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Introduction: The ability to accurately predict breed composition using genomic
information has many potential uses including increasing the accuracy of genetic
evaluations, optimising mating plans and as a parameter for genotype quality
control. The objective of the present study was to use a database of genotyped
purebred and crossbred cattle to compare breed composition predictions using a
freely available software, Admixture, with those from a single nucleotide
polymorphism Best Linear Unbiased Prediction (SNP-BLUP) approach; a
supplementary objective was to determine the accuracy and general
robustness of low-density genotype panels for predicting breed composition.

Methods: All animals had genotype information on 49,213 autosomal single
nucleotide polymorphism (SNPs). Thirteen breeds were included in the analysis
and 500 purebred animals per breed were used to establish the breed training
populations. Accuracy of breed composition prediction was determined using a
separate validation population of 3,146 verified purebred and 4,330 two and three-
way crossbred cattle.

Results: When all 49,213 autosomal SNPs were used for breed prediction, a
minimal absolute mean difference of 0.04 between Admixture vs. SNP-BLUP
breed predictions was evident. For crossbreds, the average absolute difference in
breed prediction estimates generated using SNP-BLUP and Admixture was
0.068 with a root mean square error of 0.08. Breed predictions from low-
density SNP panels were generated using both SNP-BLUP and Admixture and
compared to breed prediction estimates using all 49,213 SNPs (representing the
gold standard). Breed composition estimates of crossbreds required more SNPs
than predicting the breed composition of purebreds. SNP-BLUP
required ≥3,000 SNPs to predict crossbred breed composition, but only
2,000 SNPs were required to predict purebred breed status. The absolute
mean (standard deviation) difference across all panels <2,000 SNPs was 0.091
(0.054) and 0.315 (0.316) when predicting the breed composition of all animals
using Admixture and SNP-BLUP, respectively compared to the gold standard
prediction.
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Discussion: Nevertheless, a negligible absolute mean (standard deviation)
difference of 0.009 (0.123) in breed prediction existed between SNP-BLUP and
Admixture once ≥3,000 SNPs were considered, indicating that the prediction of
breed composition could be readily integrated into SNP-BLUP pipelines used for
genomic evaluations thereby avoiding the necessity for a stand-alone software.

KEYWORDS

genomic breed composition, cattle, crossbred, population assignment, low-density
panels, best linear unbiased prediction, Admixture, genetic diversity

Introduction

While genomic information in livestock breeding and
management has predominately been used for parentage
verification and discovery as well as genomic evaluations, it also
has other potential applications such as the prediction of breed
composition (Kuehn et al., 2011; Mcclure et al., 2017). In the absence
of genomic information, the breed proportion of an animal is
assumed to be simply the average breed composition of both
parents (Sölkner et al., 2010). However, breed composition of the
offspring from a crossbred parent may deviate from expectation
owing to parental recombination of chromosomes during
gametogenesis. Genomic information should be more precise in
predicting the breed composition of animals due to its capacity to
determine the parental contribution (Strucken et al., 2017; Kumar
et al., 2021) and therefore can help correct pedigree errors and
estimate kinships when ancestry data are missing.

The ability to accurately predict the breed composition of an
animal using genomic information has many potential uses. Firstly,
genomic information can be used to verify that an animal is a
purebred, thus preserving the integrity of the herd book. This may be
of particular benefit for rare breeds where limited purebred breeding
individuals exist or where no pedigree information is recorded and,
therefore, it can help correct pedigree errors and estimate kinships
when ancestry data are missing. Secondly, prediction of breed
composition could assist in delivering consumer confidence in
the authenticity of products from certain breeds which may
command a higher market price (Judge et al., 2017; O’Brien
et al., 2020). Furthermore, where service providers genotype
animals from multiple breeds, comparing breed composition
estimates from genotype data against the expected breed
composition for a given genotyping plate could curtail pedigree
errors and act as a quality control measure by identifying mislabelled
genotypes prior to their inclusion in downstream analyses (Kumar
et al., 2021). While sex is a routine quality control step in the
genotyping process, using breed composition prediction as an
additional quality control measure may be particularly useful if a
plate of exclusively male or female genotypes is mis-oriented.
Additionally, the accurate determination of an animal’s breed
composition may improve the robustness of genetic evaluations
where breed composition is frequently employed as an adjustment
factor (Thomasen et al., 2013; McHugh et al., 2017), to correct for
the differences in allele frequency and the relationship between SNPs
and quantitative trait loci across breeds. Indeed, due to the mosaic
nature of a crossbred animal’s genome, Sevillano et al. (2017)
confirmed that accounting for breed-specific SNP effects in
admixed genomic evaluations outperformed genomic prediction

models where the SNP effects were assumed to be the same
across breeds. This suggests that the accurate determination of
breed composition can enhance genomic predictions.

The SNP-BLUP method routinely used in genomic
evaluations can also be used to predict breed composition, as
proposed in sheep by O’Brien et al. (2020). By in large, the SNP-
BLUP approach uses an infinitesimal model which assumes that
the trait of interest is controlled by large number of SNPs, each
of very small effect, fitted as random effects with a common
variance structure. As SNP-BLUP is often used in genomic
evaluations, the ability to exploit existing pipelines for
predicting breed composition could be advantageous for
quality control and be more computationally efficient than
using a stand-alone software for breed prediction. Therefore,
the objective of the present study was to use a large database of
genotyped purebred and crossbred cattle to compare breed
composition predictions using a freely available software,
Admixture (Alexander et al., 2009), with those from SNP-
BLUP. While statistical metrics and methods such as Fst and
PCA have been used to select informative SNPs to discriminate
between cattle breeds (Wilkinson et al., 2011; Hulsegge et al.,
2013), we wanted to determine the effectiveness of these
methods in particular for identifying informative SNPs for
predicting crossbred breed composition. Moreover, we aimed
to compare the performance of these methods against other
SNP selection approaches, including machine learning
algorithms. Therefore, an additional objective was to
determine the accuracy and general robustness of low-
density genotype panels for predicting breed composition
which was achieved by varying 1) the SNP density, and 2)
the SNP selection strategy for alternative custom-derived
low-density panels.

