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Background: The signal transducer and activator of transcription (STAT) gene
family have been widely found to regulate cell proliferation, differentiation,
apoptosis, and angiogenesis through complex signaling pathways, and thus
impacting tumor formation and development in different types of tumor.
However, the roles of STATs on prognostic prediction and therapeutic
guidance in pan-cancer remain unexplored.

Materials and Methods: The dataset of 33 types of TCGA tumor, para-carcinoma
and normal tissues, was obtained from the UCSC Xena database, including the
gene expression profiles in the formats of FPKM value, demographic
characteristics, clinical information, and survival data of STATs. Differential
expression and co-expression analyses, WGCNA, clinical relevance analysis,
immune subtype analysis, tumor stemness analysis, tumor purity analysis,
immune infiltration analysis, immunotherapy related analysis, tumor mutation
related analysis, and drug sensitivity analysis were performed by R software.

Results: Differential expression of STAT1 was found between normal and BRCA
tissues (p < 0.001, log2FC = 0.895). Additionally, the strongest correlation among
STATs lied between STAT1 and STAT2 (correlation coefficient = 0.6). Moreover,
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high expression levels of STAT1 (p = 0.031) were revealed to be notably correlated
with poor prognosis in KIRP. In addition, STAT1 expressed the highest value in
immune subtypes C1, C2, C3, and C6 in LUAD. What’s more, strong negative
correlations were demonstrated between expression of STAT6 and mDNAss and
mRNAss of TGCT. Additionally, STAT4 expression was characterized to be
significantly negatively correlated with tumor purity of the majority of cancer
types. Moreover, STAT1 and STAT3 were shown to be generally high-expressed
in pan-cancer myeloid cells, and STATs all had positive correlation with the
infiltration of the majority of immune cells. In addition, STATs were revealed to
be closely linked with immunotherapy response. What’s more, STAT4 expression
was identified to have a strong negative correlation with TMB value in DLBC. Last
but not least, positive correlations were accessed between STAT5 and sensitivity of
Nelarabine (cor = 0.600, p < 0.001).

Conclusion: In the present study, we identified STATs as biomarkers for prognostic
prediction and therapeutic guidance in pan-cancer. Hopefully our findings could
provide a valuable reference for future STATs research and clinical applications.
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Introduction

The signal transducer and activator of transcription (STAT)
gene family (STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B,
and STAT6) play a complicated and fundamental role in regulating
the proliferation, differentiation, apoptosis, angiogenesis, and
immune system regulation of cell processes by transcribing and
translating proteins with complex structures (Haura et al., 2005;
Verhoeven et al., 2020). Particularly, STAT3 and STAT5 was shown
to play important roles in tumorigenesis and development more
than a decade ago (Buettner et al., 2002; Yu and Jove, 2004). Another
study suggested that higher expression of STAT5 indicated a better
prognosis in breast cancer (Barash, 2012). Moreover, it was then
discovered by Yu, H. et al. that STAT3 had potential effect in cancer
progression (Yu et al., 2014).

The function sections of STAT protein are as follows: N-domain,
coiled-coil domain, DNA binding domain, Src-homology (SH2)
domain, and transactivation domain. And as the most conservative
and important section, arginine (Arg) residue of core SH2 domain
could directly combine with tyrosine (Tyr) residue under
phosphorylation of other molecular (Lim and Cao, 2006; Cheon
and Stark, 2009). STATs were intranuclear transcription factors, but
they existed in the cytoplasm under a resting state. Upon activation,
STAT molecular polymerized to form a dimer and translocated to
the nucleus to take part in regulating gene expression, especially for
cells with interferon (IFN) signaling molecules by binding to target
DNA sequences (Sadowski et al., 1993; Wegenka et al., 1993).

Although there were so many conclusions about STATs, the
specific correlation between the STAT gene family and pan-cancer
was still not clear. Based on this, we performed a series of analyses
with the methods of Wilcox test, K-M survival analysis, Cox
proportional hazards regression, weighted gene co-expression
network analysis (WGCNA), Kruskal-Wallis test, Pearson/
Spearman correlation analysis, one-class logistic regression
(OCLR) and estimation of stromal and immune cells in
malignant tumors using expression data (ESTIMATE) scores to

analyze the correlation between expression of STATs and prognosis,
hallmark cancer gene sets, immune subtypes, tumor stemness,
tumor purity, immune infiltration, immunotherapy, and drug
sensitivity in 33 The Cancer Genome Atlas (TCGA) tumor samples.

Materials and methods

Data acquisition and preprocessing

The dataset of 33 types of TCGA tumor tissues, along with their
para-carcinoma and normal tissues, was obtained from the UCSC
Xena database (http://xena.ucsc.edu/) on 28 January 2021, including
the gene expression profiles in the formats of fragments per kilobase
per Million (FPKM) value, phenotypic character, and survival data
of STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B, and STAT6.
The demographic, neoplasm staging, and prognostic information of
patients were fetched from the database simultaneously.

The 33 kinds of TCGA tumors and their abbreviations:
Adrenocortical carcinoma (ACC), Bladder Urothelial Carcinoma
(BLCA), Breast invasive carcinoma (BRCA), Cervical squamous cell
carcinoma and endocervical adenocarcinoma (CESC),
Cholangiocarcinoma (CHOL), Colon adenocarcinoma (COAD),
Lymphoid Neoplasm Diffuse Large B-cell Lymphoma (DLBC),
Esophageal carcinoma (ESCA), Glioblastoma multiforme (GBM),
Head and Neck squamous cell carcinoma (HNSC), Kidney
Chromophobe (KICH), Kidney renal clear cell carcinoma
(KIRC), Kidney renal papillary cell carcinoma (KIRP), Acute
Myeloid Leukemia (LAML), Brain Lower Grade Glioma (LGG),
Liver hepatocellular carcinoma (LIHC), Lung adenocarcinoma
(LUAD), Lung squamous cell carcinoma (LUSC), Mesothelioma
(MESO), Ovarian serous cystadenocarcinoma (OV), Pancreatic
adenocarcinoma (PAAD), Pheochromocytoma and
Paraganglioma (PCPG), Prostate adenocarcinoma (PRAD),
Rectum adenocarcinoma (READ), Sarcoma (SARC), Skin
Cutaneous Melanoma (SKCM), Stomach adenocarcinoma
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(STAD), Testicular Germ Cell Tumors (TGCT), Thyroid carcinoma
(THCA), Thymoma (THYM), Uterine Corpus Endometrial
Carcinoma (UCEC), Uterine Carcinosarcoma (UCS) and Uveal
Melanoma (UVM).

Differential expression analysis

Since gene expression of tumor samples were used as a
continuous variable, the boxplot was used to show the
differential expression median value of STATs between tumor
and normal tissues. Meanwhile, the “ggpubr” R package was
applied to analyze the differentially expressed genes in Wilcox
test between tumor and normal tissues. Tumor types with less
than three normal samples were excluded. In addition, we
obtained protein expression levels of STATs between normal and
tumor tissues from the Human Protein Atlas database (https://www.
proteinatlas.org) (Sjöstedt et al., 2020) for further validation.
Additionally, we obtained proteomics profiles from the
LinkedOmics database (http://www.linkedomics.org/) (Vasaikar
et al., 2018) to investigate the correlation between expression
levels of STATs and relevant proteins.

Co-expression analysis

The “corrplot” R package was utilized to explore latent
expression patterns between every two STAT genes. Values and
shades of color were adopted to demonstrate the expression
correlation among STAT1, STAT2, STAT3, STAT4, STAT5A,
STAT5B, and STAT6 (https://CRAN.R-project.org/package).
Moreover, to further explore the correlation relationship among
STATs, the STRING database (https://string-db.org/) (Szklarczyk
et al., 2021) was employed to construct a protein-protein interaction
(PPI) network.

Weighted gene co-expression network
analysis (WGCNA)

To further explore the possible co-expression of STAT family
genes and specific tumor markers. WGCNAwas conducted to reveal
the correlations among the expression levels of differentially
expressed genes (DEGs) between tumor and para-tumor KIRC
tissues, 50 hallmarks of cancer, and STATs expression by
WGCNA R package (Langfelder and Horvath, 2008). The
50 Hallmark cancer gene sets were collected from the Molecular
Signatures Database (MSigDB) v7.0 (https://www.gsea-msigdb.org/
gsea/msigdb/index.jsp) (Liberzon et al., 2015).

