modifications
to be identified even before the establishment of the double-helix
structure of DNA. DNA methylation is the process by which DNA
methyltransferase (DNMT) adds a methyl group to the cytosine 5th
carbon atom in the DNA sequence to create 5-methylcytosine
(5 mC) (Liu et al., 2022a). Most of these alterations occur in
CpG islands (CGIs). The three methyltransferases linked to
methylation in humans are DNMT1, DNMT3A, and DNMT3B.
After DNA replication is complete, DNMT1 methylates
hemimethylated DNA during the cell division cycle, whereas
DNMT3A and DNMT3B are responsible for establishing fresh
DNA methylation (He et al., 2011).

The downregulation of P53 and P21 expression through the
IL-6/JAK2/STAT pathway could upregulate DNMT1, enhance
tumor initiation, and promote lung cancer stem cell
proliferation (Liu et al., 2015). This demonstrates that DNA
hypermethylation is associated with the silencing of oncogenes

and differentiation genes in lung cancer, and that the low
expression of these genes may contribute to the formation of
lung cancer stem cells.

Activation of the WNT signaling pathway has been shown to be
associated with increased tumor initiation potential in mouse
models (Nusse and Clevers, 2017). APC, LKB1, WNT inhibitor 1
(WNT-1), Disabled-2 (Dab2), secreted frizzled-related proteins
(sFRPs), and members of the Dickkopf (Dkk) family are
hypermethylated silencing factors that are involved in the
abnormal activations of the Wnt/β-Catenin pathway, and these
aberrant activations may lead to the development of LUAD
(Duruisseaux and Esteller, 2018). Upregulated G9a may silence
the expression of WNT-1 through DNA hypermethylation,
leading to an abnormal WNT pathway, thus affecting the growth
of lung cancer cells (Zhang et al., 2018). DKK1 is a secretory protein
that negatively regulates WNT signaling. The DNA
hypermethylation of the DKK1 promoter promotes lung cancer
growth through the WNT signaling pathway (Park et al., 2012; Han
et al., 2017).

NOTCH signaling is a highly conserved intercellular
communication pathway that performs multiple functions during
lung development (Siebel and Lendahl, 2017), including the
regulation of cell differentiation, survival, and genealogical
specification. Although normal NOTCH signaling is required to
maintain homeostasis in vivo, its abnormal activity has been shown
to be associated with the development and progression of lung
cancer (Allen et al., 2011; Lim et al., 2017). ASCL1 hypomethylation
is common in SCLC. As a direct target of ASCL1, DLL3 (a NOTCH
inhibitor) was significantly correlated with its expression status
(Sabari et al., 2017).

The Hedgehog (Hh) pathway is an evolutionarily conserved
signaling axis that is essential for regulating a variety of fundamental
biological processes. The Hh ligands, repair receptor (PTCH),
smooth intermediator (SMO), and zinc finger-containing
glioblastoma transcription factor (GLI) are the four main
elements of the Hh pathway. In the absence of PTCH inhibition,
SMO activates the Gli transcription factor, thereby activating
cancer-related target genes (Kasiri et al., 2017). The human
contains Gli1, Gli2, and Gli3 proteins. Gli2 and Gli3 primarily
function as Shh-regulated transcriptional activators and
repressors, respectively, whereas Gli1 primarily functions as a
transcriptional activator and amplifies Shh signals in a positive
feedback loop (Fu et al., 2016). A regulatory pathway consisting
of the ERK/PIK3/Hedgehog signaling pathway is affected by
aberrant DNA methylation of 256 negatively associated genes.
This signaling pathway regulates cell death and survival, and is
implicated in squamous cell tumorigenesis (Shi et al., 2017). Set7-
mediated methylation of Gli3 at the K436 and K595 sites increases
the stability of Gli3 and its ability to bind to DNA, thereby activating
Shh signaling and contributing to the development of non-small cell
lung cancer (Fu et al., 2016).