Materials and methods

Genotypic data

A total of 52,655 SNP were available from 703,078 dairy and beef
cattle generated using a custom Illumina beadchip (IDBV3) which
was developed to primarily increase the accuracy of genomic
predictions whilest generating genotype information for
mutations of interest (Mullen et al., 2013). All animals had a call
rate ≥90%. Only autosomal SNPs, SNPs with a known chromosome
and position on the ARS UCD 1.2 genome build, and those with a
call rate ≥ 90% were retained. SNPs were not filtered based on
minor allele frequency to ensure that informative SNPs for
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distinguishing breeds with lower numbers were not omitted.
Following all edits, 49,213 SNPs from 703,078 animals remained.
Sporadically missing genotypes were imputed using FImpute
V2.2 which uses an overlapping sliding window approach to
efficiently exploit both family and population based information
(Sargolzaei et al., 2014).

Establishment of purebred populations

Expected breed composition was available on all animals based on
their recorded ancestry; 98,883 genotyped animals from 13 breeds were
expected (based on ancestry) to be purebred. Breeds included were
Angus, Aubrac, Blonde d’Aquitaine, Belgian Blue, Charolais, Friesian,
Hereford, Holstein, Limousin, Parthenaise, Saler, Shorthorn, and
Simmental. Using the available genotypes, a principal component
analysis (PCA) based on a genomic relationship matrix was
calculated using the approaches described by Yang et al. (2011) in
the GCTA software package (Yang et al., 2011) to ensure animals were
recorded correctly as being purebred. The 49,213 SNPs were pruned
prior to PCA analysis by excluding one SNP from a pair of SNPs in
strong linkage disequilibrium (pairwise squared correlation r2 > 0.5) in
a chromosomal window size of 50 SNPs, sliding the window 10 SNPs at
a time as suggested by Dutheil (2020) to ensure that the resulting
components were representative of the true underlying structure in the
data and to reduce the risk of over-representation of certain regions of
the genome; a total of 22,606 SNPs remained. Animals that deviated
from their respective breed cluster in the PCA plot based on principal
components 1, 2, and 3 were deemed to be incorrectly recorded as being
purebred resulting in 11,210 animals being discarded.

AdmixtureV1.3 (Alexander et al., 2009) was also used to verify each
animal’s breed composition using the 22,606 pruned SNPs dataset as

suggested byAlexander et al. (2009). The pruned dataset was used solely
to verify purebred status but the full SNP dataset was used for breed
prediction analyses and SNP selection. An unsupervised analysis was
initially performed to determine the most appropriate number of breed
clusters (K) from 11 to 14. K = 13 was the chosen number of breed
clusters as it had the lowest cross-validation error; each of the 13 breeds
separated into a distinct cluster. Individuals with a subsequent ancestry
assignment of ≥ 90% attributed to one breed were retained as
purebred-verified animals. The 44,802 purebred-verified animals
were subsequently available to be stratified into three separate
populations for analysis; 1) a training population, 2) a purebred
validation population, and 3) a third purebred population which we
will refer to as the SNP selection population; each population served a
unique purpose described later. Given that some breeds had more
purebred animals than other breeds, not all 44,802 purebred animals
were used in the analysis; this was to ensure the number of animals
selected per breed was relatively similar in order to minimise bias. A
summary of the number of animals per breed within each of the three
purebred populations is shown in Table 1.

Purebred training population
Within breed identity-by-state (IBS) clustering was performed

on all purebred animals in Plink V1.9 (Purcell et al., 2007), which
investigates whether animals share zero, one, or two alleles at each
locus across the genome. IBS clustering was used to identify the most
genomically diverse animals within each breed to represent the
training population. Within each breed, 500 clusters were created,
and animals that had similar genomes were grouped together. One
animal was randomly chosen from each cluster to represent the
purebred training population for breed assignment. The purebred
training population was established to calibrate models for
predicting breed composition.

Purebred and admixed validation populations
To validate whether breed composition could be predicted using

SNP data, a population of purebred and crossbred animals which
had no direct relationship (i.e., parent-offspring and vice-versa) to
the purebred training population was generated. Where possible,
250 purebred-verified animals from each of the 13 breeds were
included in the validation population.

In order to identify a known admixed population for validating
SNP-BLUP and Admixture breed composition predictions, a
supervised Admixture analysis (K = 13) was completed on all
genotyped animals. The 500 purebred animals within each of the
13 breeds from the training population were fixed as purebred in a
supervised Admixture analysis and the breed composition of all
remaining admixed animals was predicted. Animals compromised
of, at most 4 breeds were subsequently selected where each of the
breeds represented had to belong to one of the 13 purebred populations
included in the present study. In the two-way crosses, animals which
had an Admixture breed composition prediction between 45%–55%:
45%–55%, 20%–30%:70%–80% or 70%–80%:20%–30% were retained
as a two-way validation population, consisting of 2,281 animals.
Animals with an admixed breed composition comprised of ≥ 20%
for each of three separate breeds and <2.5% of a fourth breed were also
included in a separate three-way cross validation population, consisting
of 2,059 animals. A summary of the number of animals per breed in the
crossbred validation population is in Table 2.