A gene co-expression network was initially established to find
interaction patterns among genes based on the RNA-seq profiles of
DEGs by correlation analysis. Specifically, if the observation value of
the DEGwere continuous and conformed to a normal distribution, we
would perform Pearson correlation analysis, however, if the
observation value of the DEG were categorical, Spearman
correlation analysis would be conducted. Through performing the
power function: aij = |sij|ß (aij referred to the weighted network
adjacency between gene i and gene j; sij represented the correlation

coefficient between gene i and gene j; β ≥ 1), a weighted adjacency
matrix was built. Then, the optimal soft-threshold parameter β =
4 was obtained by calculating scale independence and mean
connectivity. Afterwards, DEGs with similar expression features
were integrated into a module by applying the topological overlap
method.Moreover, to enlarge the capacity of the modules, a threshold
was set up to merge similar modules and ensure there were no less
than 20 genes in eachmodule. Moreover, module eigengene (ME) was
calculated to indicate the gene expression profiles of each module. So
as to correlate different modules to corresponding phenotypic traits,
the 50 Hallmark gene sets and seven STATs were input as
characteristics of interest. Gene significance (GS) was performed to
encode the correlations between expression of the 50 hallmark gene
sets and STATs and DEGs. Module membership (MM) was
computed to estimate the correlation between ME and DEGs.

Clinical relevance analysis

Different types of tumor patients was divided into two groups
according to the median value of STATs’ expression levels.
Subsequently, Kaplan-Meier (KM) survival analysis was
performed to analyze the correlation between patients’ overall
survival (OS), disease-free interval (DFI), progression-free
interval (PFI), and disease-specific survival (DSS) and expression
levels of STATs (Heagerty and Zheng, 2005). Besides, to acquire the
hazard ratios (HR) of the seven STATs in 33 tumor types, univariate
Cox proportional hazards regression was adopted.

Moreover, to exclude the influence of confounding factors and
validate the independent correlation relationships between STATs’
expression and tumor patients’ prognosis, a prognosis prediction
model was constructed in KIRC patients. Specifically, the regression
coefficient of each STAT gene was determined by multivariate Cox
proportional hazards regression. Subsequently, risk score was
calculated by the formula: risk scoren � ∑7

i�1βi ×Genei. In the
formula, ‘n’ represented the number of the KIRC patients, Genei
represented the normalized expression level of STATs and ‘βi’
represented the corresponding regression coefficient of each
STAT. Afterwards, the samples were then classified into two risk
groups, high- and low-risk groups based on the median value of the
risk scores. Cross-validation by train/test split was then performed
to verify the multivariate prognostic model, in which risk curves, risk
scatter plots and Kaplan-Meier survival plots were employed to
illustrate the differences between the high- and low-risk groups. In
addition, the area under the ROC curve was applied to assess the
predictive accuracy of the model employing survivalROC R package.
Additionally, independent prognostic analysis was proceeded by
univariate and multivariate Cox regression analyses on risk score,
and confounding factors including age, gender, race, grade, M, N,
and T for model correction. Last but not least, differential expression
analysis of the seven STATs in different stages of tumor was also
conducted to further explore their clinical relevance.

Immune subtype analysis

It has been revealed that six immune subtypes, including wound
healing (C1), IFN-γ dominant (C2), inflammatory (C3), lymphocyte

Frontiers in Genetics frontiersin.org03

Cheng et al. 10.3389/fgene.2023.1120500

https://www.proteinatlas.org/
https://www.proteinatlas.org/
http://www.linkedomics.org/
https://cran.r-project.org/package
https://string-db.org/
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1120500


depleted (C4), immunologically quiet (C5), and TGF-β dominant
(C6), are of great significance in therapy and prognosis spanning
multiple tumor types, which were identified by studying the
dominant sample features in different types of TCGA tumor
(Thorsson et al., 2018). To access the differential expression
levels of STAT genes among the six immune subtypes in each
tumor type so as to obtain the correlation between them, we
firstly performed the Hartley’s test to check whether the samples
conform to homogeneity of variance. Afterwards, we conducted the
Shapiro-Wilk test to examine whether the samples conform to a
normal distribution. If the samples conform to homogeneity of
variance or a normal distribution, we would carry out the analysis of
variance (ANOVA), and if not, we would employ the Kruskal-Wallis
test to access the differential expression levels of STAT genes among
the six immune subtypes in each tumor type so as to obtain the
correlation between them. And eventually the Kruskal-Wallis test
was utilized.

Tumor stemness analysis

Cancer stem cells (CSCs), with the characteristics of self-renewal
and tumor heterogeneity, play important roles in survival,
proliferation, metastasis, and recurrence of tumors. The DNA
methylation-based stemness score (mDNAss) and mRNA
expression-based stemness score (mRNAss) were calculated by
the one-class logistic regression (OCLR) algorithm to describe
the stemness indices in 33 types of tumor (Malta et al., 2018).
Subsequently, to explore the association between STAT genes and
tumor stemness characteristics, we carry out correlation analysis.
Specifically, if the observation values of the variable were continuous
and conformed to a normal distribution, we would perform Pearson
correlation analysis, however, if the observation values of the
variable were categorical, Spearman correlation analysis would be
conducted.

Tumor purity analysis

The ESTIMATE algorithm, a quantitative and visual method of
estimating the proportion of stromal cells and immune cells, played
a significant role in speculating tumor purity and malignant degree
(Yoshihara et al., 2013). We accessed ESTIMATE scores in each
TCGA tumor type by identifying gene expression signatures to show
normal cell proportion or tumor purity accurately. Then we
performed correlation analysis between STAT genes and
ESTIMATE scores in pan-cancer to identify their correlation.
Specifically, if the observation values of the variable were
continuous and conformed to a normal distribution, we would
perform Pearson correlation analysis, however, if the observation
values of the variable were categorical, Spearman correlation
analysis would be conducted.

Immune infiltration analysis

In order to find out the expression characteristics of STAT genes
in tumor infiltrating immune cells, we adopted gene expression

profiles of STAT genes from the pan-cancer single-cell
transcriptional atlases of tumor infiltrating myeloid cells and
tumor infiltrating T cells reported by Zemin, Zhang, et al.
(Cheng et al., 2021; Zheng et al., 2021). Additionally, the
TIMER2.0 database (http://timer.cistrome.org) was also utilized
to explore the correlation of STATs expression and different
immune cells infiltration (Li et al., 2020).

Immunotherapy related analysis

Immunotherapy can bring long-lasting clinical benefits, however,
only a fraction of patients respond well to it. In order to reveal different
tumors’ potential of escaping from T cell-mediated immune response
and provide a reference for immunotherapeutical strategy, we
conducted cytotoxic T lymphocyte (CTL) infiltration and survival
analyses, along with T cell dysfunction and exclusion analyses
employing the Tumor Immune Dysfunction and Exclusion (TIDE)
database (http://tide.dfci.harvard.edu) (Fu et al., 2020) (Jiang et al.,
2018). In the TIDE database, the most confident results were obtained
using STATs expression data from five cohorts, which were TCGA
(endometrial carcinoma), TCGA (metastatic melanoma), GSE12417_
GPL570 (acute myeloid leukemia), E-MTAB-179 (neuroblastoma),
METABRIC (triple negative breast cancer). In specific, Pearson/
Spearman correlation analysis was conducted between expression
levels of STATs and CTL infiltration in these cohorts, which was
measured by expression levels of CTL markers (CD8A, CD8B, GZMA,
GZMB, and PRF1). Moreover, we classified samples into STATs high
expression and STATs low expression groups based on the median
expression value of each STAT gene. Subsequently, we classified
samples into CTL high infiltration (CTL top) and CTL low
infiltration (CTL bottom) groups based on the median CTL
infiltration levels to further reveal the influence of STATs expression
on CTL infiltration and prognosis of patients with tumors in Cox
proportional hazards model. What’s more, a variety of cohorts of
patients with diverse tumors, along with the average expression
profiles of cancer-associated fibroblasts (CAFs), myeloid-derived
suppressor cells (MDSCs), and the M2 subtype of tumor-associated
macrophages (TAMs) were utilized to model T cell dysfunction and
exclusion by TIDE prediction values (Jiang et al., 2018).

Tumor mutation related analysis

Investigations of tumor mutation burden (TMB) performed by
Lawrence, et al. showed a significant association between TMB and
immunotherapeutic strategy, as well as patients’ prognosis (Lawrence
et al., 2013; Samstein et al., 2019). Consequently, based on the value of
somatic median mutation frequencies, the form of log10 (TMB+ 1)
was utilized to illustrate TMB of the 33 types of tumor and reveal the
therapeutic relevance. What’s more, an oncoprint with mutation
spectrum and genetic alteration was acquired from the cBioportal
database (http://www.cbioportal.org) so as to access the seven STAT
genes’ general alteration and distribution status in different tumors
(Cerami et al., 2012), moreover, the mutation characteristics of
relevant genes on recognized signaling transduction pathways with
STATs including TGFBR1, TGFBR2, ACVR2A, ACVR1B, SMAD2,
SMAD3, and SMAD4 were also analyzed.

