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Objective: The current molecular classification system for gastric cancer covers
genomic, molecular, and morphological characteristics. Non-etheless,
classification of gastric cancer based upon DNA damage repair is still lacking.
Here, we defined DNA damage repair-based subtypes across gastric cancer and
identified clinicopathological, tumor microenvironment and pharmacogenomic
features.

Methods: Unsupervised clustering analysis was executed in the TCGA-STAD
cohort based upon the transcriptional expression profiling of DNA damage
repair genes. LASSO computational approach was adopted for generating a
DNA damage repair-relevant gene signature. The identified subtypes or
signature were externally verified in the GSE84426 or GSE84433 cohort. The
transcriptional levels of immunomodulators, abundance of immune cells and
somatic mutations were measured, respectively. Immunotherapeutic response,
and drug sensitivity were investigated. The DNA damage repair-relevant genes
were further experimentally verified.

Results: Two DNA damage repair-based subtypes were identified, with the
notable heterogeneity in prognostic stratification, tumor microenvironment
and somatic mutations. The gene signature was generated for risk stratification
and prognostic prediction, which was in relation to immunomodulators and
immune cells. High-risk cases were more likely to respond to immunotherapy,
with distinct pharmacogenomic landscapes between low- and high-risk groups.
Higher levels of PAPPA2, MPO, MAGEA11, DEPP1, CPZ, and COLEC12 and lower
level of CYTL1 were proven in gastric cancer cells versus controls. Silencing
CYTL1 facilitated intracellular ROS accumulation and suppressed migration in
gastric cancer cells.

Conclusion: Collectively, the DNA damage repair-based classification is a suitable
complement to existingmolecular classification system, and the quantitative gene
signature provides a robust tool in selecting specific therapeutic options.
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Introduction

Gastric cancer remains a major contributor to global cancer
incidence and mortality, which is responsible for over
700,000 deaths each year (Sung et al., 2021). More than 95% of
gastric cancer cases are adenocarcinomas, usually classified
according to anatomical location and histological type (Ajani
et al., 2022). Among individual patients, gastric cancer usually
exhibits extensive histological, transcriptomic and epigenomic
variations, with varying clinical behaviors and therapeutic
responses (Sheng et al., 2021). Incorporating the interpatient
heterogeneity into clinical management and determining the
molecular features that drive gastric cancer variations is a key
strategy to improve patients’ survival (Wei et al., 2022). Despite
advance in defining specific molecular subtyping of gastric cancer in
TCGA and ACRG consortia, etc., the actual improvement in
prognosis based upon them is modest, with increasing
understanding that gastric cancer also exhibits high interpatient
heterogeneity (Cancer Genome Atlas Research Network, 2014;
Cristescu et al., 2015). Therefore, further exploration of
molecular heterogeneity features within gastric cancer patients is
required for understanding the critical principles that govern clinical
outcomes and management for gastric cancer (Qiu et al., 2020).

DNA damage can arise from endogenous or exogenous sources,
while DNA repair is required to maintain genome integrity. In
addition to direct repair, DNA damage response system comprises
numerous pathways: base excision repair, mismatch repair,
nucleotide excision repair, homologous recombination repair,
non-homologous end joining, etc. (Jiang et al., 2021). Abnormal
DNA damage repair exerts a key implication in tumor initiation and
malignant development (Li et al., 2021). Moreover, tumors with
impaired DNA repair machinery may display higher genomic
instability, thus driving malignant development, and producing a
more aggressive tumor phenotype (Liu et al., 2021). For example,
PAICS results in gastric carcinogenesis and is involved in DNA
damage response via interaction with histone deacetylase 1/2
(Huang et al., 2020). The cellular efficiency of DNA damage
repair mechanisms also exerts an important role in therapeutic
response of gastric cancer (Liu et al., 2021). For instance, Bcl-2-
associated transcription factor 1 Ser290 phosphorylation modulates
DNA damage response and radiotherapy resistance in gastric cancer
(Liu et al., 2021). Targeting Chk2 improves gastric cancer
chemotherapeutic effects through impairing DNA damage repair
(Gutiérrez-González et al., 2013). Evidence also demonstrates the
implication of DNA damage repair in immunotherapy, e.g.,
inducing a higher tumor mutation burden (TMB) that generates
more neoantigens, thereby promoting immunological surveillance
and tumor-infiltrating lymphocyte infiltrations (Rizvi et al., 2015).
Given the importance of DNA damage repair, we proposed a novel
DNA damage repair-based subtyping as a suitable complement to
existing molecular classification system of gastric cancer, and a
quantitative gene signature as a robust tool to aid in selecting
appropriate therapeutic options, which might facilitate the
development of precision medicine.

Materials and methods

Gastric cancer cohorts

RNA sequencing data, clinical information, and somatic
mutation data of TCGA-STAD (n = 370) were acquired from the
GDC (https://portal.gdc.cancer.gov/). Counts data were normalized
to CPM values through edgeR package (Robinson et al., 2010).
Microarray expression profiling and clinical information were
gathered from the GSE84426 (n = 76) and GSE84433 (n = 357)
(Yoon et al., 2020) on the Illumina platform, used for external
verification.

Collection of DNA damage repair genes

Totally, 449 DNA damage repair genes were gathered from the
Molecular Signatures Database (http://www.broadinstitute.org/
msigdb), which were listed in Supplementary Table S1 (Liberzon
et al., 2015).