TABLE 1 Number of animals per breed within the purebred training, validation
and SNP selection populations.

Cattle breed Training Purebred
validation

SNP
selection

Angus 500 250 1000

Aubrac 500 250 1000

Blonde
d’Aquitaine

500 250 302

Belgian Blue 500 129 189

Charolais 500 250 1000

Friesian 500 250 249

Hereford 500 250 1000

Holstein 500 250 1000

Limousin 500 250 1000

Parthenaise 500 73 220

Saler 500 250 1000

Shorthorn 500 250 995

Simmental 500 250 1000
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Purebred SNP selection population
An additional purebred SNP selection population was

established in order to quantify the information content of
individual SNPs in predicting breed composition; this was
necessary to rank the SNPs for the development of low-density
panels. This SNP selection population consisted of 1,000 purebred
animals per breed where possible that were not included in the
purebred training or validation populations. The number of animals
per breed included in the SNP selection population was capped at
1,000 where possible in order to keep a relatively similar number of
animal per breed. This SNP selection population consisted of
9,955 purebred animals (Table 1).

Divergence among breeds

The pairwise Fst statistic represents a measure of the genetic
distance among breeds (Weir and Cockerham, 1984). The pairwise
fixation indexes (Fst) were calculated for the SNP selection
population in a supervised Admixture (K = 13) analysis as:

Fst � s2

�p 1 − �p( )

where s2 is the standard deviation (SD) of the allele frequency
among breeds and �p is themean allele frequency across breeds (Weir
and Cockerham, 1984). A phylogenetic tree was computed using the
breed pairwise Fst scores with the APE package in R software
(Paradis et al., 2004) to visualise the genetic differentiation
among all 13 breeds.

Breed composition estimated using single
nucleotide polymorphisms best linear
unbiased prediction

SNP-BLUP using MIX99 software (Mix99 Development Team,
2017) was used to estimate the breed composition of animals in the
validation population, with the results compared to breed

composition estimates from Admixture (Alexander et al., 2009).
The SNP-BLUP approach followed the pipeline described by
O’Brien et al. (2020) for predicting breed composition in sheep
using SNP genotypes. All SNPs were fitted as random effects which
were assumed to be identically and independently distributed with
mean zero and common variance structure N (0,I σ2g):

yi � μ +∑
n

i�1
Xjgij + ei

where the dependant variable yi was coded as either one if the animal
was in the training population for the breed under investigation or zero if
the animal was in the training population but not for the breed under
investigation. The number of animals coded as purebred for each breed
was equal to the number of animals coded as non-purebred for that
breed. For example, 500 animals were classified as purebred Angus and
coded as 1, while from the 12 remaining breeds, 500 animals were
randomly selected such that each of the 12 breeds were equally
represented. These 500 animals from the other 12 breeds were coded
as 0, i.e., not Angus. All remaining animals were classified as missing.
The intercept is denoted by µ,Xj is the allele substitution effect of SNPj;
gij is the random effect of the genotype of animal ⅈ at locus j and ei is the
random effect of residual term for animal ⅈ, with the common variance
structure N (0,I σ2e). The phenotypic SD for the dependent variable was
estimated as

���
pq

√
, where p was the proportion of animals which were

verified to be the breed under investigation (i.e., coded as 1); q was
1 minus this proportion. The genetic SD was estimated from the
phenotypic SD assuming a heritability of 0.999 (O’Brien et al., 2020).
The SNP effects obtained were subsequently multiplied by the allele
count of each animal to generate estimates of breed proportion.

All subsequent breed predictions <0.05 were set to 0. The sum of all
predicted breed compositions for each animal were rescaled as per
O’Brien et al. (2020), where each animal’s breed proportion estimated
for the breed under investigation was divided by the sum of that
animal’s breed proportions estimated for all 13 breeds. Purebreds in the
validation population were considered assigned if the prediction of
breed composition was ≥ 0.90 for any single breed. The SNP-BLUP
approach was run for a series of different genotype panels constructed
(described later) as well as the entire dataset (i.e., 49,213 SNPs).

TABLE 2 Number of animals in the crossbred validation population.

Crosses Breeda Number

2 Way Cross (n = 2,281)

AA × CH 998

AA × HE 144

AA × SI 311

CH × LM 140

HO × FR 233

3 Way Cross (n = 2049)

AA × HO × FR 474

AA × BA × LM 180

AU × BA × LM 1280

SI × HO × FR 80

SI × SH × CH 55

aAA, Angus; AU, Aubrac; BA, Blonde d’Aquitaine; BB, Belgian Blue; CH, Charolais; FR, Friesian; HE, Hereford; HO, Holstein; LM, Limousin; SH, Shorthorn; SI, Simmental.
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Breed composition estimated using
Admixture

Using the same training and validation populations and all
49,213 SNPs, a supervised analysis (K = 13) was conducted in
Admixture (Alexander et al., 2009). In the Admixture analysis,
the same purebreds that were used in the SNP-BLUP analysis
were set as purebreds for that breed, and the breed composition
of the animals in the validation population was estimated. All breed
proportion estimates < 0.05 were fixed to 0 and the estimated breed
proportions rescaled as with the SNP-BLUP method. Again, if the
predicted breed proportion for any single breed in the purebred
validation population was ≥ 0.90, purebreds were regarded as being
assigned to that breed.