Frontiers in Genetics frontiersin.org04

Cheng et al. 10.3389/fgene.2023.1120500

http://timer.cistrome.org
http://tide.dfci.harvard.edu
http://www.cbioportal.org/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1120500


Drug sensitivity analysis

RNA sequencing profiles of STAT genes and drug activity data
were obtained from the CellMiner database (https://discover.nci.
nih.gov/cellminer/) (Reinhold et al., 2012). Subsequent
preprocessing of the raw data was conducted by employing the
Bioconductor R package (http://www.bioconductor.org/packages/
release/bioc/html/impute.html). In addition, Pearson correlation
analysis was performed to access the correlation between
expression levels of STAT genes and drug sensitivity.
Meanwhile, the plots were ranked by p-value, and the higher
ranking suggests a more significant correlation between genes
and drug sensitivity.

Statistical analysis

All bioinformatic analyses wereconducted with R software, version
3.6.1.A significance level of a two-sided p-value less than 0.05was adopted.

Results

Differential expression and co-expression
analysis

The 33 TCGA tumor types were shown in Supplementary Table
S1. And the analytical process of our present study was summarized

FIGURE 1
The flowchart of the whole analytic process of our study.
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FIGURE 2
Differential expression analysis of STATs in pan-cancer. (A) Box plot demonstrating the average gene expression levels of STATs in all tumor types. (B)
Heatmap revealing the expression levels of STATs measured by log2FC in different tumor types. (C) Box plots showing the average expression levels of
STAT1 between normal and tumor tissues of 23 tumor types, in which BLCA (p < 0.05), BRCA (p < 0.001), CESC (p < 0.01), CHOL (p < 0.001), COAD (p <
0.001), ESCA (p < 0.001), GBM (p < 0.01), HNSC (p < 0.001), KICH (p < 0.001), KIRP (p < 0.05), LICH (p < 0.001), LUAD (p < 0.001), LUSC (p < 0.001),
READ (p < 0.05), STAD (p < 0.001), THCA (p < 0.001), and UCEC (p < 0.001) exhibited statistical significance. (D) Box plots showing the average expression
levels of STAT2 between normal and tumor tissues of 23 tumor types, in which BLCA (p < 0.001), CESC (p < 0.01), CHOL (p < 0.001), ESCA (p < 0.001),
HNSC (p < 0.001), KICH (p < 0.01), KIRC (p < 0.001), KIRP (p < 0.05), LICH (p < 0.001), LUAD (p < 0.001), LUSC (p < 0.001), PRAD (p < 0.001), SARC (p < 0.05),
STAD (p < 0.001), THCA (p < 0.001), and UCEC (p < 0.01) presented statistical significance. (E) Box plots showing the average expression levels of

(Continued )

Frontiers in Genetics frontiersin.org06

Cheng et al. 10.3389/fgene.2023.1120500

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1120500


in Figure 1. Gene expression levels of STAT family were revealed in
Figure 2A, which clearly showed that STAT1, STAT2, STAT3, and
STAT6 processed comparatively high expression levels, while
STAT4 had the lowest expression value. STAT1 was up-regulated
in most tumor types except for KICH, while STAT5B was down-
regulated in almost all TCGA tumor samples except for CHOL
(Figure 2B). Moreover, STAT1 was the only gene highly expressed in
BRCA (p < 0.001, log2FC = 0.895) and also had escalated expression
levels in many tumor types, such as CHOL (p < 0.001, log2FC =
2.327), COAD (p < 0.001, log2FC = 0.396), LIHC (p < 0.001,
log2FC = 0.585) and STAD (p < 0.001, log2FC = 1.402)
(Figure 2C). Likewise, the differences in the expression levels of
STAT2 (Figure 2D), STAT3 (Figure 2E), STAT4 (Figure 2F),
STAT5A (Figure 2G), STAT5B (Figure 2H), and STAT6
(Figure 2I) between normal and tumor tissues were also
displayed. Additionally, employing the Human Protein Atlas
database, protein expression levels of STAT1, STAT4, and
STAT5A in normal and breast cancer tissues, as well as in
normal and lung cancer tissues were displayed in Supplementary
Figures S1A, S1B, and the protein expression levels of STAT6 in
normal and lung cancer tissues, along with in normal and urothelial
cancer tissues were demonstrated in Supplementary Figure S1C,
which further validated the results above. Furthermore, the
associated protein genes’ expression levels of STAT1
(Supplementary Figure S2A), STAT2 (Supplementary Figure
S2B), STAT3 (Supplementary Figure S2C), STAT4
(Supplementary Figure S2D), STAT5A (Supplementary Figure
S2E), STAT5B (Supplementary Figure S2F), and STAT6
(Supplementary Figure S2G), including positively and negatively
correlated significant genes were illustrated in volcano plots and
heatmaps utilizing the LinkedOmics database.

In co-expression analysis (Figure 2J), positive correlation
relationships could be accessed between every two members of STAT
family except for the correlation between STAT1 and STAT5B
(correlation coefficient = −0.02). Moreover, it was shown that the
strongest positive correlation was between STAT1 and STAT2
(correlation coefficient = 0.6), which implied a strongest interaction.
Meanwhile, STAT1 and STAT3 were of a relatively high association
(correlation coefficient = 0.47). In addition, STAT1 and STAT4,
STAT2 and STAT5A, and STAT5A and STAT5B possessed the same
correlation coefficient of 0.39. What’s more, exerting the STRING
database, a PPI network was obtained to further prove the powerful
association amongmembers of STAT family in Supplementary Figure S3.

In WGCNA, the KIRC samples dendrogram and trait heatmap
of the 50 hallmark gene sets and STATs were shown in
Supplementary Figure S4A. Additionally, the cluster dendrogram
of DEGs revealed the co-expression modules with different branches
and color blocks in Figure 4B. What’s more, in the module trait
relationships heatmap, the black module was demonstrated to have
generally strong correlations with STATs, especially STAT1
(correlation coefficient = 0.73, P = 3e-84), STAT2 (correlation
coefficient = 0.63, P = 9e-56), STAT4 (correlation coefficient =
0.7, P = 2e-75), and STAT5A (correlation coefficient = 0.72, P = 2e-
80). Moreover, the black module also had strong correlations with
hallmark allograft rejection (correlation coefficient = 0.78, P = 3e-
103), interferon γ response (correlation coefficient = 0.78, P = 2e-
103), inflammatory response (correlation coefficient = 0.6, P = 4e-
51), interferon a response (correlation coefficient = 0.59, P = 8e-48),
and IL6-JAK-STAT3 signaling (correlation coefficient = 0.47, P =
2e-28).

Clinical correlation analysis

High expression levels of STAT1 (p = 0.031, Figure 3A) were
revealed to be notably correlated with poor prognosis in KIRP.
Additionally, elevated expression levels of STAT2 (p < 0.001,
Figure 3B) and STAT4 (p = 0.041, Figure 3C) were significantly
associated with an unfavourable prognosis in KIRC. In addition, up-
regulation of STAT4 (p = 0.025, Figure 3D) was demonstrated to be
linked with poor OS in patients with KIRP. Moreover, up-regulated
STAT4 expression (p = 0.003, Figure 3E) and STAT5B expression
(p = 0.002, Figure 3F) were discovered to be correlated with better
prognosis in patients with PAAD. Besides, it was shown that highly
expressed STAT6 was significantly correlated with favorable
prognosis in BLCA (p = 0.005, Figure 3G) and SARC (p < 0.001,
Figure 3H). What’s more, the univariate Cox proportional hazards
regression analysis results of STATs in 33 tumor types were all
illustrated in Figure 3I, which were consistent with the results of the
K-M survival analyses above. To be specific, STAT1 and
STAT4 were manifested as risk factors of KIRP with HR > 1, as
well as STAT2 and STAT4 of KIRC, while STAT4 and STAT5B were
revealed to be protective factors of PAAD with HR < 1, as well as
STAT6 of BLCA and SARC.