Histones could be modified in a diverse range of ways, including
acetylation and methylation. The two major roles of covalent histone
modifications are to silence the expression of specific genes and
promote transcription. Specific histone lysine methyltransferases
could methylate K4, K9, K27, K36, and K7 sites in histone H3 and
K20 sites in histone H4 respectively (Wang et al., 2018b). While
methylation of H3K9, H3K27, andH4K20 inhibits gene transcription,
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methylation of H3K4, H3K79, and H3K36 increases it (Guo et al.,
2019). Histone acetylation leads to a decrease in the affinity between
histones and DNA, thereby facilitating transcription. In contrast,
histone deacetylation removes acetyl groups and inhibits
transcription through HDACs (Montgomery and Srinivasan,
2019). The methylation of H3 histones, such as H3K79me2, was
found to decrease the expression of several WNT repressors to
increase WNT signaling in research on the epigenetic modification
of H3 histones by triptolide in NSCLC (Liang et al., 2019). In addition
to changing the level of H3K4 methylation and regulating the
NOTCH pathway, KDM5A, a demethylase of H3K4, also exhibits
reciprocal epistasis with NOTCH 2 in ASCL1 and neuroendocrine
differentiation. This further demonstrates the significance of
H3K4 methylation in SCLC formation (Oser et al., 2019). HDACs
could affect lung carcinogenesis and progression in the Hh pathway
by changing the acetylation status of histones in the promoter region.
HDAC could interact with GLI1, causing SOX2 promoter activity to
be expressed (Wei et al., 2021) (Table 1).

In addition, pre-transcriptional DNA methylation with
histone modifications may increase the sensitivity of cells to
transformation. Therefore, understanding the mechanisms of
the pre-transcriptional epigenetic regulation of stem cells is an
important strategy for controlling the development of lung
cancer.

3.2 Post-transcriptional regulation

Non-coding RNAs play an essential role in the pathology of
cancer. The role of long non-coding RNAs (LncRNAs) is currently
poorly understood, while microRNAs (miRNAs) are imbalance
regulated non-coding RNA isoforms that have received the most
research attention in lung cancer.

MiR-708-5p directly inhibits the translation of DNMT3A, leading to
hypomethylation in A549 and Calu-3 cells and an increase in the
expression of the tumor suppressor CDH1. This reduces the activity
of the Wnt/β-catenin signaling pathway and affects the development of
NSCLC by altering stem cell characteristics (Liu et al., 2018). miR-770
activates the WNT/β-catenin pathway by directly binding to the 3′-UTR
of JMJD6 mRNA and downregulating JMJD6 expression which, leading
to non-small cell carcinogenesis (Zhang et al., 2017). miR-27a plays an
oncogenic role in human lung tumorigenesis. Fbxw7, which is inhibited
by the overexpression of miR-27a, could regulate cell cycle progression,
including c-Myc, c-Jun, cyclin E1, and NOTCH 1 (Wang et al., 2011a).
Lung cancer considerably expresses the Hh pathway in comparison to
nearby normal tissues. The miR-182-5p/GLI2 axis controls lung
adenocarcinogenesis by influencing the Hh pathway (Seidl et al.,
2020). miR-212 causes lung carcinogenesis by directly targeting the
Hh pathway receptor, PTCH1, resulting in the inhibition of PTCH1
(Li et al., 2012). The expression ofmiR-520b was significantly upregulated
in NSCLC samples compared with normal samples. Additionally, miR-
520b was found to promote NSCLC tumorigenesis through the SPOP-
GLI2/3 axis (Liu et al., 2019).

The Long non-coding RNA small nucleolar RNA host gene 11
(SNHG11) could promote lung carcinogenesis through two distinct
WNT pathways. The first pathway activates the WNT/β-catenin
pathway via the SNHG11/miR-4436a/CTNNB1 ceRNA axis. In the
second pathway, SNHG11 directly binds to β-catenin and activates
the WNT pathway (Liu et al., 2020). A novel long intergenic non-
protein coding RNA (LINC01783) that suppresses miR-432-5p, a
route that results in non-small cell carcinogenesis, activates the
NOTCH pathway to increase DLL-1 expression and enhances the
proliferation of NSCLC cells (Deng et al., 2021) (Table 1).

The gain and loss of epigenetic modifications at all stages of
transcription may lead to the development of lung cancer. Lung
cancer stem cells are known to be preferentially affected by this

TABLE 1 Epigenetic targets acting on lung carcinogenesis and their downstream stem cell-related signaling pathways or targets.