Unsupervised clustering analysis

Unsupervised clustering approach based upon Euclidean and
Ward’s linkage was adopted for determining molecular subtypes in
accordance with the transcriptional levels of DNA damage repair
genes. ConsensusClusterPlus package was implemented for
identifying the optimal number of clusters according to
consensus cumulative distribution function (CDF) across TCGA-
STAD patients (Wilkerson and Hayes, 2010). Principal component
analysis (PCA) was conducted for proving the distribution
difference between subtypes. Kaplan–Meier (K-M) curves were
plotted for comparing overall survival (OS) of distinct subtypes,
followed by log-rank test. Then, conventional clinicopathological
parameters were compared between subtypes. The subtyping
classification was externally verified in the GSE84426 dataset.

Gene set enrichment analysis (GSEA)

The up- or downregulated Gene Ontology (GO) or Kyoto
Encyclopedia of Genes and Genomes (KEGG) terms in two
groups were analyzed through adopting GSEA software
(Subramanian et al., 2005). The reference gene sets were acquired
from the GO (Ashburner et al., 2000) and KEGG (Kanehisa and
Goto, 2000) databases.

Somatic mutation analysis

Somatic mutation data from TCGA-STAD dataset were
acquired utilizing TCGAbiolinks package (Colaprico et al., 2016),
andmutation annotation format was analyzed and summarized with
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maftools package (Mayakonda et al., 2018). TMB was also
computed, which was defined as the somatic mutation number
per megabase of interrogated genomic sequence (Sha et al., 2020).

Immune infiltration analysis

The fraction scores of 22 immune cell types were inferred utilizing
CIBERSORT computational method (Newman et al., 2015).

Differential expression analysis

Genes with differential expression were explored between the
DNA damage repair-based subtypes utilizing edgeR package. The
criteria were set as |fold change (FC)|≥2 and adjusted p < 0.05.

Construction of a DNA damage repair-
relevant gene signature

For revealing the prognostic implication of DNA damage repair,
prognosis-related DNAdamage repair-relevant genes with p < 0.01 were
selected for least absolute shrinkage and selection operator (LASSO)
analysis utilizing glmnet package (Engebretsen and Bohlin, 2019). Genes
with non-zero coefficients were chosen with ten-fold cross-validation.
TCGA-STAD samples were randomly classified as training and test
datasets with a ratio of 1:1.Meanwhile, GSE84433 dataset was adopted as
external verification. Thereafter, a DNA damage repair-relevant gene
signature was generated, following the formula:
RiskScore � ∑

i

Coefficient ofgene (i)*expression ofgene (i). All
cases were classified as low- and high-risk groups through the
median RiskScore. K-M curves of OS were conducted, and 1-, 3-,
and 5-year receiver operating characteristic (ROC) curves were
plotted with timeROC package. Uni- and multivariate Cox regression
approaches were utilized for examining whether the RiskScore acted as
an independent prognostic parameter.

Immunotherapy response prediction

Immunotherapy response was inferred through Tumor Immune
Dysfunction and Exclusion (TIDE) algorithm based upon twomajor
tumor immune escape mechanisms: triggering T cell dysfunction in
tumor tissue with highly infiltrated cytotoxic T lymphocytes (CTLs)
and preventing the infiltration of T cells into tumor tissue with lowly
infiltrated CTLs (Jiang et al., 2018). High TIDE score indicates a
greater possibility of anti-tumor immune evasion, thus exhibits a
low immunotherapy response. Transcriptome data and survival
information of patients who received immunotherapy were
gathered from the GSE78220 (Hugo et al., 2016), GSE91061
(Riaz et al., 2017) and IMvigor210 (Necchi et al., 2017) cohorts.

Drug sensitivity estimation

Expression matrix and drug processing information were
obtained from the Cancer Genome Project 2014, and IC50 values

of anti-cancer drugs were estimated with pRRophetic package
(Geeleher et al., 2014).

Cell culture

Human gastric mucosa epithelial cell line GES-1 and human
gastric cancer cell lines HGC-27, MKN-28 and AGS were
provided by Procell (China). All cells were cultivated in
RPMI-1640 medium (Gibco, United States) plus 10% fetal
bovine serum, 100 IU/mL penicillin and 100 mg/mL
streptomycin at 37°C with 5% CO2.

RT-qPCR

Total RNA was extracted utilizing Trizol (Solarbio, China),
with 5 µg for cDNA synthesis. RT-qPCR was executed through
SYBR Premix Ex Taq kit (Takara, China) together with Step-one
real-time PCR system (ABI, United States). The mRNA level was
standardized to Tubulin. The primers were synthesized by Sangon
(China) (Table 1). Relative mRNA level was computed based upon
2−ΔΔCT approach.

Immunoblotting

RIPA lysis (Solarbio) was adopted for extracting total
protein, and protein samples electrophoresed onto
polyacrylamide gels were loaded onto PVDF membranes that

TABLE 1 The information of primers for RT-qPCR.