Additionally, the statistically significant results of DFI
(Supplementary Figure S5A), PFI (Supplementary Figure S5B),

FIGURE 2 (Continued)
STAT3 between normal and tumor tissues of 23 tumor types, in which BLCA (p < 0.05), COAD (p < 0.01), ESCA (p < 0.01), GBM (p < 0.001), KICH (p <
0.01), KIRC (p < 0.001), KIRP (p < 0.05), LUAD (p < 0.01), LUSC (p < 0.001), and STAD (p < 0.001) displayed statistical significance. (F) Box plots showing the
average expression levels of STAT4 between normal and tumor tissues of 23 tumor types, in which BRCA (p < 0.001), COAD (p < 0.001), GBM (p < 0.001),
HNSC (p < 0.001), KICH (p < 0.01), KIRC (p < 0.001), KIRP (p < 0.05), LUSC (p < 0.001), PAAD (p < 0.05), PCPG (p < 0.01), READ (p < 0.01), STAD (p <
0.05), and THCA (p < 0.01) depicted statistical significance. (G) Box plots showing the average expression levels of STAT4 between normal and tumor
tissues of 23 tumor types, in which BLCA (p < 0.01), BRCA (p < 0.001), CHOL (p < 0.001), GBM (p < 0.01), HNSC (p < 0.05), KICH (p < 0.001), LIHC (p <
0.001), LUAD (p < 0.001), LUSC (p < 0.001), PAAD (p < 0.05), PCPG (p < 0.05), PRAD (p < 0.001), STAD (p < 0.01), THCA (p < 0.001), and UCEC (p < 0.001)
demonstrated statistical significance. (H) Box plots showing the average expression levels of STAT4 between normal and tumor tissues of 23 tumor types,
in which BLCA (p < 0.001), BRCA (p < 0.001), CESC (p < 0.01), CHOL (p < 0.001), KICH (p < 0.001), KIRC (p < 0.01), LIHC (p < 0.001), LUAD (p < 0.001), LUSC
(p < 0.001), PRAD (p < 0.001), THYM (p <0.05), and UCEC (p < 0.001) revealed statistical significance. (I)Box plots showing the average expression levels of
STAT4 between normal and tumor tissues of 23 tumor types, in which BLCA (p < 0.01), BRCA (p < 0.001), CHOL (p < 0.001), KICH (p < 0.01), KIRC (p <
0.001), KIRP (p < 0.001), LIHC (p < 0.001), LUAD (p < 0.001), LUSC (p < 0.001), PCPG (p < 0.01), PRAD (p < 0.001), THCA (p < 0.001), and UCEC (p < 0.001)
indicated statistical significance. (J) Correlation analysis among STATs illustrated that STAT1 and STAT2 had the strongest correlation (correlation
coefficient = 0.60).
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and DSS (Supplementary Figure S5C) between high and low
expression of STAT1 were also shown in K-M survival plots, as
well as the univariate Cox hazards regression analysis results
measured by OS (Supplementary Figure S5D), DFI
(Supplementary Figure S5E), PFI (Supplementary Figure S5F),
and DSS (Supplementary Figure S5G) in forest plots. In addition,
expression levels of STAT3 were also revealed to be correlated with
DFI (Supplementary Figure S6A), PFI (Supplementary Figure S6B),
and DSS (Supplementary Figure S6C) of different tumor patients in
K-M survival plots, and the univariate Cox hazards regression
analysis results measured by OS (Supplementary Figure S6D),
DFI (Supplementary Figure S6E), PFI (Supplementary Figure

S6F), and DSS (Supplementary Figure S6G) in forest plots were
as well demonstrated. Moreover, STAT6 expression was also
characterized to be linked with DFI (Supplementary Figure S7A),
PFI (Supplementary Figure S7B), and DSS (Supplementary Figure
S7C) of patients with different tumors in K-M survival plots, plus
displaying the univariate Cox hazards regression analysis results
measured by OS (Supplementary Figure S7D), DFI (Supplementary
Figure S7E), PFI (Supplementary Figure S7F), and DSS
(Supplementary Figure S7G) in forest plots.

Furthermore, a prognostic prediction model was constructed
based on the expression of seven STATs in KIRC patients by
calculating risk scores. In the subsequent cross-validation by

FIGURE 3
Survival analysis of STATs in pan-cancer. (A) Kaplan-Meier plot showed that low STAT1 expression indicated a better prognosis in KIRP patients (p =
0.031). (B) Kaplan-Meier plot revealed that low STAT2 expression suggested amore favorable prognosis in KIRC patients (p < 0.001). (C) Kaplan-Meier plot
visualized that high expression levels of STAT4 were associated with worse clinical outcomes in KIRC patients (p = 0.041). (D) Kaplan-Meier plot displayed
that elevated STAT4 levels were linkedwithmore unfavorable clinical outcomes in KIRP patients (p=0.025). (E) Kaplan-Meier plot portrayed that up-
regulated STAT4 expression was correlated with better prognosis in PAAD patients (p = 0.003). (F) Kaplan-Meier plot exhibited that high STAT5B levels
indicated a better overall survival status in patients with PAAD (p= 0.002). (G) Kaplan-Meier plot illustrated that down-regulation of STAT6 expressionwas
associated with worse clinical outcomes in patients with BLCA (p = 0.005). (H) Kaplan-Meier plot characterizing that low STAT6 levels suggested a more
unfavorable prognosis in patients with SARC (p < 0.001). (I) Forest plot showing the results of Cox proportional hazards regression analyses of STATs in
33 tumor types, in which STAT1 and STAT4were identified as risk factors of KIRPwith HR > 1, aswell as STAT2 and STAT4 of KIRC, while STAT4 and STAT5B
were recognized to be protective factors of PAAD with HR < 1, as well as STAT6 of BLCA and SARC.
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train/test split, the risk curves displayed KIRC patients of high- and
low-risk groups in increasing risk score in all set, train set and test set
(Supplementary Figure S8A). Additionally, risk scatter plots
demonstrated sensor (alive or dead) and survival time of patients
with ascending risk score in all set, train set and test set
(Supplementary Figure S8B), which manifested that patients with
higher risk scores had a higher mortality and possibly a shorter
survival time. In addition, K-M survival plots all showed statistically
significant differences (p < 0.001) between high- and low-risk KIRC
patients in all set, train set and test set (Supplementary Figure S8C),
which suggested a favorable effectiveness of the prognostic model.
What’s more, ROC curves revealed a decent accuracy of the
prognostic model in all set (AUC = 0.745), train set (AUC =
0.752) and test set (AUC = 0.757) (Supplementary Figure S8D).
Moreover, it was shown that risk score had a HR = 14.783 (95% CI
(5.652–38.664), p < 0.001) in univariate Cox regression (Figure 7E)
and a HR = 7.204 (95% CI (2.293–22.631), p < 0.001) in multivariate
Cox regression (Figure 7F). Consequently, we confirmed that the
risk score was an independent prognostic factor for KIRC patients.

Last but not least, we discovered that STAT gene expression
levels were related to tumor stages in various cancers, such as COAD
(Supplementary Figure S9A) and STAD (Supplementary Figure
S9B). STAT1 (p < 0.01) and STAT4 (p < 0.001) revealed the

significant correlation in different stages for COAD, with both
expressing the lowest in stage IV. In comparison to STAT1,
STAT4 expression was lower in all tumor progression stages and
on a downward trend, which could be used to monitor tumor
progression and formulate therapeutic options in clinical tumor
therapy. Furthermore, the expression of STAT2 (p < 0.001) and
STAT4 (p < 0.05) in STAD was correlated with TNM stages, with
both expressing the highest in stage III.

Immune subtype analysis

The average expression values of STAT1 (p < 0.001), STAT2 (p <
0.001), STAT3 (p < 0.001), STAT4 (p < 0.001), STAT5A (p < 0.001),
STAT5B (p < 0.001), and STAT6 (p < 0.001) among immune
subtypes C1-C6 in all tumor types were identified to have
notable differences (Figure 4A). Moreover, it was worth noting
that the expression levels of STAT genes in subtype C5 were the
most down-regulated of six immune subtypes except for STAT5B.
Additionally, STAT4 was shown to express the lowest value among
STATs in all immune subtypes.

Specifically, in LUAD, significant differences were demonstrated
in the expression levels of STAT1 (p < 0.001), STAT2 (p < 0.001),

FIGURE 4
Immune subtype analysis of STATs in pan-cancer. (A) Box plots showed the differential expression of average expression levels of STAT1 (p < 0.001),
STAT2 (p < 0.001), STAT3 (p < 0.001), STAT4 (p < 0.001), STAT5A (p < 0.001), STAT5B (p < 0.001), and STAT6 (p < 0.001) across TCGA cancers among C1-
C6 immune subtypes. (B) Box plots displayed significant differences in expression levels of STAT1 (p < 0.001), STAT2 (p < 0.001), STAT3 (p < 0.001), STAT4
(p < 0.001), STAT5A (p < 0.001), STAT5B (p < 0.001), and STAT6 (p < 0.001) among immune subtypes C1, C2, C3, C4, and C6 in LUAD. (C) Box plots
revealed significant differences in expression levels of STAT1 (p < 0.001), STAT2 (p < 0.001), STAT3 (p < 0.001), STAT4 (p < 0.001), STAT5A (p < 0.001),
STAT5B (p < 0.001), and STAT6 (p < 0.001) among immune subtypes C1, C2, C3, C4, and C6 in SARC. (D) Box plots demonstrated significant differences in
expression levels of STAT1 (p < 0.001), STAT2 (p < 0.01), and STAT4 (p < 0.001) among immune subtypes C1, C2, C3, C4, and C6 in SKCM.
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STAT3 (p < 0.001), STAT4 (p < 0.001), STAT5A (p < 0.001),
STAT5B (p < 0.001), and STAT6 (p < 0.001) among immune
subtypes C1, C2, C3, C4, and C6 (Figure 4B). In addition,
STAT1 expressed the highest value in immune subtypes C1, C2,
C3, and C6, while expression level of STAT4 was the lowest in
immune subtypes C1, C2, C3, C4, and C6. Besides, C2 and
C3 possessed comparatively elevated expression of STAT1,
STAT2, STAT3, STAT4, STAT5A, STAT5B, and
STAT6 compared with other immune subtypes.