Type Epigenetic regulatory targets Downstream Pathway/Targets

DNA methylation DKK1 promoter WNT

ASCL1 DLL3

WNT -1 WNT

Histone modification H3K79me2 WNT -1

H3K4 NOTCH/NOTCH 2

Non-coding RNA JMJD6 WNT/β-catenin

DNMT3A WNT/β-cateni

Fbxw7 NOTCH 1

GLI2 Hedgehog

PTCH 1 Hedgehog

NOTCH 1 NOTCH

SPOP Hedgehog

CTNNB1 WNT/β-catenin

β-catenin WNT

Frontiers in Genetics frontiersin.org04

Wu et al. 10.3389/fgene.2023.1120815

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1120815


process. Therefore, the regulation of lung cancer stem cells
using these modification pathways as targets would be very
effective therapeutic strategy for lung cancer.

4 Stem cell states in therapy resistance

Therapy resistance is a challenge in the clinical treatment of lung
cancer. Existing treatment regimens typically fail to eliminate all
tumor cells, and residual cells are believed to be the key driver of
cancer recurrence in patients (Lytle et al., 2018).

4.1 Therapy resistance mechanisms involved
in lung cancer stem cells

Lung cancer stem cells participate in drug resistance by hijacking
the properties of normal stem cells. The three most common
pathways are drug transport, DNA damage repair, and niche
protection (Hovinga et al., 2010; Blanpain et al., 2011; Assaraf
et al., 2019).

4.1.1 Drug transport
ATP-binding cassette (ABC) transport proteins are the main

proteins that regulate the efflux of cytotoxic drugs (Greenwood et al.,
2019), including ABCB1 and ABCG2. Most ABC transport proteins
directly contribute to the development of drug resistance, and the
enhanced efflux activity of these proteins positively regulates drug
resistance (Wang et al., 2018a; Wu et al., 2019). Multidrug resistance
(MDR) caused by lung cancer stem cells correlates with the
expression of ABCB1 and ABCG2 (Bhukhai et al., 2018;
Mohammad et al., 2018; Zhang et al., 2020; Cortes-Dericks and
Galetta, 2022). Docetaxel is widely used as a third-generation
chemotherapeutic agent for the treatment of patients with

NSCLC. However, most patients exhibit drug resistance after a
period of treatment. A study of the NSCLC docetaxel-resistant
cell lines HCC827-DR found that this resistant cell lines
exhibited CSC-like markers and high expression of ABCB1 in all
cells (Chen et al., 2017). By pumping chemotherapeutic medications
out of cells and lowering the concentration of intracellular
pharmaceuticals, ABCG2 significantly increased the
chemotherapy resistance of lung cancer stem cells (Huang and
Fu, 2015) (Figure 2).

4.1.2 DNA damage repair
CSCs have a higher capacity to repair DNA damage than other

types of tumor cells (Masoumi et al., 2021). Ataxia telangiectasia
mutated Protein (ATM) and ataxia telangiectasia and Rad3-related
(ATR) are members of the phosphatidylinositol 3-kinase (PI3K)-
related kinase (PIKK) protein family, and are frequently activated as
checkpoint sensors during cancer treatment therapy. When DNA is
damaged by chemoradiotherapy, ATM and ATR kinases form
complexes with PARP-1 and BRCA1, phosphorylating CHK1 and
CHK2 and then promoting the activation of target proteins,
including p53 and CDC25A, temporarily halting the cell cycle,
thus repairing most DNA damaged by chemoradiotherapy or
directly inducing apoptosis (Zhou et al., 2021). In NSCLC,
CD133+ lung cancer stem cells were observed to increase the
expression of DNA damage response and repair in genes (Desai
et al., 2014). Meanwhile, a study demonstrated that lung cancer stem
cells could lead to therapy resistance through enhanced DNA repair
and reduced uptake of cisplatin (Yu et al., 2017) (Figure 2).

4.1.3 Niche protection
The niche, also known as the tumor microenvironment (TME),

is composed of multiple cell types, including tumor cells, endothelial
cells, mesenchymal cells, immune cells, and fibroblasts, as well as
non-cellular components such as the extracellular matrix (ECM).

