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Ferroptosis is a recently established type of iron-dependent programmed cell
death. Growing studies have focused on the function of ferroptosis in cancers,
including lung adenocarcinoma (LUAD). However, the factors involved in the
regulation of ferroptosis-related genes are not fully understood. In this study, we
collected data from lung adenocarcinoma datasets of the Cancer Genome Atlas
(TCGA-LUAD). The expression profiles of 60 ferroptosis-related genes were
screened, and two differentially expressed ferroptosis subtypes were identified.
We found the two ferroptosis subtypes can predict clinical outcomes and
therapeutic responses in LUAD patients. Furthermore, key long non-coding
RNAs (lncRNAs) were screened by single factor Cox and least absolute
shrinkage and selection operator (LASSO) based on which co-expressed with
the 60 ferroptosis-related genes. We then established a risk score model which
included 13 LUAD ferroptosis-related lncRNAs with a multi-factor Cox regression.
The risk score model showed a good performance in evaluating the outcome of
LUAD. What’s more, we divided TCGA-LUAD tumor samples into two groups with
high- and low-risk scores and further explored the differences in clinical
characteristics, tumor mutation burden, and tumor immune cell infiltration
among different LUAD tumor risk score groups and evaluate the predictive
ability of risk score for immunotherapy benefit. Our findings provide good
support for immunotherapy in LUAD in the future.
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Introduction

Lung cancer is one of the most common malignant tumors and the leading cause of
cancer-related deaths worldwide. Despite the continuous emergence of new treatments, the
prognosis of lung cancer is still very poor (Siegel et al., 2020). Non-small-cell lung cancer
(NSCLC) is the main histologic subtype of lung cancer, it can be classified as lung
adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), and large-cell
carcinoma, of which LUAD is the most common subtype (Relli et al., 2019). It is
important to identify effective biomarkers for the prognosis of LUAD because, even

OPEN ACCESS

EDITED BY

Shuai Liu,
University of Hawaii at Manoa,
United States

REVIEWED BY

Chen Li,
Free University of Berlin, Germany
Shiqiang Jin,
Bristol Myers Squibb, United States
Chengxuan Chen,
Texas A&M University, United States

*CORRESPONDENCE

Yuan Gao,
rj_gaoyuan@163.com

Huijing Huang,
fangfeijin90@163.com

†These authors have contributed equally
to this work

SPECIALTY SECTION

This article was submitted to RNA,
a section of the journal
Frontiers in Genetics

RECEIVED 07 December 2022
ACCEPTED 15 February 2023
PUBLISHED 27 February 2023

CITATION

Mao K, Tang R, Wu Y, Zhang Z, Gao Y and
Huang H (2023), Prognostic markers of
ferroptosis-related long non-coding RNA
in lung adenocarcinomas.
Front. Genet. 14:1118273.
doi: 10.3389/fgene.2023.1118273

COPYRIGHT

© 2023 Mao, Tang, Wu, Zhang, Gao and
Huang. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 27 February 2023
DOI 10.3389/fgene.2023.1118273

https://www.frontiersin.org/articles/10.3389/fgene.2023.1118273/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1118273/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1118273/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1118273/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2023.1118273&domain=pdf&date_stamp=2023-02-27
mailto:rj_gaoyuan@163.com
mailto:rj_gaoyuan@163.com
mailto:fangfeijin90@163.com
mailto:fangfeijin90@163.com
https://doi.org/10.3389/fgene.2023.1118273
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2023.1118273


though there are a variety of treatment plans for this cancer, the
average 5-year survival rate is only about 15% (Spella and
Stathopoulos, 2021).