In terms of SARC, it was illustrated that expression levels of
STAT1 (p < 0.001), STAT2 (p < 0.001), STAT3 (p < 0.001), STAT4
(p < 0.001), STAT5A (p < 0.001), STAT5B (p < 0.001), and STAT6
(p < 0.001) among immune subtypes C1, C2, C3, C4, and C6 were of
significant differences (Figure 4C). Moreover, escalated expression
of STAT1, STAT2, STAT4, STAT5A were found in immune subtype
C2. In addition, immune subtype C3 was identified to have up-
regulated expression of STAT3, STAT5B, and STAT6. What’s more,
expression level of STAT4 was the most down-regulated of all STAT
genes in immune subtypes C1, C2, C3, C4, and C6.

For SKCM, there were also notable differences in the expression
levels of STAT1 (p < 0.001), STAT2 (p < 0.01), and STAT4 (p <
0.001) among immune subtypes C1, C2, C3, C4, and C6 (Figure 4D).
Additionally, C2 had the highest expression of STAT1, STAT2,
STAT3, and STAT4. Likewise, STAT4 expression had the most
down-regulation of all STAT genes in immune subtypes C1, C2, C3,
C4, and C6.

Tumor stemness analysis

Positive and negative correlations between STAT genes and
mDNAss of different tumor types were exhibited in Figure 5A. For
instance, strong negative correlations were found between
STAT4 and DLBC, STAT5A and OV, STAT5B and OV, and
STAT6 and TGCT. Instead, positive correlations existed between
STAT1 and OV, STAT2 and THYM, and STAT2 and THYM.

For mRNAss, a number of negative correlations between STATs
and TCGA tumor types were shown in Figure 5B, except for STAT1.
Take PRAD, for example, negative correlations of STAT4, STAT5A,
STAT5B, and STAT6 suggested that the higher expression of STATs,
the higher differentiation and lower malignant degree of tumor cells
with less tumor stemness characteristics, which might aid in
speculating tumor prognosis in clinical application.

Tumor purity analysis

According to Figure 5C; Figure 6E, it was characterized that
almost every type of tumor had obviously positive correlations
between expression of STAT genes and stromal score, immune
score, and ESTIMATE score, which indicated that higher the
expression of STAT genes, the more stromal and immune cells
in the TME, and thus the less tumor purity (Figure 5F). Notably,
STAT4 had the strongest correlations across the majority of TCGA

FIGURE 5
Tumor stemness and tumor purity analyses of STATs in pan-cancer. (A) Heatmap revealing the correlations between expression levels of STAT1,
STAT2, STAT3, STAT4, STAT5A, STAT5B and STAT6 and mDNAss in 33 TCGA tumor types. (B) Heatmap showling the correlations between expression
levels of STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B and STAT6 and mRNAss in 33 TCGA tumor types. (C) Heatmap demonstrating the correlations
between expression levels of STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B and STAT6 and stromal score. (D) Heatmap demonstrating the
correlations between expression levels of STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B, and STAT6 and immune score. (E)Heatmap demonstrating the
correlations between expression levels of STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B, and STAT6 and ESTIMATE score. (F) Heatmap demonstrating
the correlations between expression levels of STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B and STAT6 and tumor purity. (mDNAss: DNA methylation-
based stemness score; mRNAss: mRNA-based stemness score).
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FIGURE 6
Immune infiltration and immunotherapy related analyses of STATs in pan-cancer. (A) UMAP feature plots depicting the distribution of STAT1, STAT2,
STAT3, STAT4, STAT5A, STAT5B, and STAT6 expression in myeloid cells in pan-cancer, which showed that STAT1 was remarkably high expressed in
macrophages with marker ISG15, while STAT3 expression was significantly escalated in mast cells with marker KIT. (B) UMAP feature plots presented the
distribution of STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B, and STAT6 expression in CD4+ T cells in pan-cancer, which revealed that STAT1 and
STAT2 expression were notably up-regulated in CD4+ Treg cell with marker OSA1 and CD4+ T cell with ISG IFIT1. (C) UMAP feature plots exhibited the
distribution of STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B, and STAT6 expression in CD8+ T cells in pan-cancer, which illustrated that STAT1 and
STAT2 had prominent up-regulation in CD8+ T cell with ISG IFIT1. (D) Heatmap visualizing the correlation analysis between STATs expression and tumor
immune dysfunction and exclusion-related factors including T dysfunction value in core dataset, normalized z score calling from Cox-PH regression in
immunotherapy dataset, normalized z score calling from selection log2FC in CRISPR Screen dataset, and normalized expression value from immune-
suppressive cell types.
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tumor types. On the contrary, negative correlations existed in only
several tumor types, such as BLCA and STAT6, GBM and STAT5B,
and SARC and STAT5B.

More specifically, for BRCA (Supplementary Figure S10A),
negative correlations were discovered between STAT2
(R = −0.11, p < 0.001), STAT3 (R = −0.17, p < 0.001), STAT4
(R = −0.18, p < 0.001), STAT5A (R = −0.26, p < 0.001), STAT5B
(R = −0.32, p < 0.001), and STAT6 (R = −0.36, p < 0.001) and
mRNAss, while STAT1 (R = 0.25, p < 0.001) had a positive
correlation with mRNAss. Additionally, there were also negative
correlations between STAT3 (R = −0.092, p = 0.011), STAT4
(R = −0.07, p = 0.049), STAT5A (R = −0.14, p < 0.001), STAT5B
(R = −0.16, p < 0.001), and STAT6 (R = −0.16, p < 0.001) and
mDNAss. Consequently, we could conclude that the higher
expression of STAT3, STAT4, STAT5A, STAT5B, and STAT6,
the higher differentiation degree and less tumor stemness
characteristics of BRCA tumor cells. Moreover, the expression of
STAT1 had prominently positive correlations with stromal score
(R = 0.21, p < 0.001), immune score (R = 0.52, p < 0.001), and
ESTIMATE score (R = 0.44, p < 0.001), same as STAT2 (stromal
score: R = 0.36, p < 0.001; Immune score: R = 0.47, p < 0.001; and
ESTIMATE score: R = 0.49, p < 0.001), STAT4 (stromal score: R =
0.51, p < 0.001; Immune score: R = 0.80, p < 0.001; and ESTIMATE
score: R = 0.76, p < 0.001) and STAT5A (stromal score: R = 0.29, p <
0.001; Immune score: R = 0.41, p < 0.001; and ESTIMATE score: R =
0.41, p < 0.001). Consequently, we deduced that high expression of
STAT1, STAT2, STAT4, and STAT5A indicated low BRCA tumor
purity.

For COAD (Supplementary Figure S10B), negative correlations
were also identified between STAT1 (R = −0.17, p < 0.001), STAT2
(R = −0.50, p < 0.001), STAT3 (R = −0.28, p < 0.001), STAT4
(R = −0.36, p < 0.001), STAT5A (R = −0.28, p < 0.001), and STAT5B
(R = −0.26, p < 0.001) and mRNAss. In addition, there were also
negative correlations between STAT1 (R = −0.12, p = 0.043), STAT2
(R = −0.18, p < 0.001), and STAT4 (R = −0.21, p < 0.001) and
mDNAss. Hence, we proposed that higher STAT1, STAT2, and
STAT4 expression suggested less tumor stemness characteristics.
Besides, the expression of STAT1 was exhibited to have significantly
positive correlations with stromal score (R = 0.49, p < 0.001),
immune score (R = 0.66, p < 0.001), and ESTIMATE score (R =
0.60, p < 0.001), as well as STAT2 (stromal score: R = 0.58, p < 0.001;
Immune score: R = 0.65, p < 0.001; and ESTIMATE score: R = 0.65,
p < 0.001), STAT3 (stromal score: R = 0.32, p < 0.001; Immune score:
R = 0.44, p < 0.001; and ESTIMATE score: R = 0.40, p < 0.001),
STAT4 (stromal score: R = 0.53, p < 0.001; Immune score: R = 0.75,
p < 0.001; and ESTIMATE score: R = 0.67, p < 0.001), STAT5A
(stromal score: R = 0.33, p < 0.001; immune score: R = 0.39, p <
0.001; and ESTIMATE score: R = 0.38, p < 0.001), and STAT5B
(stromal score: R = 0.27, p < 0.001; and ESTIMATE score: R = 0.18,
p < 0.001). Thus, higher the expression of STAT1, STAT2, STAT3,
STAT4, STAT5A, and STAT5B, the lower the tumor purity.