FIGURE 2
Drug resistance mechanisms and epigenetic regulation involving tumor stem cells. Drug resistance mechanisms include drug transport, DNA
damage repair, and ecological niche protection processes. LSCS: lung cancer stem cell; TAMs: Tumor-associated macrophages; EMT: Epithelial-
Mesenchymal Transition; CAFs: cancer associated fibroblasts.
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This niche helps to maintain the stem-like properties of lung cancer
stem cells, leading to the development of therapeutic resistance
(Plaks et al., 2015; Chiu et al., 2022). Tumor-associated macrophages
(TAMs) could induce epithelial-mesenchymal transition (EMT) of
cancer cells in NSCLC by activating TGF-β signaling and the β-
catenin pathway (Zeng et al., 2020). EMT plays a significant role in
cancer progression and is associated with the production of cancer
stem-like cells (Shibue andWeinberg, 2017). Additionally, the use of
EMT markers is a common approach for predicting drug resistance
in cancer (Huang et al., 2020). TAMs and cancer-associated
fibroblasts (CAFs) from primary NSCLC help generate lung
cancer stem cells and maintain their stemness (Chen et al.,
2014b). CD10+/GPR77+ CAFs could promote drug resistance in
patients with lung cancer by secreting IL-6 and IL-8 to maintain the
stemness of cancer stem cells (Su et al., 2018) (Figure 2).

4.2 Epigenetic regulation of lung cancer
stem cells during therapy resistance

Lung cancer stem cells lead to drug resistance by hijacking the
properties of normal stem cells. Therefore, reducing the enrichment
of lung cancer stem cells through epigenetic modulation is one way
to improve therapeutic efficacy.

Histone deacetylase 1 (HDAC1) is highly expressed in cisplatin-
resistant lung cancer cells (Wang et al., 2016). HDAC1, in
combination with tribbles pseudokinase 1 (TRIB1), in cisplatin
treatment, reduced the activity of oncogene p53 through its
deacetylation and induced the enrichment of lung cancer stem
cells. In contrast, the silencing of HDAC1 resulted in reduced
expression of the transcription factors, Nanog and Oct4, in lung
cancer stem cells and increased sensitivity to cisplatin treatment
(Wang et al., 2017) (Figure 2). In addition, HDAC1 maintains
lung cancer cell stemness and induces a drug-resistant phenotype
in lung cancer cells by inhibiting miR-200b expression and reducing
the targeting of miR-200b to Suz12 (Chen et al., 2014a). HDAC11 has
an effect similar to that of HDAC1, which is highly expressed in the
cancer stem cell population of LUAD, resulting in enhanced self-
renewal of lung cancer stem cells and interaction with GLI1 to
upregulate SOX2 expression (Zuo et al., 2020). MARCKSL1-2 is a
long non-coding RNA that recruits Suz12 to the promoter of histone
deacetylase 1 (HDAC1), increasing the level of H3K27me3 at the
HDAC1 promoter, while decreasing HDAC1 expression. Thus, miR-
200b expression is upregulated to reverse drug resistance (Jiang et al.,
2022).

Although there are many epigenetic targets that have shown
advantages in the treatment of lung cancer stem cells, the
molecular mechanisms of the upstream and downstream
regulation of most targets remain unclear. Additionally, the
types of drug resistance that could be improved by these
targets are limited.

5 Epigenetic regulation in the tumor
microenvironment

The tumor microenvironment, especially the tumor immune
microenvironment (TIME), is not only related to the resistance of

lung cancer treatment, but also influences the whole process of lung
cancer development (Ferguson et al., 2021).

The location, type, density, and functional status of immune
cells (T cells, B cells, NK cells, DC cells, macrophages, neutrophils,
monocytes, and mast cells) within the tumor immune
microenvironment contribute to its diversity (Binnewies et al.,
2018). Using single-cell technology, significant differences in the
immune microenvironments of LUAD and LUSC have been
confirmed (Wang et al., 2022). The occurrence, growth, and
treatment of tumors are significantly affected by this diversity.
Therefore, many studies have focused on the immune landscape
of the tumor immune microenvironment. Patients who received
neoadjuvant chemotherapy had higher levels of PD-L1 expression
and T cell subsets regulation than those who did not receive
neoadjuvant chemotherapy, according to a study based on the
effects of multiple immunofluorescence and image analysis
methods on the immune microenvironment of NSCLC (Parra
et al., 2018; Chiu et al., 2022). An analysis of the number,
density, and ratio of 26 kinds of immune cells in the tumor
immunological microenvironment of 681 NSCLC cases revealed
that patients with immunodeficient tumors had shorter disease-free
survival and that their tumors had a high number of LCSC and
macrophages (Peng et al., 2021). The overall proportion and
characteristics of T cells within the TIME are major factors that
determine the direction of tumor progression (Mohammad et al.,
2018). T cell exhaustion occurs immediately after oncogenic
initiation, and some irreversible T cell exhaustion is responsible
for the insensitivity of patients to anti-PD-1/ PD-L1 therapy
(Pauken et al., 2016; Guo et al., 2018). In the process of T cell
exhaustion, inhibitory receptors such as CTLA-4, TIM-3, LAG-3,
and PD-1 are usually over-expressed on T cells, and effector
cytokines such as IFN-γ are down-regulated (Blank et al., 2019).