Ferroptosis is a new type of iron-dependent programmed cell
death that differs from apoptosis, necrosis, and autophagy. It
induces cell injury or death via the iron-dependent lipid
peroxidation process (Latunde-Dada, 2017; Xu et al., 2023).
Ferroptosis is characterized by increased mitochondrial
membrane density and cell volume contraction, which is different
from other morphological, biochemical, and genetically regulated
cell deaths (Hassannia et al., 2019; Li et al., 2020). Studies have
shown that ferroptosis inhibits tumor growth, kills tumor cells, and
prevents tumor migration (Mou et al., 2019). Accumulating
evidence has suggested that ferroptosis is associated with several
biological processes in LUAD. For example, CAMP-responsive
element binding protein 1 (CREB) can directly bind to the
promoter region of glutathione peroxidase 4 (GPX4) to promote
its expression, thereby inhibiting potential ferroptosis and
promoting the growth of LUAD (Wang Z. et al., 2021). Besides,
the novel 15-gene signature of ferroptosis provides a basis for an
accurate prediction of the prognosis of LUAD, allowing for the
development of new therapies and personalized outcome prediction
in this population (Zhang A. et al., 2021). Therefore, it is necessary to
find new treatment strategies to improve the prognosis of LUAD by
regulating ferroptosis.

Recent advances in sequencing technologies have shown that
90% of RNAs do not encode proteins, which are called non-coding
RNA (ncRNA) (Matsui and Corey, 2017). Long ncRNA (LncRNA)
is a type of ncRNA. It has a length of more than 200 nucleotides and
is mainly involved in regulating gene promoters and enhancers as
well as RNA splicing (Ali and Grote, 2020). Several studies have
indicated that RNA plays an important role in the development of
cancer, its metastatic and genital development, and so it is now an
important candidate for cancer treatment (Li et al., 2016; Liu S.
J. et al., 2021). What’s more, lncRNAs are increasingly recognized as
crucial mediators in the regulation of ferroptosis (Gibb et al., 2011).
For example, Chao Mao et al. demonstrated that the cytosolic
lncRNA P53RRA promotes ferroptosis and apoptosis in lung
cancer via nuclear sequestration of p53 (Jiang et al., 2015). In
addition, it was demonstrated that lncRNA LINC00336, which is
associated with ferroptosis, is highly expressed in lung cancer, and
acts as a competitive endogenous RNA to function as an oncogene
(Wang et al., 2020). However, the full role of ferroptosis-related
lncRNAs in LUAD is still not completely understood. For new
therapeutic strategies for patients with LUAD, ferroptosis-related
lncRNAs must be identified to predict their outcome.

Anti-tumor immune response has long been a fundamental
strategy in cancer immunotherapy (Liang et al., 2021). While
ferroptosis plays a key role in tumor immunity. Therefore, it is
important to explore biomarkers associated with tumor immunity
and ferroptosis for immunotherapy of lung cancer. In this study, a
ferroptosis-related lncRNA signature associated with LUAD
prognosis is being explored based on the LUAD dataset of
TCGA. To predict the survival of LUAD patients, a ferroptosis-
related lncRNA risk score model was established by univariate and
multivariate Cox regression analysis. In addition, the acting
mechanism of ferroptosis-related lncRNAs in tumor progression
was further mined by functional analysis and immune infiltration

analysis to provide new insights into the prognosis and
immunotherapy of LUAD. Our study provides insights into the
mechanisms underlying ferroptosis in the treatment of LUAD,
which may improve individualized therapy and the assessment of
prognosis for LUAD.

Materials and methods

Acquisition of gene expression and clinical
data

The process flow of this study is shown in Figure 1. Briefly, the
LUAD expression profiles and clinical follow-up information were
downloaded from the TCGA database (https://portal.gdc.cancer.
gov/). The RNA-Seq data of TCGA-LUAD was processed in the
following steps. Samples without clinical follow-up information
and survival time were removed. We also excluded patients who
survived less than 30 days and with no survival status. We
converted probes to Gene Symbol, with one probe
corresponding to multiple genes. Besides, we used the median
value for the expression of multiple Gene Symbols. Finally,
489 tumor samples were included from the pre-processed
TCGA-LUAD, as shown in Supplementary Table S1.

Consensus clustering of tumor ferroptosis-
related gene expression

Ferroptosis is a new type of programmed cell death that differs
from apoptosis, necrosis, and autophagy. As a result of divalent iron
or ester oxygenase action, it causes unsaturated fatty acids highly
expressed on the cell membrane to undergo lipid peroxidation, thus
leading to cell death. Aside from this, it also acts as an antioxidant
system (glutathione), which reduces the GPX4 enzyme. To ensure
the stability of the classification, we used the ConsensuClusterPlus
package in R and the Pam method based on Euclid and Ward
linkages.