Gene name Sequence (5′-3′)

PAPPA2 F: AGAATAAGCCTGGCGATTTTGG

R: GGCCTTAGGTAGTTCCCAGC

MPO F: TGCTGCCCTTTGACAACCTG

R: TGCTCCCGAAGTAAGAGGGT

MAGEA11 F: TCCCAGGATCTGCCAAGAGTC

R: CCCCACAGCACTTGTTCTC

DEPP1 F: TGCCCACAATTCGGGAGAC

R: AGACCTCACGTAGTCATCCAG

CPZ F: CTGCTGGTCATCGAGTTCTCC

R: TGCCACCTCATAGCCGTCA

COLEC12 F: AATCCTTCGGTTACAAGCGGT

R: ACTGTGATTGTTAGCAAGGCAC

CYTL1 F: ATGTGTGAGATACCTGCCCAG

R: CAAGGCATTGCAGTCATCCAA

Tubulin F: TGGACTCTGTTCGCTCAGGT

R: TGCCTCCTTCCGTACCACAT

Abbreviation: F, forward; R, reverse.
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were then blocked utilizing 5% BSA for 1 hour. The membranes
were probed with primary antibody of PAPPA2 (PA5-21046;
ThermoFisher, United States), MPO (1/1000; ab208670;
Abcam, United States), MAGEA11 (1/500; ab96236), DEPP1

(1/1000; ab230977), CPZ (15944-1-AP; Proteintech, China),
COLEC12 (1/1000; ab278081), CYTL1 (1/500; ab129767) or
Tubulin (1/5000; ab7291) at 4°C in a shaker overnight.
Incubation with HRP goat anti-rabbit IgG (1/10,000;

FIGURE 1
Construction and verification of a subtype classification of gastric cancer based on DNA damage repair genes. (A–C) Consensus matrix, CDF, and
track plot across TCGA-STAD based upon the expression values of DNA damage repair genes. (D) Transcriptional levels of DNA damage repair genes in
the two DNA damage repair-based subtypes. Colors from blue to red denote low to high expression levels. (E) PCA for proving the subtype classification
according to the expression values of DNA damage repair genes. (F,G) K-M curves of OS between subtypes in the TCGA-STAD and
GSE84426 cohorts. (H) Distribution of MSI-L, MSI-H and MSS subtypes across the two subtypes in the TCGA-STAD dataset. (I–O) Distribution of
clinicopathological traits across the two subtypes in the TCGA-STAD dataset.
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FIGURE 2
Differences in signaling pathways and somatic mutation between the two DNA damage repair-based subtypes across TCGA-STAD. (A)GSEA for the
enrichment levels of signaling pathways in the two subtypes. For the enrichment score line chart, the horizontal axis denotes the sorted genes, and the
vertical axis denotes the corresponding running enrichment score. The peak in the line graph is the enrichment score of the gene set, and the gene before
the peak is the core gene under the gene set. In themiddle of the panel, lines mark genes under that gene set. The lower part of the panel shows the
distribution of rank values for all genes. (B) GSEA for the enrichment levels of DNA damage repair pathways in the two subtypes. (C) Distribution of TMB
score across TCGA-STAD. (D) Comparison of TBM score between subtypes. (E)Odd ratio (OR) of mutated genes between subtypes. OR>1 denotes that
cluster1 hasmoremutants than cluster2. (F,G) The frequency of the top tenmutated genes across the two subtypes. (H,I) Relationships betweenmutated
genes in cluster1 and cluster2, respectively.
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ab288151) for 1 hour, followed by development. ImageJ
software was adopted for grayscale analysis.

Cell transfection

Small interfering RNAs (siRNAs) targeting CYTL1 (RiboBio)
were transfected into cells based upon Lipofectamine RNAiMax
(Life Technologies) in accordance with the manufacturer’s
protocols.

Detection of intracellular reactive oxygen
species (ROS)

In accordance with the manufacturer’s protocols (RiboBio),
intracellular ROS was measured utilizing ROS fluorescent probe
(Dihydroethidium). Under a fluorescence microscope (Olympus,
Japan), images were investigated and photographed.

Wound healing assay

Cells were planted into 6-well plates. Thin scratches were
created utilizing a sterile pipette tip. Under an inverted
microscope (Olympus), images were photographed immediately
(0 h) and marked the 6-well plate so that the same field could be
located again. After incubation for 24 h, the culture medium was
removed and the cells were washed for removing surrounding
cellular debris.

Statistical analysis

All statistical analyses were executed through R language
(version 4.2.1). Two groups with normally distributed variables
were compared with Student’s t-test, with Wilcoxon test for non-
normally distributed variables. One-way ANOVA was conducted
for comparing ≥3 groups. Pearson or Spearman correlation test was
utilized for estimating the association between variables. p <

FIGURE 3
Tumor microenvironment heterogeneity across the two DNA damage repair-based subtypes in the TCGA-STAD cohort. (A) The transcriptional
levels of immunomodulators across the two subtypes. Colors from blue to red denote low to high expression values of immunomodulators. (B)
Landscape of the relative fractions of 22 immune cell types across TCGA-STAD. Each cell type is marked by unique color. (C) Comparison of the relative
fractions of 22 immune cell types between subtypes. (D) The distribution of the relative fractions of 22 immune cell types across the two subtypes.
The darker the color, the larger the relative fractions of immune cell types.
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FIGURE 4
Generation of a DNA damage repair-relevant signature for predicting clinical outcomes of gastric cancer in the TCGA-STAD cohort. (A) Volcano
diagram of the genes with differential expression in cluster1 versus cluster2 based upon the criteria of |FC|>2 and adjusted p < 0.05. Blue, downregulation;
red, upregulation; grey, no significance. (B) Distribution of the transcription levels of above genes across the two DNA damage repair-based subtypes.
Colors from blue to red denote low to high transcriptional levels. (C) Distribution of the transcription levels of DNA damage repair genes among
them across the two subtypes. (D) LASSO coefficient profiling of prognostic DNA damage repair-relevant genes. The vertical dotted line shows the
optimal lambda value. (E) Partial likelihood deviance in the LASSO gene signature through ten-fold cross-validation. The vertical dotted lines denote the
optimal values based upon the minimum and 1-SE criteria. (F) Forest plot of the relationships of transcriptional levels of prognostic DNA damage repair-
relevant genes with gastric cancer OS through univariate cox regressionmethod. (G)Distribution of RiskScore across TCGA-STAD. Dotted lines show the

(Continued )

Frontiers in Genetics frontiersin.org07

Kong et al. 10.3389/fgene.2023.1118889

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1118889


0.05 was regarded as statistical significance, as denoted: *p < 0.05;
**p < 0.01; ***p < 0.001; ****p < 0.0001.