Recent studies have shown that tumor immune
microenvironment could be reshaped by epigenetic immune
editing (Gangoso et al., 2021). Epigenetic changes could be
triggered by inflammation (Karin and Shalapour, 2022). The
hypoxia-adapted cellular phenotype is sustained in the tumor
microenvironment by the synergistic effect of epigenetic factors
and hypoxia-inducible transcription factors (HIF). Extensive DNA
methylation and histone modifications occur in the hypoxic TME,
promoting tumor growth, increasing invasiveness, and maintaining
cancer cell stemness (Wang et al., 2011b; Hu et al., 2021) (Figure 3).

TAMs are currently the most widely studied
immunosuppressive cell at the TIME (Mohammad et al., 2018).
TAMs gather at the injury site after identifying signals, such as
chemokines, cytokines, inflammatory mediators, pathogens, or
damage-associated molecular patterns (DAMP), which trigger the
inflammatory response. M1 and M2 phenotypes of TAMs exist. The
M1 phenotype is characterized by its anticancer activity and
typically activated macrophages. After epigenetic reprogramming,
M2 phenotype macrophages are formed by differentiation and
polarization, which have the potential to promote tumors (Netea
et al., 2016). M2 phenotypic TAMs maintain tumor stem cell
populations by secreting chemokines and ligands that activate
stem cell pathways (Huang et al., 2020) (Figure 3). Enhanced
methylation modifications and diminished chemokine expression
within TAMs in hypoxic environments alter the immune landscape
within the TME (Tausendschon et al., 2011). LARRPM (lncRNA)
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reduces TET1 binding to the CSF1 promoter in LUAD, resulting in
increased DNA methylation of the CSF1 promoter and the
inhibition of CSF1 transcription, thereby reducing macrophage
M2 polarization and infiltration. At the same time, discovered
that negative regulation of TAM contributes to carcinogenesis (Li
et al., 2022). The differentiation of T helper (TH) cells are more
stable under epigenetic regulation, and the direction of T helper cell
differentiation is determined by different histone modification levels
at IFNG sites (Karin and Shalapour, 2022). NEAT1 was found highly
expressed in lung cancer and interacts with DNA methyltransferase

DNMT1 to regulate cytotoxic T cell infiltration in lung cancer by
inhibiting the cGAS/STING pathway (Ma et al., 2020). The
proliferation, differentiation, and survival of T cells depend on
the activity of EZH2 enhancers, which are important epigenetic
regulators of gene expression. Notably, GSK126, an EZH2 inhibitor,
could alter the TIME, encourage the synthesis of the
Th1 chemokines CXCL9 and CXCL10 in tumors, and boost
CD8+ T cell infiltration (Huang et al., 2019). The presence of
tumor-infiltrating B lymphocytes could be observed at all stages
of lung cancer development, and it has been found that histone

FIGURE 3
Epigenetic regulation in the tumor microenvironment. Regulation of lung cancer stem cells by TAMs of the M2 phenotype in normal and hypoxic
environments. LSCS: lung cancer stem cell; TAMs: Tumor-associated macrophages.

TABLE 2 Ongoing clinical trials of epigenetic drugs in lung cancer.