Development of low-density genotype
panels

Seven alternative low-density panels (i.e., 100, 500, 1,000, 2,000,
3,000, 5,000 and 7,500 SNPs) were generated using seven different
SNP selection strategies. The SNP selection population (Table 1) was
used to rank SNPs based on potential informativeness for the
generation of these low-density panels. The number of SNP
chosen per chromosome remained constant for each of the seven
SNP selection methods evaluated and was proportional to the
genome length of each chromosome (Supplementary Table S1).
The seven alternative methods used to generate the panels were as
follows.

Random selection
The number of predefined SNP required per chromosome was

randomly selected until each of the respective panel densities was
obtained.

Partitioning-around-medoids (PAM)
The partitioning-around-medoids (PAM) algorithm clusters

SNPs on each chromosome together based on their proximity in
genomic position, not taking LD into account. The algorithm was
run for each chromosome separately with the number of clusters
created per chromosome set to the number of predefined SNPs for
that chromosome. The SNP located in the middle of each cluster was
selected, as described by Lashmar et al. (2021) when developing low-
density panels to assess imputation accuracy in cattle. The PAM
algorithm was implemented in the R package “cluster”
(V2.1.2 Maechler et al., 2021).

Fixation index (Fst)
The fixation index (Fst) is used to evaluate the extent of genetic

divergence between populations and identify genomic regions under
selection pressure. The global Fst was estimated using the method
proposed by Weir and Cockerham (1984) across all 13 breeds in
Plink V1.9 (Purcell et al., 2007) from the SNP selection population
using all 49,213 SNPs. Three alternative strategies to picking SNPs
based on the calculated Fst statistic were investigated;

a) Fst and blockmethod: Each chromosome was divided into blocks
of SNPs with one SNP chosen per block. The number of blocks

on each chromosome was equal to the number of predefined
number of SNPs for that chromosome. The SNP with the highest
Fst statistic within each block was chosen.

b) Fst and PAM method: The SNP with the highest Fst within each
PAM cluster already generated previously per chromosome was
selected.

c) Highest ranking SNPs based on Fst statistics: SNPs in the nth

highest ranking for the Fst statistic were chosen per
chromosome, irrespective of location on that chromosome,
where n was the number of predefined number of SNPs for
that chromosome.

PCA
SNP weightings were calculated using the “smartpca” algorithm

in Eigensoft v7.2.1 (Patterson et al., 2006) applied to the SNP
selection population. The greater the difference in allele
frequency between populations, the greater the SNP weighting.
Three alternative methods of picking SNPs based on PCA
ranking were investigated similar to the Fst approach already
described;

a) PCA ranking and block method: The SNP with the highest SNP
weighting within each block was chosen.

b) PCA ranking and PAM method: The SNP with the highest SNP
weighting within each PAM cluster was selected.

c) Highest ranking SNPs based on PCA: SNPs in the nth highest
ranking based on PCA SNP weightings were chosen per
chromosome, irrespective of location on the chromosome,
where n was the number of predefined number of SNPs for
that chromosome.

SNP-BLUP variance
SNP-BLUP was used to estimate the SNP effects within the SNP

selection population of each breed individually using all
49,213 SNPs. From this, the standard deviation (SD) of the
BLUP model solutions per SNP were estimated within the SNP
selection population of all 13 breeds and SNPs were ranked based on
the SD of the SNP effect across all 13 breeds; SNPs with a larger
standard deviation were given a higher ranking. Three alternative
methods of picking SNPs based on using the SNP-BLUP SD were
investigated.

a) SNP-BLUP variance and block method: The SNP with the
largest standard deviation of SNP effects within each block was
chosen.

b) SNP-BLUP variance and PAMmethod: The SNP with the largest
standard deviation of SNP effects within each PAM cluster was
selected.

d) Highest ranking SNPs based on SNP-BLUP variance: SNPs in
the nth highest ranking based on the standard deviation of SNP
effects were chosen per chromosome, irrespective of location on
the chromosome, where n was the number of predefined number
of SNPs for that chromosome.

Random Forest
Random Forest is a machine-learning method (Breiman, 2001)

that employs decision trees, which are a set of rules for splitting data
in a way that minimises variation. The Random Forest analysis was
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conducted in the R package random forest (Liaw and Wiener, 2001)
using the genotypes of the SNP selection population to predict the
dependant variable, which was breed, and was numbered 1 to 13.
The built-in variable importance measures (VIM) ranked the SNPs
according to their relevance for predicting breed. The highest
ranking SNPs of a predefined number per chromosome were
retained.

PLSDA
Partial least square discriminant analysis (PLSDA) is another

machine learning method based on the PLS approach (Barker and
Rayens, 2003). In the present study, a PLSDA regression model was
constructed using the purebred SNP selection population and their
corresponding genotypes in the R package Caret (Kuhn, 2020) for
discriminative SNP selection. The dependant variable was breed,
and was coded numerically as +1 or −1. If an animal was a member
of the breed class under analysis, that animal was coded as +1, which
is referred to as the ‘in-group’ and it it was a different breed group it
was coded as −1, representing the ‘out-group’ (Brereton and Lloyd,
2014). The regression model was run 13 times, once for each breed.
Each SNP received a weighting, and SNPs which were the most
informative for distinguishing between breed classes ranked highest.
The highest ranking SNPs of a predefined number per chromosome
were retained.