Results

Construction and verification of a novel DNA
damage repair-based subtype classification
of gastric cancer

The current study gathered 449 DNA damage repair genes,
and according to their expression values, TCGA-STAD samples
were classified as DNA damage repair activating and inhibitory
subtypes called cluster1 and cluster2 through adopting
unsupervised clustering method (Figures 1A–C). In contrast to
cluster2, most DNA damage repair genes displayed high
expression in cluster1, demonstrating the DNA damage repair
activating and inhibitory status of cluster1 and cluster2
(Figure 1D). PCA proved the prominent difference in two
subtypes based upon the transcription levels of DNA damage
repair genes (Figure 1E). In Figure 1F, we investigated the
difference in OS outcomes between subtypes, with better OS
for cluster1. This DNA damage repair-based subtyping was
externally verified in the GSE84426 cohort. As expected,
cluster1 exhibited the notable advantage in OS compared with
cluster2 (Figure 1G). Afterwards, we assessed clinicopathological
traits of two subtypes in the TCGA-STAD cohort. TCGA project
has classified gastric cancer into four major subtypes. Among
them, microsatellite instability (MSI) subtype often comprises
genetic and/or epigenetic silence of mismatch repair genes. As
shown in Figure 1H, cluster1 had the higher ratios of high MSI
(MSI-H), and low MSI (MSI-L) as well as the lower ratios of
microsatellite stable (MSS) in comparison to cluster2. Patients in
cluster1 had older age in contrast to those in cluster2 (Figure 1I).
In addition, it was found that higher ratios of male cases and
more advanced histological grade were observed in cluster2
(Figures 1J, K). However, we did not observe the notable
differences in pathological stage, and TNM stage between
subtypes (Figures 1L–O).

Signaling pathways underlying the DNA
damage repair-based subtypes

Next, mechanisms underlying the two DNA damage repair-
based subtypes were analyzed through GSEA. Consequently,
Cluster1 exhibited higher activity of immune-related pathways
(allograft rejection, asthma, and intestinal immune network for
IgA production), with higher activity of linoleic acid
metabolism, steroid biosynthesis and Fanconi anemia
pathway in Cluster2 (Figure 2A). Thereafter, relative

enrichment levels of DNA damage repair pathways were
compared between subtypes. Intriguingly, homologous
recombination and Fanconi anemia pathway were mainly
enriched in Cluster2 (Figure 2B).

Somatic mutation difference between the
two DNA damage repair-based subtypes

We gather somatic mutation data from the TCGA-STAD
dataset, and computed TMB score. Figure 2C depicts the
distribution of TMB across TCGA-STAD samples, with the
median value of 2.16/MB. In contrast to cluster2, higher TMB
score was observed in cluster1 (Figure 2D). SYNE2, RYR1, TTN,
NEB, DOCK3, AHNAK2, EPHA5, DNAH8, FAT3, and SSPO
occurred more frequent mutations in cluster1 (Figures 2E–G). In
addition, we observed the co-occurrence of mutated genes in each
subtype. Intriguingly, there was more extensive co-occurrence of
mutation in cluster1 in contrast to cluster2 (Figures 2H, I).

Tumor microenvironment heterogeneity
across the two DNA damage repair-based
subtypes

Then, we measured the transcriptional levels of
immunomodulators (chemokines, receptors, MHC I, MHC II,
immunostimulators, and immunoinhibitors) across TCGA-STAD.
Notably, chemokines (CCL14, CCL2, CCL11, etc.), and
immunostimulators (CD48, CD28, LTA, etc.) had higher levels in
cluster2, while most MHC molecules displayed higher activity in
cluster1 (Figure 3A). Through adopting CIBERSORT
computational method, we computed the relative fractions of
22 immune cell types across TCGA-STAD (Figure 3B). In
addition, the heterogeneity in immune cells between subtypes
was assessed. In contrast to cluster1, cluster2 exhibited higher
fractions of memory and naïve B cells, M2 macrophages, resting
mast cells, and monocytes as well as lower fractions of M0 and
M1 macrophages, activated and resting NK cells, activated memory
CD4+ T cells, and follicular helper T cells (Figures 3C, D).

Generation of a DNA damage repair-
relevant signature for predicting clinical
outcomes of gastric cancer

Totally, we determined 470 up- and 1256 downregulated genes
in cluster1 versus cluster2 based upon the criteria of |FC|≥2 and
adjusted p < 0.05 (Figures 4A, B). Among them, 43 were DNA
damage repair genes, with notable upregulation in cluster1
(Figure 4C). Thereafter, the current study evaluated their

FIGURE 4 (Continued)
median RiskScore as the grouping criteria. (H) Transcription levels of prognostic DNA damage repair-relevant genes across TCGA-STAD. Colors
from blue to red denote low to high transcriptional levels. (I) Alive and dead status across patients with increasing RiskScore. (J)Disease free and recurred/
progressed status across patients with increasing RiskScore. (K) K-M curves of OS between low- and high-risk cases in the training dataset. (L) ROC of
survival status for the DNA damage repair-relevant RiskScore.
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TABLE 2 Prognostic DNA damage repair-relevant genes with p ≤ 0.01 across TCGA-STAD.