Target Drug Combination agent Tumor type Trial number

EZH2 PF 06821497 Standard of care SCLC NCT03460977

Tazemetostat Pembrolizumab NSCLC NCT05467748

Tazemetostat Topotecan and Pembrolizumab SCLC NCT05353439

BET inhibitor ZEN003694 — LUSC NCT05607108

KDM1A Bomedemstat Atezolizumab SCLC NCT05191797

HDAC ACY 241 Nivolumab NSCLC NCT02635061

HBI-8000 Pembrolizumab NSCLC NCT05141357

Entinostat Pembrolizumab NSCLC NCT02437136

Entinostat Carboplatin and Etoposide SCLC NCT04631029

vorinostat Pembrolizumab NSCLC NCT02638090

Entinostat + Azacitidine Nivolumab NSCLC NCT01928576

Vorinostat Pembrolizumab LUAD NCT04357873

SCLC, small-cell lung cancer; NSCLC, non-small cell lung cancer; LUSC, lung squamous cancer; LUAD, lung adenocarcinoma.

Frontiers in Genetics frontiersin.org07

Wu et al. 10.3389/fgene.2023.1120815

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1120815


modification could also increase the infiltration of B cells (Wang
et al., 2019; Karin and Shalapour, 2022). The epigenetic silencing of
NKG2DL in SCLC results in a lack of stimulatory signals to activate
NK cells, thereby increasing the aggressiveness and metastasis of
SCLC (Zhu et al., 2021).

These studies illustrate that the tumor microenvironment plays
an essential role in the progression of lung cancer. In particular, the
status of lung cancer stem cells, which is influenced by epigenetic
alterations in the tumor microenvironment, is an important cause of
treatment resistance and cancer recurrence.

6 Epigenetic therapy strategies

Epigenetic-based therapeutic strategies aim to regulate the
transcriptional programming of various signaling pathways in
immune cells, and cancer cells, thereby affecting the fate of each
of these cell populations (Dai et al., 2021) (Table 2). The major
epigenetic targets associated with lung cancer treatment are DNA
methyltransferase (DNMT), histone lysine methyltransferase
(KMT), and histone lysine acetyltransferase. Epigenetic-based
drugs are often used in combination with targeted therapies and
chemotherapy to enhance their efficacy and reduce drug resistance.

Some HDAC and DNMT inhibitors are currently clinically
approved, such as the histone deacetylase inhibitors Vorinostat,
Romidepsin, Belinostat, and DNAmethylation inhibitor diecitabine.
Additionally, multiple clinical trials are underway for
EZH2 inhibitors, KDM1A inhibitors, and BET proteins (Table 2).
Although these drugs currently show a partial advantage, in a study
of the efficacy of histone methyltransferase G9a in lung cancer,
Rowbotham found that G9a may increase the number of lung cancer
stem cells and thus promote lung cancer progression (Rowbotham
et al., 2018). In addition, Hypomethylation therapy may lead to
demethylation and upregulation of oncogene expression (Liu et al.,
2022b). Current studies cannot explain these phenomena; therefore,
more in-depth studies on these regulatory mechanisms are
warranted in the future.

7 Perspectives

As mentioned previously, the stem cell programs control the
growth and therapy resistance of lung cancer through epigenetic
inheritance. Numerous studies have also shown the significance of
WNT, NOTCH, and other traditional stem cell pathways in the onset
and progression of lung cancer. Epigenetic modification enzymes, such
as DNA methylase, histone deacetylase, and their inhibitory enzymes,
play a role in different stem cell pathways. The three main causes of
resistance to lung cancer treatment are drug transport, DNA damage
repair, and niche protection. ATP-binding cassette transporters greatly
increase the chemotherapeutic resistance of lung cancer stem cells by

pumping chemotherapeutic medications out of cells and lowering
intracellular drug concentrations. ATM and ATR kinases associate
with PARP-1 and BRCA1 to form complexes that phosphorylate
CHK1 and CHK2, boosting the activation of target proteins and
preserving the stemness of LCSC. Through the spatial distribution
and composition of different cells, the niche maintains the stemness of
lung cancer stem cells. Additionally, epigenetic regulation of the
immune microenvironment could also affect the outcome of lung
cancer. Although the epigenetic regulation in lung cancer stem cell-
related drug resistance regulation is still insufficient compared to genetic
regulation, existing research shows great potential.

As expected, the modulation of various cell fates through
epigenetic modulators is an effective strategy for lung cancer
treatment. However, this type of drug is a double-edged sword.
It may also increase the number of lung cancer stem cells,
making it difficult for the cancer to be completely eliminated.
Therefore, the combination of epigenetic drugs with other drugs
or other treatments may be the future direction in lung cancer
treatment.
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