For HNSC (Supplementary Figure S10C), negative correlations
were spotted between STAT2 (R = −0.16, p < 0.001), STAT4
(R = −0.26, p < 0.001), and STAT5B (R = −0.24, p < 0.001) and
RNAss, while STAT6 (R = 0.11, p = 0.018) had a positive correlation
with RNAss. Besides, there were also negative correlations between
STAT1 (R = −0.41, p = 0.011), STAT2 (R = −0.32, p = 0.049), STAT4
(R = −0.34, p < 0.001), STAT5A (R = −0.17, p < 0.001), and STAT5B

(R = −0.14, p = 0.0017) and mDNAss. Taken together, it was implied
that up-regulation of STAT2, STAT4, and STAT5B meant down-
regulation of HNSC tumor stemness characteristics. Moreover, the
expression of STAT1 was depicted to possess significantly positive
correlations with stromal score (R = 0.23, p < 0.001), immune score
(R = 0.58, p < 0.001), and ESTIMATE score (R = 0.46, p < 0.001), as
well as STAT2 (stromal score: R = 0.24, p < 0.001; Immune score: R =
0.48, p < 0.001; and ESTIMATE score: R = 0.41, p < 0.001), STAT3
(immune score: R = 0.22, p < 0.001; and ESTIMATE score: R = 0.17,
p < 0.001), STAT4 (stromal score: R = 0.50, p < 0.001; Immune score:
R = 0.70, p < 0.001; and ESTIMATE score: R = 0.69, p < 0.001),
STAT5A (stromal score: R = 0.27, p < 0.001; Immune score: R = 0.61,
p < 0.001; and ESTIMATE score: R = 0.52, p < 0.001), and STAT5B
(stromal score: R = 0.32, p < 0.001; Immune score: R = 0.25, p <
0.001; and ESTIMATE score: R = 0.33, p < 0.001). On the whole, it
was illustrated that higher the expression of STAT1, STAT2, STAT3,
STAT4, STAT5A, and STAT5B, the lower the tumor purity.

For LIHC (Supplementary Figure S10D), negative correlations
were recognized between STAT3 (R = −0.29, p < 0.001), STAT4
(R = −0.14, p < 0.001), STAT5A (R = −0.17, p = 0.0013), STAT5B
(R = −0.12, p = 0.026), and STAT5A (R = −0.21, p < 0.001) and
mRNAss. Additionally, there were also negative correlations
between STAT1 (R = −0.17, p = 0.0011), STAT4 (R = −0.22, p <
0.001) and mDNAss, while STAT2 (R = 0.10, p = 0.048) and
STAT5A (R = 0.13, p = 0.011) had a positive correlation with
mDNAss. All in all, up-regulated expression of STAT4 was revealed
to suggest down-regulated LIHC tumor stemness characteristics.
What’s more, the expression of STAT1 was visualized to possess
significantly positive correlations with stromal score (R = 0.28, p <
0.001), immune score (R = 0.43, p < 0.001), and ESTIMATE score
(R = 0.40, p < 0.001), plus STAT2 (immune score: R = 0.16, p =
0.0018; and ESTIMATE score: R = 0.13, p = 0.015), STAT3 (stromal
score: R = 0.27, p < 0.001; immune score: R = 0.22, p < 0.001; and
ESTIMATE score: R = 0.26, p < 0.001), STAT4 (stromal score: R =
0.40, p < 0.001; immune score: R = 0.54, p < 0.001; and ESTIMATE
score: R = 0.52, p < 0.001), and STAT5A (stromal score: R = 0.38, p <
0.001; Immune score: R = 0.52, p < 0.001; and ESTIMATE score: R =
0.50, p < 0.001), while STAT5B (stromal score: R = −0.14, p = 0.0063;
Immune score: R = −0.26, p < 0.001; and ESTIMATE score:
R = −0.23, p < 0.001) had negative correlations. In general, it
was displayed that higher expression of STAT1, STAT2, STAT3,
STAT4, and STAT5A indicated a lower tumor purity.

Immune infiltration analysis

The distribution of STAT1, STAT2, STAT3, STAT4, STAT5A,
STAT5B, and STAT6 expression in myeloid cells in pan-cancer
single-cell transcriptional atlases of tumor infiltrating myeloid cells
and tumor infiltrating T cells was demonstrated in Figure 6A,
Supplementary Figures S11A–G, which revealed that STAT1 and
STAT3 were generally high-expressed in myeloid cells, while
STAT4 and STAT5B had basically no expression. In particular,
STAT1 was remarkably high expressed in macrophages with marker
IFN stimulated gene (ISG) 15, while STAT3 expression was
significantly escalated in mast cells with marker KIT.
Additionally, the distribution of STAT1, STAT2, STAT3, STAT4,
STAT5A, STAT5B, and STAT6 expression in CD4+ T cells in pan-

Frontiers in Genetics frontiersin.org12

Cheng et al. 10.3389/fgene.2023.1120500

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1120500


cancer were also clearly illustrated (Figure 6B; Supplementary
Figures S11A–G), which showed that STAT1 and
STAT2 expression were notably up-regulated in CD4+ Treg cell
with marker OSA1 and CD4+ T cell with ISG IFIT1. In addition, the
distribution of STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B,
and STAT6 expression in CD8+ T cells in pan-cancer were displayed
(Figure 6B; Supplementary Figures S11A–G), which presented that
STAT1 and STAT2 had prominent up-regulation in CD8+ T cell
with ISG IFIT1. Moreover, STAT1, STAT2, STAT3, STAT4,
STAT5A, STAT5B, and STAT6 expression were all shown to be
positively correlated with the infiltration of the majority of immune
cells including dendritic cells, monocytes, macrophages, CD4+

T cells, CD8 T cells, and B cells, in which STAT1, STAT2,
STAT4, and STAT5A were the most significant exerting
theTIMER2.0 database (Supplementary Figures S14A–D; S15A–C).

Immunotherapy related analysis

The statistically significant results of correlation between STATs
expression and CTL infiltration levels were all visualized. As shown in
Supplementary Figure S14A, STAT1 expression was revealed to be
positively correlated with CTL infiltration levels in endometrial
carcinoma (r = 0.363, p = 2.48e−18), acute myeloid leukemia (r =
0.335, p = 2.53e−3), neuroblastoma (r = 0.363, p = 1.52e−13), metastatic
melanoma (r = 0.623, p = 1.69e−35), and triple negative breast cancer
(r = 0.655, p = 6.97e−30). Besides, as demonstrated in Supplementary
Figure S16b, STAT2 expression was depicted to had positive
correlation CTL infiltration levels in endometrial carcinoma (r =
0.192, p = 6.61e−6), neuroblastoma (r = 0.229, p = 5.22e−6), metastatic
melanoma (r = 0.356, p = 6.28e−11), and triple negative breast cancer
(r = 0.360, p = 1.58e−8). In addition, as shown in Supplementary Figure
S16C, STAT3 expression was revealed to be positively associated with
CTL infiltration levels in neuroblastoma (r = 0.201, p = 6.36e−5) and
metastatic melanoma (r = 0.231, p = 3.27e−5). Moreover, as
demonstrated in Supplementary Figure S16D, STAT4 expression
was characterized to had positive correlation with CTL infiltration
levels in endometrial carcinoma (r = 0.584, p = 1.01e−50), acute
myeloid leukemia (r = 0.418, p = 1.25e−4), neuroblastoma (r =
0.579, p = 3.52e−36), metastatic melanoma (r = 0.540, p = 2.37e−25),
and triple negative breast cancer (r = 0.835, p = 8.30e−62). What’s
more, as shown in Supplementary Figure S16E, STAT5A expression
was characterized to be positively linkedwith CTL infiltration levels in
endometrial carcinoma (r = 0.298, p = 1.55e−12), acute myeloid
leukemia (r = 0.220, p = 7.84e−5), neuroblastoma (r = 0.578, p =
4.53e−36), and triple negative breast cancer (r = 0.467, p = 5.25e−14).
Additionally, as demonstrated in Supplementary Figure S16F,
STAT5B expression was displayed to be positively correlated with
CTL infiltration levels in endometrial carcinoma (r = 0.106, p =
1.40e−2), acute myeloid leukemia (r = 0.291, p = 1.28e−7), and triple
negative breast cancer (r = 0.327, p = 3.31e−7). Moreover, as shown in
Supplementary Figure S16G, STAT6 expression was shown to be
positively linked with CTL infiltration levels in neuroblastoma (r =
0.478, p = 1.32e−23) and triple negative breast cancer (r = 0.253, p =
9.26e−5). In a word, higher expression of STATs all suggested higher
level of CTL infiltrations.