Gene P HR Gene P HR Gene P HR

CYTL1 1E-04 1.261 LUM 0.003 1.210 COLEC11 0.006 1.164

GPX3 2E-04 1.241 PRSS23 0.003 1.253 DOK6 0.006 1.216

SLC7A2 3E-04 1.150 CHRDL1 0.003 1.086 IGFN1 0.006 1.100

PDE1B 5E-04 1.248 PLPPR4 0.004 1.178 CNRIP1 0.007 1.245

PLCL1 8E-04 1.29 ABCA6 0.004 1.172 BICC1 0.007 1.183

APOD 8E-04 1.120 PCDHB4 0.004 1.197 PCDHGA12 0.007 1.191

MPO 1E-03 1.172 MCC 0.004 1.230 NPR1 0.007 1.203

STK32A 0.001 1.151 MICU3 0.004 1.193 NRK 0.007 1.094

GLT8D2 0.001 1.264 SERPINF1 0.004 1.191 ELANE 0.007 1.129

SNCG 0.001 1.177 ADGRD1 0.004 1.133 DCLK1 0.007 1.126

GDF6 0.001 1.148 CRTAC1 0.004 1.109 FGF7 0.007 1.131

PAPPA2 0.001 1.117 DYNC1I1 0.004 1.151 EFS 0.007 1.185

GALNT15 0.001 1.176 PRKD1 0.004 1.201 RNF217 0.007 1.201

BCHE 0.001 1.111 FREM1 0.004 1.108 PDE2A 0.007 1.180

ARMCX1 0.001 1.242 NALCN 0.005 1.142 CNTN4 0.007 1.182

TCEAL7 0.001 1.208 PDE1A 0.005 1.197 LAMA2 0.007 1.163

EBF2 0.001 1.173 FRMD6 0.005 1.216 AKAP12 0.007 1.142

PAMR1 0.001 1.267 RBMS3 0.005 1.193 SLIT2 0.007 1.119

CPZ 0.001 1.197 FIBIN 0.005 1.185 CLIP4 0.008 1.196

EFEMP1 0.001 1.173 JAM3 0.005 1.211 DEPP1 0.008 1.199

PRICKLE1 0.001 1.214 MMRN1 0.005 1.132 AKT3 0.008 1.200

GNG11 0.002 1.310 MEOX2 0.005 1.111 RERG 0.008 1.131

KCNJ8 0.002 1.263 PLXDC2 0.005 1.198 DCN 0.008 1.172

GHR 0.002 1.171 CDO1 0.005 1.129 NAV3 0.008 1.148

RECK 0.002 1.262 C1QTNF2 0.005 1.188 PTGFR 0.008 1.142

CNTN1 0.002 1.110 HEYL 0.005 1.205 PLCXD3 0.008 1.094

ARMCX2 0.002 1.224 LRCH2 0.005 1.197 NCAM2 0.008 1.115

SVEP1 0.002 1.168 MAGEA11 0.005 1.075 DOK5 0.008 1.181

NUDT11 0.002 1.175 KLHL4 0.005 1.142 C11orf96 0.008 1.191

PIP4P2 0.002 1.268 FERMT2 0.005 1.178 FAM110B 0.008 1.156

CD36 0.002 1.183 LHFPL6 0.005 1.217 ASPA 0.009 1.141

EDNRA 0.002 1.244 BEX4 0.006 1.187 GLP2R 0.009 1.115

FBXL7 0.002 1.244 STEAP4 0.006 1.143 GEM 0.009 1.197

RTL8B 0.002 1.256 TF 0.006 1.078 ABCA8 0.009 1.101

RGS4 0.002 1.165 SLC22A17 0.006 1.170 ITGBL1 0.009 1.103

PHLDB2 0.002 1.197 FSTL1 0.006 1.240 GUCY1B1 0.009 1.202

KCNT2 0.002 1.185 RASSF8 0.006 1.173 FAM229B 0.009 1.202

ZNF521 0.003 1.243 CAV1 0.006 1.179 COPZ2 0.009 1.190

(Continued on following page)
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prognostic implication in gastric cancer. With p ≤ 0.01, 138 DNA
damage repair-relevant genes were significantly linked to OS of
gastric cancer (Table 2), which were input into LASSO analysis for
variable selection. TCGA-STAD samples were randomly and
equally separated into training and test datasets. When the
lambda value was 0.0693, and the regression coefficient was not
equal to 0, seven DNA damage repair-relevant genes COLEC12,
CPZ, CYTL1, DEPP1, MAGEA11, MPO, and PAPPA2 were finally
selected (Figures 4D, E). Figure 4F depicts the univariate cox
regression results of above genes. All of them acted as risky
factors of gastric cancer OS. Based upon them, a DNA damage
repair-relevant signature was generated, following the formula:
RiskScore = 0.0103488452696626 * COLEC12 expression
+0.0682893864499146 * CPZ expression + 0.0361252660190149 *
CYTL1 expression + 0.04553168636357 * DEPP1 expression
+0.0457508199288027 * MAGEA11 expression
+0.00340309980118412 * MPO expression +
0.00350839302933862 * PAPPA2 expression. Figure 4G shows
the distribution of RiskScore across TCGA-STAD. With the
increase of RiskScore, the transcriptional level of COLEC12, CPZ,
CYTL1, DEPP1, MAGEA11, MPO, and PAPPA2 gradually
increased (Figure 4H). Based upon the median RiskScore, TCGA-
STAD samples were classified as low- and high-risk groups. We
observed less dead and recurred/progressed cases in low-than high-
risk group (Figures 4I, J). In the training dataset, low-risk cases
exhibited better OS outcomes (Figure 4K). ROC curves proved the
significant superiority of this DNA damage repair-relevant
RiskScore in predicting long-term OS outcomes with AUC at 5-
year survival >0.8 (Figure 4L).