Differentially expressed genes among tumor
ferroptosis subtypes (Fer_DEGs)

Two groups of samples of Fer-1 and Fer-2 were acquired based
on the expression of tumor ferroptosis-related genes and consistent
clustering results. The screening threshold was set as adjusted. P <
0.05 and | log2 (Fold Change) | > 1. A differentially expressed gene
was analyzed between two subtypes using the “limma” package in R
software. In addition, the Ensemble display was used to extract
lncRNAs from differentially expressed genes.

Gene ontology and kyoto encyclopedia of
genes and genomes pathway enrichment
analyses

The co-expression genes of differential ferroptosis-related genes
between high- and low-risk LUAD patients were chosen to perform
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Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses, which was conducted by using the
clusterProfifiler package. Enrichment significance thresholds were
set at p < 0.05 and false discovery rate (FDR) < 0.05 (Guo X. H. et al.,
2021; Cao et al., 2021b). GO analysis was used to map all DEGs to
GO terms in the GO database (http://www.geneontology.org/) to
analyze the main functions of the DEGs. The KEGG pathway
database (http://www.geneontology.org/) is a synthetic database,
which was used to analyze the biochemical pathways of the
DEGs of interest (Zhong H. et al., 2021).

Construction of ferroptosis-related lncRNA
risk score model

To calculate the risk score for LUAD, we constructed a model
based on the lncRNAs associated with ferroptosis subtypes. To
reduce noise or redundant genes, a univariate Cox algorithm was
applied to narrow the lncRNA set associated with immune cell
infiltration subtypes. The best prognostic signature was identified
by using the Lasso method [Least absolute shrinkage and

selection operator, Tibshirani (1996)] A multi-factor Cox
regression analysis contributed to the development of a risk
score model for tumor immune cell infiltration. The formula
was as follows:

Risk scores � ∑Coef i( )*Exp i( )

Gene set enrichment analysis (GSEA)

GSEA was published in 2005 based on gene set enrichment
analysis. Genome-wide expression profiles can be interpreted using
this knowledge-based approach. Using MSigDB (gene matrix
transposition file format *.gmt) we selected one or more
functional gene sets to analyze gene expression data (Guo Y.
et al., 2021). We then sorted the gene expression data by
correlation degree of phenotype (also known as a change in
expression amount). To evaluate the influence of synergistic
changes in genes on phenotypic changes, we sorted by
phenotypic relevance the genes enriched in the upper and lower
parts of the gene list.

FIGURE 1
The flow chart of this study.

Frontiers in Genetics frontiersin.org03

Mao et al. 10.3389/fgene.2023.1118273

http://www.geneontology.org/
http://www.geneontology.org/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1118273


Independent prognostic factors analysis of
risk score and construction of a nomogram
prediction model

After the extraction of clinical information (including age,
gender, smoking, and TNM stage) of LUAD patients in the
TCGA, univariate and multivariate prognostic analyses were used
to demonstrate whether the risk score could be an independent
prognostic factor. Based on the multivariate Cox regression analysis
for risk score and other clinicopathological factors by the rms R
package, a clinically adaptable nomogram prediction model was
established to predict the survival probability of 489 LUAD
individuals in 1-, 3-, and 5- years from the TCGA group. Then,
the calibration analysis and time-dependent ROC curve were used to
evaluate the prognostic value of the nomogram for LUAD patients
(Sun et al., 2022).

Analysis of the tumormutation burden in the
high- and low-tumor risk score groups

Tumor mutational burden (TMB) is broadly defined as the
number of somatic mutations per megabase of interrogated
genomic sequence (Bravaccini et al., 2021). To inquire about the
association between the TMB and tumor risk score, we compared the
tumor mutation status between the low- and high-risk score groups.
The somatic mutation file *.maf of TCGA-LUAD was downloaded
from the GDC Data Portal (https://portal.gdc.cancer.gov) to calculate
the TMB values. Significantly mutated genes (p < 0.05) between the
low- and high-risk groups and the interaction effect of genemutations
were analyzed bymaftools; only genesmutatingmore than 50 times in
at least one group will be considered. The statistical significance test
for the proportion of mutation was evaluated by Pearson correlation
coefficient, student t test, Chi-square test, and survival analysis.