The statistically significant results of the survival analysis of
STATs expression and CTL infiltration levels in different tumors

were clearly illustrated. In endometrial carcinoma (z score = 2.07,
p = 0.0383), a higher CTL level indicated a better prognosis when
STAT1 had relatively low expression (Supplementary Figure S17A).
Moreover, in neuroblastoma (z score = 3.22, p = 0.0013),
endometrial carcinoma (z score = 2.49, p = 0.0127), and triple
negative breast cancer (z score = 2.05, p = 0.04), higher CTL levels all
suggested more favorable survival outcomes when STAT2 had
relatively low expression (Supplementary Figures S17B–D).
Additionally, in triple negative breast cancer (z score = 2.68, p =
0.00731), a lower CTL level indicated a better survival outcome
when STAT4 were high expressed (Supplementary Figure S17E). In
addition, in neuroblastoma (z score = 2.46, p = 0.0138) and triple
negative breast cancer (z score = 1.99, p = 0.0471), escalated CTL
levels suggested more favorable prognosis when STAT5B had
relatively low expression (Supplementary Figures S17F–G).
Besides, in acute myeloid leukemia (z score = −2.03, p = 0.0421),
a higher CTL level indicated a better prognosis when STAT6 had
higher expression (Supplementary Figure S17H). Taken together, we
concluded that a tumor sample with high STAT1, STAT2, STAT4,
and STAT5B expression levels tended to be enriched in T cell
dysfunction phenotypes, while STAT6 showed to be the opposite.

What’s more, the results of correlation analyses between STATs
expression and tumor immune dysfunction and exclusion-related
factors including T dysfunction value in core dataset, normalized z
score calling from Cox-PH regression in immunotherapy dataset,
normalized z score calling from selection log2FC in CRISPR Screen
dataset, and normalized expression value from immune-suppressive
cell types were illustrated in Figure 6D. It was shown that
STAT1 had significantly positive correlations with normalized z
score of many samples calling from selection log2FC in CRISPR
Screen dataset. Also, STAT2, STAT4, and STAT5B had several
positive correlations with T dysfunction and exclusion values of
samples from those datasets. These results again revealed that high
STAT1, STAT2, STAT4, and STAT5B expression levels indicated
enrichment in T cell dysfunction and exclusion phenotypes in tumor
samples.

Tumor mutation related analysis

Lower TMB values were seen in PCPG, THCA, and LAMLwhile
higher TMB values were shown in SKCM, LUSC, and LUAD
(Figure 7A), suggesting potentially favorable effects of immune
therapy on SKCM, LUSC, and LUAD instead of PCPG, THCA,
and LAML. Subsequently, the association between STATs
expression and TMB in pan-cancer was revealed by Spearman
correlation analysis in Figure 7B, from which we spotted that
STAT4 expression had a strong negative correlation with TMB
value in DLBC, as well as STAT4 and STAT5B expression with TMB
values in PAAD. Meanwhile, STAT1, STAT2, STAT3, and
STAT6 expression were demonstrated to have positive
correlations with TMB values in THYM, indicating that high
STATs expression might be related to a good immune therapy
outcome.

As illustrated in Supplementary Figure S18A, STATs had
multiple types but rather low frequencies of genetic alteration in
various malignancies. STAT3 had a relatively high alteration
frequency of 0.8%, the majority of which were amplification
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(unknown significance), missense mutation (unknown significance),
truncating mutation (unknown significance), missense mutation
(putative driver), and inframe mutation (putative driver). In
addition, STAT5A, and STAT5B also had relatively high
alteration frequencies of 0.6% and 0.9%, mainly amplification
(unknown significance), missense mutation (unknown
significance), and deep deletion (unknown significance). STATs,
in general, were thought to act as tumor driver genes, promoting
tumorigenesis. Additionally, TGFBR2, ACVR2A, and SMAD4 were
shown to have high alteration frequencies in pan-cancer
(Supplementary Figure S17B).

Drug sensitivity analysis

Ranked by p-value, the association between drug sensitivity
and STAT genes was displayed in Figure 8 employing the
CellMiner database, which revealed that the expression levels
of STAT genes could influence the sensitivity of tumor cells to

certain drugs. STAT5A had positive correlations with many types
of drugs, including Nelarabine (cor = 0.600, p < 0.001), Nilotinib
(cor = 0.599, p < 0.001), Bafetinib (cor = 0.526, p < 0.001),
Imatinib (cor = 0.474, p < 0.001), Cyclophosphamide (cor =
0.418, p < 0.001), and Vorinostat (cor = 0.409, p = 0.001), while a
negative correlation with Irofulven (cor = −0.338, p = 0.002),
indicating that patients with high STAT5A expression might be
more susceptible to Nelarabine, Nilotinib, Bafetinib, Imatinib,
Cyclophosphamide, and Vorinostat, while more resistant to
Irofulven. Other positive correlations were accessed between
STAT5B and Nelarabine (cor = 0.573, p < 0.001), STAT6 and
Dabrafenin (cor = 0.432, p < 0.001), and STAT4 and Afatinib
(cor = 0.409, p = 0.001), while negative correlations were
obtained between STAT1 and Tyrothricin (cor = −0.462, p <
0.001), and STAT2 and Docetaxel (cor = −0.435, p < 0.001).
What’s more, STAT3 was revealed to antagonize the sensitivity of
tumor cells to Palbociclib (cor = −0.406, p = 0.001), LDK-378
(cor = −0.393, p = 0.002), and Tamoxifen (cor = −0.369, p =
0.004).

FIGURE 7
TMB analysis of STATs in pan-cancer. (A) TMB values was shown in the form of log10 (TMB+ 1) in 33 types of cancer, in which lower TMB values were
identified in PCPG, THCA, and LAML while higher TMB values were revealed in SKCM, LUSC, and LUAD. (B) Heatmap demonstrating the correlations
between STATs expression and TMB values, from which STAT4 expression was spotted to have a strong negative correlation with TMB value in DLBC, as
well as STAT4 and STAT5B expression with TMB values in PAAD. Meanwhile, STAT1, STAT2, STAT3, and STAT6 expression were demonstrated to
have positive correlations with TMB values in THYM.
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Discussion

Generally speaking, as intra-nuclear transcription factors,
STATs combine with each other to form a dimer and play a
pivotal role in regulating gene expression in the nucleus while
activated based on its core SH2 domain. Up to now, up-regulated

STAT4 mRNA has been found to be significantly correlated with
IFN-γ in patients with gastric cancer and it has been linked to
improved disease-free survival (Nishi et al., 2017). Increased
STAT5 expression was discovered to be associated with good
prognosis in breast cancer (Barash, 2012). STAT1, one of the
biomarkers of ovarian cancer, was reported as a disease outcome

FIGURE 8
Drug response analysis. The results of correlations between drug sensitivity and STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B, and STAT6 across
TCGA cancers, in which STAT5A expression was shown to have positive correlations with Nelarabine (cor = 0.600, p < 0.001), Nilotinib (cor = 0.599, p <
0.001), Bafetinib (cor = 0.526, p < 0.001), Imatinib (cor = 0.474, p < 0.001), Cyclophosphamide (cor = 0.418, p < 0.001), and Vorinostat (cor = 0.409, p =
0.001), while a negative correlation with Irofulven (cor = −0.338, p = 0.002). Moreover, positive correlations were accessed between STAT5B and
Nelarabine (cor = 0.573, p < 0.001), STAT6 and Dabrafenin (cor = 0.432, p < 0.001), and STAT4 and Afatinib (cor = 0.409, p = 0.001), while negative
correlations were obtained between STAT1 and Tyrothricin (cor = −0.462, p < 0.001), and STAT2 and Docetaxel (cor = −0.435, p < 0.001). Furthermore,
STAT3 was revealed to be negatively linked with Palbociclib (cor = −0.406, p = 0.001), LDK-378 (cor = −0.393, p = 0.002), and Tamoxifen (cor = −0.369,
p = 0.004).
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by Juliana A. J, et al. (Josahkian et al., 2018). In addition, activated
STAT6 regulated the signaling pathway to promote the process of
lung cancer and might be a therapeutic target for lung cancer (Fu
et al., 2019). Above all, there were certain a number of research
achievements of STATs in cancers, however, the effects of all
members in STAT gene family on 33 types of TCGA tumors
have still been unclear so far. Thus, we performed a
multidimensional analysis to obtain more results between STAT
expression and different tumor types by using the methods of Cox
proportional hazards regression, Kruskal-Wallis test, Spearman
correlation analysis, ESTIMATE scores, and so on.