External verification of the DNA damage
repair-relevant signature

The predictive performance of the DNA damage repair-relevant
signature was further verified. Both in the test and entire datasets,
low-risk cases displayed more favorable OS outcomes in contrast to
high-risk cases, with excellent performance in prediction of long-
term survival (Figures 5A–D). The GSE84433 cohort was adopted
for external verification, and the prognostic significance of this
RiskScore were proven (Figure 5E). Higher RiskScore was

observed in more advanced histological grade (Figure 5F),
pathological stage (Figure 5G), and T, N, M stage (Figures 5H–J)
across TCGA-STAD. The similar findings were found in the
GSE84433 cohort (Figures 5K, L).

Subgroup analysis of the DNA damage
repair-relevant signature in prognosis
prediction

To assess the sensitivity of the DNA damage repair-relevant
signature in predicting patient survival, we conducted subgroup
survival analysis. Gastric cancer patients were stratified into distinct
subgroups according to conventional clinical parameters: sex, grade,
stage, T, N, and M (Figures 6A–L). As a result, in each subgroup,
high-risk patients presented poorer survival outcomes versus low-
risk patients, demonstrating the excellent sensitivity of the signature
in survival prediction.

Independency of the DNA damage repair-
relevant signature in prognosis prediction
and underlying molecular mechanisms

From uni- and multivariate cox regression results, the DNA
damage repair-relevant signature together with age were
independent risky factors of OS outcomes (Figures 7A, B).
Molecular mechanisms underlying the signature were assessed
through GSEA. For biological process, high RiskScore was
positively linked to negative regulation of cartilage development
and chondrocyte differentiation, and pulmonary valve
morphogenesis, with negative relationships to centriole
replication, vesicle cargo loading and NLS-bearing protein import
into nucleus (Figure 7C). For cellular component, higher activity of
clathrin-coated endocytic vesicle membrane, parallel fiber to
purkinje cell synapse, anchored component of external side of
plasma membrane was observed in high-risk cases, with lower
activity of endoplasmic reticulum exit site, cohesion complex and
cornified envelope (Figure 7D). For molecular function, high
RiskScore exhibited positive relationships with
metalloendopeptidase inhibitor activity, fibronectin binding,

TABLE 2 (Continued) Prognostic DNA damage repair-relevant genes with p ≤ 0.01 across TCGA-STAD.

Gene P HR Gene P HR Gene P HR

THSD7A 0.003 1.236 ABCA9 0.006 1.137 COLEC12 0.009 1.143

ERG 0.003 1.283 NAP1L2 0.006 1.119 ABCC9 0.010 1.141

FLRT2 0.003 1.159 MYB 0.006 0.864 GGT5 0.010 1.203

BRME1 0.003 0.817 MAGI2 0.006 1.200 ZFPM2 0.010 1.154

SORCS2 0.003 1.168 ROR2 0.006 1.146 SCUBE2 0.010 1.141

ITIH3 0.003 1.163 THPO 0.006 1.110 MID2 0.010 1.187

ADAMTS1 0.003 1.209 OMD 0.006 1.101 FABP4 0.010 1.093

IGFBP7 0.003 1.273 ASPN 0.006 1.142 HGF 0.010 1.168

Abbreviations: HR, hazard ratio.
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FIGURE 5
External verification of the DNA damage repair-relevant signature. (A,B) K-M curves of OS between low- and high-risk cases and ROC of survival
status for this RiskScore in the test cohort. (C,D) K-M curves of OS between low- and high-risk cases and ROC of survival status for this RiskScore in the
entire cohort. (E) K-M curves of OS between low- and high-risk cases in the GSE84433 cohort. (F–J)Distribution of RiskScore across distinct histological
grade, pathological stage, and T, N, M stage across TCGA-STAD. (K,L) Distribution of RiskScore across distinct T, N stage in the GSE84433 cohort.
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extracellular matrix structural constituent conferring compression
resistance, with negative correlations to taste receptor activity,
bicarbonate transmembrane transporter activity and bitter taste
receptor activity (Figure 7E). In addition, we observed higher
enrichment levels of immune-related pathways
(glycosaminoglycan biosynthesis-chondroitin sulfate dermatan
sulfate, allograft rejection and asthma) in high-risk cases, with
lower enrichment levels of nitrogen metabolism, homologous
recombination and Fanconi anemia pathway (Figure 7F). Also,
the RiskScore was negatively correlated to DNA damage repair
pathways (nucleotide excision repair, mismatch repair, homologous
recombination and Fanconi anemia pathway) (Figure 7G).

Relationships of the DNA damage repair-
relevant signature with tumor
microenvironment

Next, relationships of the DNA damage repair-relevant
signature with tumor microenvironment were assessed across

TCGA-STAD. As illustrated in Figure 8A, High-risk cases
exhibited higher transcriptional levels of immunostimulators
(CD276, ENTPD1, TNFSF18, TNFSF4, LTA, etc.), and
chemokines (CCL14, CCL17, CCL22, etc.) in contrast to low-risk
cases. Higher infiltration of naïve B cells, M2 macrophages, resting
mast cells, monocytes, as well as lower infiltration of
M0 macrophages, resting NK cells, activated memory
CD4 T cells were observed in the high-risk samples (Figures 8B,
C). Above findings unveiled the heterogeneity in tumor
microenvironment between low- and high-risk groups.