Evaluating the difference in breed
composition predictions using the low-
density panels

Breed composition predictions from SNP-BLUP using all
49,213 SNPs were considered the gold standard and used for
comparing the prediction performance from each of the low-
density panels. Animals in the purebred validation population
were considered to be accurately assigned when their estimated
breed proportion of a specific breed was predicted to be ≥0.90. The
difference in the main breed proportion estimates for crossbred
animals predicted using all the low-density panels and the gold
standard 49,213 SNPs were compared. In addition, the three SNP
selection methods with the smallest mean difference in breed
composition predictions from the gold standard, were also used
for breed composition prediction using Admixture (Alexander et al.,
2009). The Admixture breed predictions using the low-density
panels where then compared to those from the gold standard
SNP-BLUP.

Results

Population structure

The greatest genetic differentiation was observed between the
Salers and both the Simmental and Shorthorns (Fst = 0.146) while
the least genetic divergence existed between the Charolais and
Blonde d’Aquitaine (Fst � 0.039) (Supplementary Table S2). The
strong genetic relationship between Aubrac, Blonde d’Aquitaine,
and Limousins was also demonstrated by their shared branch in the
phylogenetic tree, with Simmentals situated on the neighbouring

branch (Figure 1). The PCA succesfully seperated out 13 breed
clusters based on genomic data with the first, second and third
principal components accounting for 22.1%, 15.7% and 13.6% of the
variance, respectively. Within the PCA plot, Herefords were
distinctly separated from other breeds, confirming their high Fst

value relative to other breeds (Kuehn et al., 2011; Kelleher et al.,
2017). The close genetic relationship between Simmental, Blonde
d’Aquitaine, Aubrac and Limousin was again evident through the
close proximity of their respective breed clusters (Supplementary
Figure S1).

Breed composition prediction

The mean difference in predicted breed composition between
SNP-BLUP and Admixture using all 49,213 SNPs was 0.04 across
both purebred and crossbreds, which was not different (p > 0.05)
from zero, suggesting that there is no systematic difference between
the methods that would lead to over or underestimation of breed
composition. Both SNP-BLUP and Admixture accurately assigned
≥ 98% of the purebred validation population to the correct breed.
When comparing the prediction of breed composition of each breed
individually, the largest difference observed in predictions between
SNP-BLUP and Admixture for the purebreds was for the Belgian
Blue (0.004) while no mean difference was detected for Angus,
Aubrac, Charolais, Friesian, Hereford, Holstein, Limousin, Salers,
Shorthorn and Simmental (Table 3). For both purebred and
crossbreds in the validation population, the variability in
predicted breed composition from SNP-BLUP and Admixture is
shown in a Bland-Altman plot (Figure 2). In comparison to
purebred predictions, a larger absolute mean difference in
predicted breed composition was observed in the crossbred
validation population, with an average absolute mean difference
of 0.08 and 0.05 for the two and three-way cross validation animals,
respectively (Table 4). Ninety percent of the SNP-BLUP and
Admixture breed composition predictions differed by less than
0.14. Of all the crossbred animals, the biggest discrepancy
between SNP-BLUP and Admixture breed composition
predictions was for Holstein-Friesian two-way cross animals.

Low-density panel predictions of breed
composition with SNP-BLUP

Purebred predictions
In general, the number of correctly assigned purebreds increased

with increasing panel density across all SNP selection strategies
(Figure 3). All SNP selection strategies correctly assigned >85% of
the purebred validation population when the SNP density
was ≥2,000 SNPs, with the exception of the PLSDA and Random
selection method, which both required a minimum of 3,000 SNPs to
correctly assign >85% of the purebred validation population to their
respective breeds (Figure 3).

Crossbred predictions
Similarly, as panel density increased the mean difference

between the gold standard breed composition estimates and
breed prediction estimates using the low-density panels reduced
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for crossbreds (Figure 3). The estimation of crossbred breed
composition was more challenging than that of purebreds,
requiring a minimum of 3,000 SNPs for accurate crossbred breed

composition predictions across the different SNP selection
strategies, regardless of whether they were two or three-way
crosses (Figure 3). When panel density was ≥ 3,000 SNPs, breed
composition estimates deviated from the gold standard by an
average of 0.055 and 0.079 for two and three-way crosses,
respectively.

Comparison of SNP selection strategies

There was little overlap in the actual SNPs selected by each SNP
selection strategy (Supplementary Figure S2). There was a minimal
difference in performance between the SNPs selected using the
various SNP selection methods for predicting breed composition
at panel densities ≥ 3,000 SNPs. At panel densities <3,000 SNPs,
SNPs selected using the Fst method most accurately predicted breed
composition, followed by the PCA selection strategy (Figure 3).
Interestingly, when the genomic position of the SNP was considered
in the Fst and PCA SNP selection methods (i.e., the block and PAM
method), breed composition estimates were considerably less
accurate than the Fst and PCA SNP selection method where
position was not taken into account (Figure 3). When comparing
machine learningmethods across densities, in general, SNPs selected
using Random Forest were better at predicting the breed
composition of both purebreds and crossbreds than SNPs
selected using PLSDA (Figure 3).