Relationship between tumor risk score and
tumor microenvironment

Based on the LM22 signature and 1,000 permutations, themutations
of 22 different immune cells in TCGA-LUAD (B.cells.naive,
B.cells.memory, Plasma.cells, T.cells.CD8, T.cells.CD4.naive,
T.cells.CD4.memory.resting, T.cells.CD4.memory.activated,
T.cells.follicular.helper, T.cells.regulatory.Tregs, T.cells.gamma.delta,
NK.cells.resting, NK.cells.activated, Monocytes, Macrophages.M0,
Macrophages.M1, Macrophages.M2, Dendritic.cells.resting,
Dendritic.cells.activated, Mast.cells.resting, Mast.cells.activated,
Eosinophils, Neutrophils) infiltration levels were quantified by using
the CIBERSORT package in R. Besides, differences in the degree of
immune cell infiltration between high- and low-risk groups were
compared.

Correlation analyses between tumor risk
score and immunotherapy response

The correlation between tumor risk score and immunotherapy
response can evaluate the effect of the tumor risk score in predicting

the benefit of immunotherapy in treating LUAD patients. In this
study, we compared the immunotherapy response between the high-
and low-risk groups based on expression profile data and clinical
information in the IMvigor210 cohort (http://research-pub.gene.
com/IMvigor210CoreBiologies/).

Reverse transcription-quantitative PCR (RT-
qPCR)

Five paired LUAD tissues and corresponding adjacent non-
tumorous tissues were obtained from patients who underwent
radical resection of lung cancer in Renji hospital, Total RNA was
extracted with TRIzol™ Reagent (Invitrogen). Reverse transcription
of RNA was performed using PrimeScript™ RT Master Mix
(Takara). In this study, Takara’s TB Green™ Premix EX Taq™ II
was used to perform the qPCR. GAPDH was used as an internal
control (Cao et al., 2021a; Fei et al., 2021). The primer sequence of
the tested genes is shown in Supplementary Table S6. The relative
lncRNA expression level was quantified using the 2−ΔΔCt method.

Statistical analysis and hypothesis testing

All statistical comparisons involved in this study, as well as
hypothesis testing of the significance of differences between groups,
were based on the statistical analysis method in R 3.6.

Results

Molecular characteristics of ferroptosis-
related genes in LUAD

The flow chart of this study was shown in Figure 1. Based on the
expression values of 60 ferroptosis-related genes in each sample of
the TCGA-LUAD dataset, the genes were divided into a high-
expression group and a low-expression group according to the
optimal density algorithm. The high expressions of GLS2,
PHKG2, ACACA, GPX4, DPP4, NCOA4, ACO1, PEBP1, NOX1,
ZEB1, ALOX15, ALOX5, CRYAB, SAT1, and ACSF2 are
significantly associated with better OS prognosis. While the low
expressions of GCLM, GCLC, EMC2, SQLE, IREB2, FANCD2,
AKR1C3, AKR1C2, TFRC, PGD, G6PD, ACSL4, CISD1,
SLC7A11, ACSL3, and GOT1 have great significance with better
OS prognosis (Figure 2).

Subsequently, the statistics of gene mutations in the TCGA-
LUAD showed that 88.95% of tumor samples had gene mutations,
including 47% of TP53 mutations, 41% of TTN mutations, 40% of
MUC16 mutations, and 34% of RYR2 mutations (Supplementary
Figure S1).