Relationships of the DNA damage repair-
relevant signature with immunotherapeutic
response and drug sensitivity

TIDE computational approach was adopted for inferring
immunotherapeutic response. As a result, lower TIDE score was
investigated in high-risk patients (Figure 8D), and this
subpopulation had higher proportions of responders to

FIGURE 6
Subgroup analysis of the DNA damage repair-relevant signature in survival prediction in the TCGA-STAD dataset. (A–L) Prognostic differences of
low- and high-risk patients in each subgroup stratified by conventional clinical parameters: sex, grade, stage, T, N, and M.

Frontiers in Genetics frontiersin.org12

Kong et al. 10.3389/fgene.2023.1118889

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1118889


immunotherapy (Figure 8E). Three independent
immunotherapy cohorts: GSE91061, GSE78220, and
IMvigor210 were collected for further evaluating the efficacy
of the DNA damage repair-relevant signature in predicting
immunotherapeutic response. It was shown that high-risk
patients had better survival outcomes in comparison to low-
risk patients after immunotherapy (Figures 8F–H),
demonstrating that high-risk patients had the higher
possibility to benefit from immunotherapy. In addition, low-
risk group displayed lower IC50 scores of AZ628, Bortezomib,
CHIR.99021, Cyclopamine, and GW843682X, as well as higher

IC50 scores of AZD8055, Bosutinib, RO.3306, Sunitinib, and
VX.702 compared with high-risk group (Figures 8I, J).

Experimental verification of the DNA
damage repair-relevant genes

The DNA damage repair-relevant genes were further
experimentally verified. In contrast to gastric mucosa epithelial
cell line GES-1, transcriptional levels of PAPPA2, MPO,
MAGEA11, DEPP1, CPZ, and COLEC12 were higher in gastric

FIGURE 7
Independency of the DNA damage repair-relevant signature in prognosis prediction and underlying molecular mechanisms in the TCGA-STAD
dataset. (A,B) Forest plots of the relationships of the DNA damage repair-relevant signature with OS via adopting uni- and multivariate cox regression
methods. (C–G) GSEA of the enrichment levels of biological processes, cellular components, molecular functions, KEGG pathways, and DNA damage
repair pathways in the low- and high-risk samples.
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FIGURE 8
Relationships of the DNA damage repair-relevant signature with tumor microenvironment, immunotherapeutic response together with drug
sensitivity across TCGA-STAD. (A) The transcriptional levels of immunomodulators in the low- and high-risk samples. Colors from blue to red represent
low to high expression values of immunomodulators. (B) The distribution of the relative fractions of 22 immune cell types across the two groups. The
darker the color, the larger the relative fractions of immune cell types. (C) Comparison of the relative fractions of 22 immune cell types between
groups. (D,E) Comparisons of TIDE score and proportions of responders to immunotherapy between groups. (F–H) Prognostic differences of low- and
high-risk patients in three immunotherapy cohorts: GSE91061, GSE78220 and IMvigor210. (I) Comparison of drug sensitivity in high-risk group versus
low-risk group. (J) Box plot of the IC50 values of drugs between groups.
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FIGURE 9
Experimental verification of the DNA damage repair-relevant genes. (A–G) RT-qPCR of the transcriptional levels of PAPPA2, MPO, MAGEA11, DEPP1,
CPZ, COLEC12, and CYTL1 in GES-1, HGC-27, MKN-28 and AGS cell lines. (H–O) Immunoblotting of the protein levels of PAPPA2, MPO, MAGEA11,
DEPP1, CPZ, COLEC12, and CYTL1 in GES-1, HGC-27, MKN-28, and AGS cell lines.
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FIGURE 10
Silencing CYTL1 facilitates intracellular ROS accumulation and impairs migrative capacity of gastric cancer cells. (A,B) RT-qPCR of the expression of
CYTL1 in HGC-27 and MKN-28 cells transfected with siRNAs targeting CYTL1. (C–F) ROS fluorescence probe detecting intracellular ROS in transfected
HGC-27 and MKN-28 cells. Bar, 20 μm. (G–J) 0-h and 24-h photographs of wound healing experiment for transfected HGC-27 and MKN-28 cells. Bar,
50 μm.
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cancer cell lines HGC-27, MKN-28 and AGS, with lower
transcriptional level of CYTL1 (Figures 9A–G). The consistent
results were observed at the protein level (Figures 9H–O).

Silencing CYTL1 facilitates intracellular ROS
accumulation and impairsmigrative capacity
of gastric cancer cells

Among the DNA damage repair-relevant genes, the biological
significance of CYTL1 in gastric cancer remains indistinct.
CYTL1 expression was notably silenced by its specific siRNAs
both in HGC-27, and MKN-28 gastric cancer cells (Figures 10A,
B). According to ROS fluorescence probe detection, we found that
CYTL1-silenced HGC-27, and MKN-28 cells presented the higher
accumulation of ROS (Figures 10C–F). In addition, migrative
capacity of HGC-27, and MKN-28 cells was remarkably impaired
by CYTL1 knockdown (Figures 10G–J).

Discussion

Gastric cancer remains a primary reason of global cancer
mortality, with limited therapeutic regimens as well as
undesirable survival (Wang et al., 2021). The heterogeneity
remains a challenge to clinical management, and the current
molecular classification system for gastric cancer primarily covers
genomic, molecular together with morphological characteristics
(Kumar et al., 2022). The current research proposed a novel
DNA damage repair-based subtyping, which might be a suitable
complement to existing molecular classification system. Notably,
there was a notable heterogeneity in prognostic stratification, tumor
microenvironment and somatic mutations between DNA damage
repair-based subtypes.