FIGURE 1
(A) Phylogenetic tree showing the genetic distance between breeds based on pairwise fixation index (Fst) estimates, (B) Population distribution of
purebred animals across the first three principal components (PC1, PC2, PC3), (C) Admixture-estimated breed proportions for each purebred animal.
Each animal is represented by a thin vertical line whose length represents its breed proportion, and each colour represents an inferred population. Breeds
included Angus (AA), Aubrac (AU) Blonde d’Aquitaine (BA), Belgium Blue (BB), Charolais (CH), Friesian (FR), Hereford (HE), Holstein (HO), Limousin
(LM), Parthenaise (PT), Saler (SA), Shorthorn (SH), and Simmental (SI).

TABLE 3 Mean absolute difference and standard deviation of the difference of
the absolute values between the SNP-BLUP and Admixture breed predictions
for the purebred validation population in each breed.

Breed Mean difference Standard deviation

Angus 0.000 0.000

Aubrac 0.000 0.000

Blonde d’Aquitaine 0.003 0.023

Belgian Blue 0.004 0.037

Charolais 0.000 0.000

Friesian 0.000 0.007

Hereford 0.000 0.000

Holstein 0.000 0.000

Limousin 0.000 0.000

Parthenaise 0.003 0.021

Saler 0.000 0.000

Shorthorn 0.000 0.007

Simmental 0.000 0.000
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Comparison with Admixture predictions

When 49,213 SNPs were used, there was no systematic
difference between the breed composition predictions by SNP-
BLUP versus Admixture. SNPs selected using the three most
accurate SNP selection methods (i.e., Fst highest, PCA highest,
and PAM) for the creation of low-density panels were also used
for predicting breed composition in Admixture (Alexander et al.,
2009). Admixture proved to be more accurate at predicting breed
composition than SNP-BLUP when panel density was <2,000 SNPs.
Breed composition estimated fromAdmixture had an absolute mean
difference of 0.091 from the gold standard SNP-BLUP breed

composition predictions, whereas estimates from SNP-BLUP had
an absolute mean difference of 0.315 from the gold standard
estimates. Admixture required fewer SNPs than SNP-BLUP to
accurately predict breed composition, with 500 and 1,000 SNPs
sufficing to accurately predict the breed composition of purebred
and crossbred cattle, respectively, whereas SNP-BLUP required
2,000 and 3,000 SNPs (Figure 4). Across both SNP-BLUP and
Admixture, SNPs selected using the Fst highest SNP selection
method generally preformed best at predicting breed composition.

Discussion

The objective of the present study was to compare SNP-BLUP
and Admixture as methods to predict the breed composition of
purebred and crossbred cattle; of particular interest also was to
investigate if the accuracy of predicting breed composition was
eroded as SNP density reduced, and also if the approach to select
these SNP impacted the conclusion. Marginal differences existed
between both breed prediction methods once genotypes
from >2,000 informative SNPs were available on all animals.
Moreover, once animals were genotyped for >3,000 SNPs (which
is generally the norm in cattle), how these SNPs were selected did not
impact greatly the predictions.

SNP-BLUP vs. Admixture

The only discrepancies observed between SNP-BLUP and
Admixture breed composition predictions for purebreds using
the full SNP dataset was for Blonde d’Aquitaine, Belgian Blue,
and Parthenaise. Some animals in these breeds were misassigned
to another closely related breed; this phenomenon may be due to the

FIGURE 2
Bland-Altman plot displaying the differences (y-axis) against themean of the values (x-axis) of SNP-BLUP and Admixture breed proportions for two-
way cross, three-way cross, and purebred animals. The horizontal red lines represent the mean ± 2 standard deviations and the horizontal blue line
represents the mean difference between Admixture and SNP-BLUP prediction of breed composition.

TABLE 4 Mean absolute difference and standard deviation of the difference of
the absolute values between the SNP-BLUP and Admixture breed predictions
for the crossbred validation population.

Breed Mean difference Standard deviation

Angus 0.062a 0.041

Belgian Blue 0.057 0.067

Charolais 0.035a 0.031

Friesian 0.158a 0.111

Hereford 0.046a 0.032

Holstein 0.155a 0.068

Limousin 0.031a 0.042

Shorthorn 0.024 0.023

Simmental 0.051a 0.039

aDifference is significantly different from zero.
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relatively smaller sample sizes of these breeds in the validation
population (i.e., sampling variability) as well as their close genetic
resemblance to other breeds. The largest discrepancy in prediction
of breed composition detected between Admixture and SNP-BLUP

predictions for crossbred animals was for the two-way Holstein-
Friesian crosses (Figure 2); because these two breeds are genetically
similar, differentiating which portion of the genome is attributed to
Holstein and which attributed to Friesian was challenging. Because

FIGURE 3
(A) The percentage of animals in the purebred validation population correctly assigned to the respective breed (i.e., predicted to have a breed
proportion >0.9 for their respective breed). (B) The percentage difference between the gold standard (estimates using all 49,213 SNPs) and low-density
breed proportion estimates for crossbreds. SNP selection methods for the creation of low-density panels included pairwise fixation index highest (Fst
highest), partitioning-around-medoids (PAM), principal component analysis highest (PCA highest), partial least square discriminant analysis (PLSDA),
random SNP selection (Random), Random Forest, and SNP-BLUP variance highest.