Furthermore, we conducted a hypothesis test on whether
TP53 and TTN affect the expression of 60 ferroptosis-related
genes. We found that the mutation of the TP53 gene was
significantly associated with the high expression of CBS, GCLM,
FANCD2, GSS, HSPB1, MT1G, TFRC, SQLE, FADS2, and
NFS1 genes, while it has a remarkable correlation with the low
expression of PEBP1, TP53, FDFT1, SLC7A11, CRYAB, NCOA4,
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SAT1, GLS2, AKR1C1, and AKR1C3 (Supplementary Figure S2).
Among the mutation groups with TTN, ATP5G3, CARS, CBS,
GPX4, GCLM, GCLC, FANCD2, CS, CISD1, CHAC1, GSS,
HSPB1, RPL8, ACO1, EMC2, TFRC, NFS1, ZEB1, SQLE, FADS2,
IREB2, PGD, and SLC1A5 were significantly highly expressed, while
ALOX5, CD44, CRYAB, and SAT1 showed a significantly low
expression status (Supplementary Figure S3). At the same time,
we observed that most of the expressions of 60 ferroptosis-related
genes were mutually promoting, as shown in Supplementary
Figure S4.

Identification of ferroptosis subtypes and
differentially expressed genes in LUAD

Consensus clustering was performed based on the expression of
60 ferroptosis-related genes in the TCGA-LUAD, and we
determined two independent ferroptosis subtypes with a
significant difference in survival. Among the two ferroptosis
subtypes, Fer-1 has a significantly better prognosis than Fer-2,
with a median survival time of 898 days. While Fer-2 indicated a
worse disease prognosis, with a median survival time of 685 days
(Figure 3).

In order to reveal the potential biological characteristics of
different ferroptosis states, we used the “limma” package of R

software to analyze differentially expressed genes between the
subtypes. 882 genes were identified with an adjusted p <
0.05 and | log2 (Fold Change) | >1 (Supplementary Table S2).
Among them, 511 genes were highly expressed in Fer-1 subtypes,
while 371 genes were upregulated in Fer-2 (Figure 4A).
Subsequently, we performed the Gene Ontology (GO) functional
enrichment analysis on highly expressed genes. The first
10 pathways enriched in the three functional categories (BP, CC,
and MF) were displayed with bubble diagrams (Figures 4B, C). Most
of the pathways in Fer-1 were correlated with biological processes
such as response to xenobiotic stimulus, hormone metabolic
process, and antibiotic metabolic process. While in Fer-2, most of
the enrichments were related to viral entry into the host cell,
leukotriene metabolic process, and fluid transport.

Then, we performed Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analysis on the DEGs, and the first
12 enriched pathways were determined. As shown in Figure 4D, they
were allograft rejection, graft versus host disease, asthma, intestinal
immune network for iga production, hematopoietic cell lineage,
metabolism of xenobiotics by cytochrome p450, ascorbate and
aldarate metabolism, pentose and glucuronate interconversions,
folate biosynthesis, phenylalanine metabolism, glutathione
metabolism, porphyrin metabolism, and porphyrin metabolism,
porphyrin metabolism. To further explore the relationship
between tumor ferroptosis subtypes and tumor immune cells,

FIGURE 2
Survival curve of 60 ferroptosis-related genes and overall survival in the TCGA-LUAD data set.
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firstly, we used principal component analysis (PCA) algorithm to
visualize the expression profiles related to ferroptosis subtypes. As
shown in Figure 4E, it is found that the samples in the first
dimension and the second dimension have a good aggregation
form, which indicates that the classification method of ferroptosis
subtypes is reasonable. Secondly, as shown in Figure 4F, by
comparing the immune cells infiltrating the difference between
ferroptosis subtypes, it was found that mast cells, immature
B cells, eosinophil, activated B cells, activated dendritic cells, and
immature dendritic cells were significantly infiltrated at a high level
in Fer-1 compared with Fer-2. In summary, the expression profile of
ferroptosis-related genes in LUAD is consistent with the prognosis
profile, indicating that it was a viable method to classify ferroptosis
subtypes.

The construction of LUAD ferroptosis-
related lncRNA risk score model

To explore the expression of ferroptosis-related lncRNAs and
their role in the evaluation of OS of LUAD, we used the Pearson
correlation coefficient to identify lncRNAs that co-expressed with
ferroptosis-related genes (P-value <0.001 and |R| > 0.5). As a result,
558 lncRNAs were screened which have a significant co-expression
relationship with at least one ferroptosis gene (Supplementary Table
S3). In this study, we constructed a risk score model of tumor
immune cell infiltration based on the ferroptosis-related lncRNAs.