Most DNA damage repair genes exhibited upregulation andMSI
subtype had higher ratios in cluster1 versus cluster2, indicating the
DNA damage repair activating and inhibitory status of cluster1 and
cluster2, respectively. In contrast to cluster1, better OS outcomes
were found in cluster2. In addition, there was extensive
heterogeneity in clinicopathological traits between subtypes.
Somatic mutation is required for the development and growth of
gastric cancer (Sethi et al., 2020). More frequent somatic mutation
occurred in cluster1, especially SYNE2, RYR1, TTN, NEB, DOCK3,
AHNAK2, EPHA5, DNAH8, FAT3, and SSPO. The heterogeneity in
immune cells within the tumor microenvironment was investigated
between subtypes, with cluster2 exhibiting higher fractions of
memory and naïve B cells, M2 macrophages, resting mast cells,
and monocytes as well as lower fractions of M0 and
M1 macrophages, activated and resting NK cells, activated
memory CD4+ T cells, and follicular helper T cells. Previous
research has demonstrated that DNA damage repair alterations
influence M2 polarization of macrophages to remodel the tumor
microenvironment (Meng et al., 2019). NK cell exhaustion owing to
sustained proliferation leads to impaired NK cell functions with loss
of cytokine generation and lytic activity. Activation of DNA damage
repair can ameliorate NK cell exhaustion (Alvarez et al., 2019).

Advanced patients display undesirable prognostic outcomes,
with the median survival < 1 year (Li et al., 2022). Hence,

developing novel agents is urgently required for improving the
overall survival rate. Despite immunotherapy as a therapeutic
regimen for specific subtypes of gastric cancer, the
heterogeneity is still a key barrier to the development of potent
agents (Wang et al., 2021). Herein, the DNA repair-relevant
signature enabled to infer pharmacogenomic landscape across
gastric cancer. High-risk cases were more likely to respond to
immunotherapy based upon higher TMB score and lower TIDE
score. Consistently, in three independent immunotherapy cohorts,
high-risk cases presented more favorable survival outcomes, and
had the higher possibility to benefit from immunotherapy.
Moreover, low-risk cases were more sensitive to AZ628,
Bortezomib, CHIR.99021, Cyclopamine, and GW843682X, with
higher sensitivity to AZD8055, Bosutinib, RO.3306, Sunitinib, and
VX.702. Among these therapeutic compounds, Bortezomib in
synergy with other chemotherapeutic agents can improve the
therapeutic effects against gastric cancer (Bae et al., 2008;
Zhang et al., 2020). Cyclopamine sensitizes TRAIL-resistant
gastric cancer cells to TRAIL-induced apoptosis through
endoplasmic reticulum stress-induced upregulation of death
receptor 5 and survivin degradation (Na et al., 2017). A
combined treatment of docetaxel and sunitinib has a synergistic
antitumor effect in a preclinical model, but the combined regimen
cannot significantly prolong survival of patients with metastatic
gastric cancer in a phase II clinical trial (Yi et al., 2012).

This study experimentally verified the levels of DNA repair-
relevant genes, with higher levels of PAPPA2, MPO, MAGEA11,
DEPP1, CPZ, and COLEC12 and lower level of CYTL1 in gastric
cancer cells versus controls. Limited evidence has proven the
functions of above DNA repair-relevant genes in gastric cancer.
PAPPA2 is in relation to prognostic outcomes of gastric cancer
together with immunes cells in the tumor microenvironment (Qin
et al., 2021). Epidemiological studies demonstrate that MPO
polymorphism influences the risk of gastric cancer (Zhu et al.,
2006; Steenport et al., 2007). MPO, a DNA repair-relevant
biomarker, is induced by alcohol with prognostic implication in
gastric cancer (Zhang et al., 2018). COLEC12 can integrate H. pylori
infection, PGE2-EP2/4 pathway as well as innate immunity in
gastric diseases (Chang et al., 2018). CYTL1 is a hub gene linked
to the pathogenesis and prognostic outcomes of gastric cancer (Nie
et al., 2020). Our further experiments demonstrated that silencing
CYTL1 enabled to facilitate intracellular ROS accumulation and
impair migrative capacity of gastric cancer cells, indicative of
CYTL1 as a possible therapeutic target of gastric cancer.

Non-etheless, a few limitations of this study needed to be
acknowledged. Since the datasets we used were from distinct high-
throughput sequencing platforms, intratumoral or intra-patient
heterogeneity may be inevitable. Moreover, despite the discovery
of the roles of DNA damage repair in prognosis and tumor
microenvironment in gastric cancer, biological mechanisms
underlying these phenomena remain indistinct. Therefore,
large-scale prospective cohorts as well as function and
mechanism experiments are required for validating and
explaining the roles of DNA damage repair in gastric cancer. In
addition, the median RiskScore was utilized for classifying gastric
cancer cases into low- and high-risk groups. Non-etheless, the
optimal cutoff of RiskScore will be a preferable strategy for
stratifying patients.
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Conclusion

In summary, our research proposed two DNA damage repair
subtypes with distinct clinical outcomes, somatic mutation together
with tumor microenvironment traits, and found that the DNA
damage repair-relevant signature could robustly predict clinical
outcomes of gastric cancer and was correlated to tumor
microenvironment, immunotherapeutic response, and sensitivity
to small molecular compounds, which might become a useful
tool for survival prediction and therapeutic guidance for gastric
cancer. Thus, this comprehensive research of DNA damage repair
genes will assist to comprehend their roles and significance in gastric
cancer.
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