FIGURE 4
(A) Purebred breed proportion estimates from Admixture and SNP-BLUP using low-density panels, (B) The percentage difference between the gold
standard (estimates using all 49,213 SNPs) and low-density breed proportion estimates from Admixture and SNP-BLUP. SNP selection methods for the
creation of low-density panels included pairwise fixation index highest (Fst), partitioning-around-medoids (PAM), and principal component analysis
highest (PCA).
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the Holstein and Friesian compositions in a three-way cross animal
represented a smaller proportion of the animal’s overall breed
composition, lesser differences between Admixture and SNP-
BLUP predictions were evident in three-way crosses with a
Holstein-Friesian component than in two-way crosses comprised
of exclusively Holstein and Friesian. It should also be noted that only
animals with a breed composition made up of at most four breeds
were included in the crossbred validation population. The rationale
behind this was that animals with more than four breeds in their
genome might have experienced degraded breed haplotypes
inherited from their ancestors over time, which would likely
make predicting their breed composition particularly challenging.

In order to assess how mislabeled individuals in the training
population affect breed composition predictions using SNP-BLUP
and Admixture, 250 purebred Angus animals were substituted with
250 two-way cross Angus animals in the training population; they
were all labelled as purebred Angus. All 250 purebred Angus animals
in the validation population were predicted by Admixture to
be ≥0.90 Angus. In contrast, when predictions were based on
SNP-BLUP, only six of the 250 purebred Angus animals in the
validation population were predicted to be ≥0.60 Angus. Therefore,
SNP-BLUP appears to be more sensitive to mislabeled individuals in
the training population, while Admixture was able to accurately
estimate breed composition even with 250 (i.e., half the population)
mislabeled individuals present.

Low-density panels

SNP-BLUP required a minimum of 2,000 and 3,000 SNPs to
accurately predict purebred and crossbred breed composition,
respectively; the respective values for Admixture was 500 and
1,000 SNPs, corroborating results of Bjørnstad and Røed (2002)
who concluded that assigning crossbred (horses) to the correct breed
using the frequency method outlined by Paetkau et al. (1995) is more
challenging than that of purebreds. It should be noted that in the
present study, a separate population was used to select SNPs for the
creation of the low density panels so as to minimise SNP selection
bias. Strucken et al. (2017) emphasised the importance of utilising a
separate population for the selection of SNPs for predicting breed
composition, reporting that when the prediction equations were not
generated from a population independent of the test dataset, it
resulted in a substantial increase in ascertainment bias.

Many factors impact the number of SNPs required for the
accurate prediction of breed composition. These factors include,
but are not limited to, the breeds included in the study (Lewis et al.,
2011; Hulsegge et al., 2013), given that breeds which are closely
related are likely to have similar allele frequencies and therefore be
more difficult to differentiate than breeds which are not genetically
similar (Wilkinson et al., 2011; Kavakiotis et al., 2015). In addition,
the effective population size of the population also contributes to the
number of SNPs needed to accurately determine breed composition
as populations with larger effective population sizes are genetically
more diverse. The effective population of the breeds in the present
study were previously estimated by McParland et al. (2007) to range
between 64 and 127 per breed. Similar estimates in cattle have been
reported elsewhere (Stachowicz et al., 2011; Rodríguez-Ramilo et al.,
2015; Doekes et al., 2018) and are a reflection of the intense selection

and genetic drift breeds have been subjected to. SNP selection
methods therefore that choose the most informative SNPs for
breed prediction require fewer SNPs for accurate breed
composition predictions than using less or non-informative SNPs
(Ding et al., 2011; Chhotaray et al., 2019) such as using the random
SNP selection method, as demonstrated in the present study. The
number of SNPs necessary for accurate breed composition
predictions also depends on whether Admixture or a regression
model such as SNP-BLUP is used for predictions, with Admixture
requiring fewer SNPs than regression models (Strucken et al., 2017;
He et al., 2018; Reverter et al., 2020).

SNP selection methods for low-density
panels

The success of the Fst SNP selection method for identifying
informative SNPs which can be used for the prediction of breed
composition in cattle has been extensively reported previously
(Lewis et al., 2011; Wilkinson et al., 2011; Hulsegge et al., 2013;
Bertolini et al., 2015), as has the PCA SNP selection method
(Paschou et al., 2007; Lewis et al., 2011; Bertolini et al., 2015;
Chhotaray et al., 2019). Unlike some previous studies (Ding et al.,
2011; Hulsegge et al., 2013; Strucken et al., 2017), a linkage
disequilibrium (LD) threshold or minimum distance between
selected SNPs was not implemented when creating low-density
panels in this study as no prior assumptions were made about
which SNPs may or may not be informative for breed prediction.
As a result, the Fst and PCA highest methods both chose SNPs
located in close proximity and consequently in strong LD on each
autosome, particularly when panel density was ≤ 1,000 SNPs
(Supplementary Figure S3). This was not surprising, as previous
literature also reported the PCA (Paschou et al., 2007; Lewis et al.,
2011; Bertolini et al., 2015) and Fst method (Wilkinson et al., 2012)
of ranking SNPs to be susceptible to choosing SNPs in strong LD
with each other. Despite the strong LD observed between the SNPs
chosen by the PCA and Fst highest methods, these SNP selection
strategies performed better at predicting breed composition than
SNPs selected using the other SNP selection methods evaluated, all
of which had weaker LD among SNPs. This suggests that
informative SNPs for the prediction of breeds may be in LD
and cluster together in close proximity along the genome, and
the benefit of increasing SNP panel density was less with the PCA
and Fst highest methods in comparison to the other methods that
had weaker LD among SNPs. Wilkinson et al. (2012) noticed a
similar trend, and deduced that a strong level of LD when
designing low-density panels could be a signature reflecting
positive selection as result of modern breeding programmes,
and that these SNPs may show strong breed differentiation due
to positive selection for breed-specific characteristics.
Consequently, despite recommendations to remove SNPs in LD
prior to Admixture or PCA analysis (Novembre et al., 2008;
Alexander et al., 2009; Mattucci et al., 2019; Dutheil, 2020),
SNPs in LD could potentially be highly informative for breed
composition prediction, particularly when SNP density was low
(Wilkinson et al., 2012).