According to our multidimensional analysis, it was
demonstrated that significantly differential expression of STATs
were found among 11,057 samples (10,327 tumor samples and
730 adjacent samples) in 33 TCGA tumor types. WGCNA results
revealed that the black module had strong correlations with STAT1
(correlation coefficient = 0.73, P = 3e-84), STAT2 (correlation
coefficient = 0.63, P = 9e-56), STAT4 (correlation coefficient =
0.7, P = 2e-75), and STAT5A (correlation coefficient = 0.72, P = 2e-
80), as well as hallmark allograft rejection (correlation coefficient =
0.78, P = 3e-103), interferon γ response (correlation coefficient =
0.78, P = 2e-103), inflammatory response (correlation coefficient =
0.6, P = 4e-51), interferon a response (correlation coefficient = 0.59,
P = 8e-48), and IL6-JAK-STAT3 signaling (correlation coefficient =
0.47, P = 2e-28). That indicated potential relationships between
STAT and rejection of allograft, interferon response, inflammatory
response and IL6-JAK-STAT3 signaling pathway in pan-cancer,
which was consistent with relevant previous research (Darnell et al.,
1994; Platanias, 2005; Stepkowski and Kirken, 2006; Mimura et al.,
2018; Dambal et al., 2020). Subsequent studies showed the
correlation between the expression levels of STATs and a variety
of cancer characteristics, such as clinical survival outcomes, immune
subtypes, TME, stemness features, and drug sensitivity.

Notably, STAT1 was shown to be highly expressed in most types
of tumors as a low-risk gene with HR < 1, which was consistent with
the conclusion proposed by Zhang Y, et al. (Zhang and Liu, 2017).
Moreover, high expression levels of STAT1 were also revealed to be
linked to a better prognosis in patients with ovarian cancer
(Josahkian et al., 2018). STAT1 drove gene expression by
encoding proteins with IFN signaling, particularly type I and II
IFNs, which induced phosphorylation of Janus Kinases (JAKs) and
STATs via binding their receptors, respectively (Ng et al., 2011).
Based on this, IFN-β promoted and sustained the expression of
STAT1 ascribed to the Interferon-Stimulate Response Element
(ISRE) sites of the STAT1 promoter region, which suggested that
the Interferon-Stimulated Gene Factor 3 (ISGF3) played a positive
role in auto-regulating STAT1 gene expression (Levy et al., 1988;
Darnell et al., 1994; Yuasa and Hijikata, 2016). High
STAT1 expression promoted cell cycle suppression and apoptosis,
enhanced the tumor suppression effect of p53, stimulated anti-
angiogenic factors and inhibited pro-angiogenic factors. Besides, it
could accelerate the antigen presentation of dendritic cells by
enhancing the cytotoxicity of natural killer (NK) cells and
cytotoxic T lymphocyte (CTL) in order to eliminate tumor cells
effectively (Adámková et al., 2007; Khodarev et al., 2012). With the
above complicated regulations, high expression of STAT1 means
better survival outcomes in most tumor types. Nevertheless, there
were several cancer types that showed opposite conclusions with

STAT1 (Meissl et al., 2017), which implied that the specific
circumstance might be attributed to certain tumor types and it
could assist in guiding treatment in clinical applications.

It is worth noting that up-regulation of STAT4 was tightly
associated with unfavorable overall survival in patients with
KIRC and KIRP. Moreover, up-regulated STAT4 and STAT5B
expression were discovered to be linked with better prognosis in
patients with PAAD. For BLCA and SARC, high STAT6 expression
also indicated increased survival rates. The results mentioned above
that haven’t been researched before might lead to a new way cancer
detection and prediction.

The investigators have found a correlation between expressional
STAT3/STAT5 ratio and prognosis in colon carcinoma (Klupp et al.,
2015). In particular, STAT3 was under-expressed while STAT4 and
STAT5 were over-expressed in colon cancer tissue. Furthermore,
increased expression of STAT1 and STAT3 in tumor tissue implicated
adverse prognosis whereas higher STAT4 or STAT5 expression meant
improved survival. In this study, however, STAT4 was shown to be lowly
expressed in COAD during the whole pathological process across stages I
to IV with a declining trend.

Six immune subtypes have been identified by Thorsson, V, et al.
(Thorsson et al., 2018), but the relationship with 33 TCGA types of tumor
was unclear until now. Based on this, we performed a Kruskal-Wallis test
to obtain the immune features of STATs and compared the differential
expression of STATs across C1-C6. Significant variation was shown in
lung cancer tissue, SARC, and SKCM. Immune subtypes were identified
to possess a conclusive correlation with tumor microenvironment, which
suggested the prognosis and therapeutic options (Soldevilla et al., 2019).
Made up of tumor cells themselves, surrounding stromal cells, immune
cells, and micro-vessels, TME plays an important role in tumorigenesis
with three features of hypoxia, chronic inflammation, and
immunosuppression. Since stromal cells within the TME were
genetically stable, they could be used as a therapeutic response target
to reduce drug resistance and tumor recurrence risk (Quail and Joyce,
2013). Thus, we used stromal score to access the proportion of stromal
cells in TME and reflect the tumor purity. The high stromal score showed
that the expression of STATs, especially STAT4, were positively correlated
with the number of stromal cells. Additionally, STAT1, STAT3, STAT5A
and STAT6 were highly expressed in LGG with high stromal scores and
thus low purity, a result of which was more likely to make a definite
diagnosis of the malignant entity and have a direct association with
reducing survival time. The clinical significance was consistent with
investigators Chuanbao Zhang, et al., in 2017 (Zhang et al., 2017).
Moreover, the results of immune infiltration analysis showed
preference of STATs’ distribution in certain immune cells, which
might be associated with unique function of STATs in immune
response. And that STATs expression were positively correlated with
immune infiltration were consistent with the results of immune scores.

CSCs, with the features of self-renewing, differentiating, and
proliferating, were capable of reconstructing and propagating
tumors. The potential characteristics of CSCs depended on
signaling pathways, TME, drug resistance markers, cell surface
molecules, and so on, which provided an unprecedented
treatment strategy for overcoming tumor recurrence and chemo-
resistance by targeting CSCs (Prasad et al., 2020). In order to further
access the correlation between stemness features and STATs, the
OCLR algorithm was performed to calculate mDNAss and mRNAss
to demonstrate the stemness properties. Many regulatory molecules
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affecting the stemness of breast cancer may serve as therapeutic
targets in clinical applications including STATs (Lu et al., 2018;
Misra et al., 2018; Gao et al., 2019; Yu et al., 2019). Thus, expression
levels of STATs might act as an important part in maintaining
cancer cell stemness properties.

In-depth immunotherapy research was carried out utilizing the
TIDE database in order to better understand the impact of STATs on
tumor immunotherapy. Higher TIDE prediction scores are linked
with worse immunotherapy response and unfavorable survival
outcomes under anti-programmed cell death 1 receptor (PD1)
and anti-cytotoxic T lymphocyte-associated protein 4 (CTLA4)
therapies in pan-cancer (Jiang et al., 2018). Our study revealed
that high STAT1, STAT2, STAT4, and STAT5B expression levels
indicated enrichment in T cell dysfunction and exclusion
phenotypes, which suggested worse immune checkpoint blocker
responses and worse patient survival. Intriguingly, it was reported
that altered transcriptional output in JAK-STAT signaling pathway
might be involved with KIRC patients’ responsiveness to immune
checkpoint therapy (Miao et al., 2018). Moreover, transcription
alteration of STATs were also revealed to be associated with
altered antitumor T cell responses (Freitas et al., 2022).

A notable association was found between STATs and drug
response. For instance, STAT5 had positive correlations with
various types of drugs, while STAT1 and STAT2 were negatively
correlated with Tyrothricin and Docetaxel, respectively. Different
expression levels of STATs indicated rather increased sensitivity or
resistance to anti-tumor drugs.

The research on the roles of STATs in pan-cancer was not processed
before via a multidimensional analysis, but there were still some
limitations in our present study. Genes and habitus were so diverse
among Americans, Asians and European that samples of the database
might be not suitable for Asians. Otherwise, the results were just testified
by one single database, thus further verification and validation should be
processed by other public databases to increase credibility. Last but not
least, due to the inherent defects of bioinformatics analysis, we intend to
test and verify the potential mechanism with molecular and animal
experiments in the near future. Although investigators has shown some
relevance between STATs expression and targeted therapy, more
complex mechanisms are still void, hopefully our study provides a
new clue to the application of anti-cancer drugs.

Conclusion

STATs were revealed to have extensive and profound
associations with tumors by regulating gene expression in the
nucleus, which occupied a significant status in pan-cancer. We
carried out deep research to multi-dimensionally analyze the
roles of the STAT gene family in differential and co-expression
analysis, WGCNA, clinical features, immune subtypes, tumor
stemness, tumor purity, immune infiltration, immunotherapy
response, tumor mutation and drug sensitivity across 33 TCGA
types of tumor. From that we revealed STATs to be biomarkers for
prognostic prediction and therapeutic guidance in pan-cancer.
Hopefully our findings could provide a valuable reference for
scientific research and clinical applications on STATs in the future.
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