Althoughmachine learning algorithms have been widely applied
to cattle breeding for the prediction of a wide variety of traits such as
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lameness (Warner et al., 2020), longevity (Van Der Heide et al.,
2019) and milk composition (Gianola et al., 2011; Frizzarin et al.,
2021), these algorithms have not been utilized extensively in
predicting breed composition in cattle. Prior research has
reported that machine learning does not predict certain traits in
cattle and sheep as effectively as other traditional methods such as
regression models (Cortez et al., 2006; Van Hertem et al., 2014;
Hempstalk et al., 2015), corroborating the findings of the present
study. Previous literature has reported that the majority of PLSDA
models suffer from overfitting (Westerhuis et al., 2008) and
inconsistent performance (Szymańska et al., 2012). While
Bertolini et al. (2015) successfully used Random Forest in
conjunction with PCA for SNP selection and breed assignment
in cattle, the accuracy of this method was based on the percentage of
animals assigned to the correct breed, whereas accuracy in the
present study was based on the more difficult task of assigning
breed proportions and predicting the overall breed composition of
individual cattle. Another key difference between the present study
and that of Bertolini et al. (2015) is that the present study only used
Random Forest for SNP selection and used SNP-BLUP and
Admixture for breed proportion predictions, whereas Bertolini
et al. (2015) used Random Forest to select informative SNPs,
before fitting a new Random Forest algorithm to determine breed
assignment.

The little overlap in SNPs selected across SNP selection
approaches is likely due to the difference between the SNP
selection methods used. Out of all SNP selection methods
investigated, Random Forest was the only one that considered
possible correlations among SNPs. Fst-based selection focused on
the standardized variance in allele frequency among populations,
while PCA-based selection focused on patterns in the data,
identifying SNPs that had high loadings on the first three
principal components, which captured the most significant
patterns in the data. On the other hand, the PAM method
only considered the genomic position of the SNP. Schiavo
et al. (2020) also reported little overlap in SNPs selected when
comparing SNPs selected using the Fst, PCA and Random Forest
methods.

Training population

It should be noted that ensuring purebred animals are
recorded correctly and a careful selection of the most
genetically diverse animals within breed to be included in the
training population is crucial. As suggested by others (Bjørnstad
and Røed, 2002; Dalvit et al., 2008), when predicting breeds,
some animals may never be correctly assigned regardless of the
number of SNPs used because the breeds are too genetically
similar or because the individuals are genetically atypical for
their breeds. To avoid the latter from happening, and ensure
maximum prediction accuracy, the training population in the
present study consisted of very large numbers of animals in
comparison to previous similar studies (Lewis et al., 2011;
Wilkinson et al., 2011), increasing the within-breed
variability. Bertolini et al. (2015) advocated that the more
animals included in the training population the greater the
within breed variability captured, possibly resulting in an

enhanced performance for breed prediction. While previous
studies randomly selected purebreds to represent their
training population, Hulsegge et al. (2013) noted that for the
optimum prediction of breed composition, when selecting the
training population, it is crucial to choose the most genetically
diverse animals within each breed. Bearing this in mind, a novel
approach was implemented in the present study, utilising IBS
clustering to aid with selecting the most genetically dissimilar
animals to represent the training population for each breed. IBS
clustering compares two individuals which share 0, 1 or 2 alleles
at a given locus throughout the genome (Stevens et al., 2011),
grouping genetically similar animals together. Randomly
selecting one animal from each genetically different IBS
cluster to represent the training population ensured that the
training population captured the majority of the variation of
genotypes in each breed.

Applications

The present study demonstrated that genomic information
can be utilised in generating accurate predictions of breed
composition which could potentially be useful for increasing
the accuracy of genetic evaluations by being better able to fit
breed covariates in an admixed population. Sevillano et al. (2017)
confirmed the superior performance of genomic evaluation
models that account for breed-specific SNP effects in admixed
populations compared to those assuming uniform SNP effects
across breeds. This suggests that the accurate determination of
breed composition can enhance genomic predictions.
Furthermore, accurate breed composition information could
also potentially be utilised in quality control of genotypes
entering the database and to further augment various breeding
strategies for improvement of cattle breeds.

Conclusion

There was a strong similarity in predicted breed composition
per animal between the SNP-BLUP and Admixture approaches
investigated when panel density was ≥3,000 SNPs. This suggests
that the prediction of breed composition could be readily
integrated into the SNP-BLUP pipelines used for genomic
evaluations thus replacing the use of a stand-alone software.
Despite approximately 50,000 SNPs existing on most routinely-
used genotyping panels, only small subsets of highly informative
SNPs are required to accurately predict breed composition. This
study provides a blueprint for the utilisation of the readily
available next-generation sequencing technologies in the
prediction of breed composition, by offering possible methods
for how to identify the most informative SNPs and the optimum
panel density. In general, SNPs selected using the Fst highest
approach performed the best in terms of predicting purebred and
crossbred breed composition, but only a marginal difference was
observed between the performance of SNPs selected across all
SNP selection methods when ≥ 3,000 SNPs were included in the
analysis. This indicates that at this SNP density, all SNP selection
methods could be a powerful computational time saving tool for
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the accurate prediction of purebred and crossbred breed
composition.
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