Firstly, according to an approximate 2:1 ratio, the TCGA-LUAD
overall set (n = 489) was divided into a training set (n = 326) and a
test set (n = 163). In the training set, we displayed univariate Cox
analysis to analyze 558 candidate lncRNAs. As shown in Figure 5A,
39 lncRNAs were retained with a meaningful threshold of p.value <
0.05 (Supplementary Table S4). For the convenience of clinical
application, 13 lncRNAs were identified by LASSO regression
(Figures 5B, C). Multivariate Cox regression was used to
construct the lncRNA risk score model based on the
13 lncRNAs, The final 13-lncRNA gene signature formula is as
follows:

Risk score � −0.041( ) × AC008278.2 + −0.098( ) × AC093911.1

+ −0.132( ) × ADPGK − AS1 + −0.060( )× APTR

+ −0.074( ) × CBR3 − AS1 + −0.122( ) × CRNDE

+ −0.072( ) × LINC00324 + −0.088( ) × LINC00526

+ −0.041( )× LINC00892 + −0.109( ) × LINC01352

+ 0.454( ) × OGFRP1 + −0.021( ) × PAN3 − AS1

+ −0.088( ) × ZNF674 − AS1

An R package called “ggrisk” was used to evaluate the power of
the risk score model in predicting OS. Based on the optimal density
gradient algorithm, patients were divided into high-risk and low-risk
groups. The high-risk group had a higher mortality rate, as shown in
Figure 5D. Kaplan-Meier survival analysis showed that the high-risk

FIGURE 3
Consensus clustering of tumor ferroptosis-related genes expression profiles. (A–C) The clustering results when consensus matrix k = 2, k = 3, and
k = 4. (D) Distribution of CDF curve of consensus clustering. (E–G) Survival curve when consensus matrix k = 2, k = 3, and k = 4, respectively. (H)
Distribution of area under the CDF curve of consensus clustering.
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group has a significantly lower OS than the low-risk group
(Figure 5E). The receiver operating characteristic curve (ROC)
curves in Figure 5F indicated that the area under the curve
(AUC) at TCGA-LUAD data sets was 0.7566, 0.7128, 0.7028 at
1-, 3-, and 5- years, respectively, indicating that the risk score is
capable of predicting overall survival.

Subsequently, we used the test set and the overall set of TCGA-
LUAD to access the predictive ability of risk score on OS. Based on

the optimal density gradient algorithm, we assigned the patients to
high-risk groups and low-risk groups. As shown in Figures 6A, D,
the proportion of death samples in the high-risk group was relatively
high. As Kaplan-Meier analyzed, the high-risk group has a
significantly lower OS than the low-risk group (Figures 6B, E),
suggesting that in the test set, the risk score model has a good
predictive value. Its 1-, 3-, and 5- year AUC reached 0.6908, 0.6858,
and 0.8546, respectively (Figure 6C). Similarly, in the overall dataset

FIGURE 4
Identification and functional analysis of differentially expressed genes among different tumor ferroptosis subtypes. (A) Volcano map of differential
expressed genes. (B,C) Bubble chart of GO enrichment analysis of upregulated and downregulated genes. (D) KEGG enrichment analysis of gene set. (E)
PCA analysis of expression profile. (F) Tumor immune cell infiltration analysis of the gene dataset.
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of TCGA-LUAD, the risk score model also has a good predictive
value, with the 1-, 3-, and 5- year’s AUC of 0.7400, 0.7125, and
0.7115, respectively (Figure 6F).

To evaluate the robustness of the risk score model in predicting
OS of LUAD, the risk score model was validated by the external
dataset GSE31210. By using the ggrisk software package in R, the
samples were divided into high-risk and low-risk groups based on
the optimal density gradient algorithm. We found that the
proportion of death in the high-risk group was higher compared

with the low-risk group (Figure 7A). In addition, Kaplan-Meier
analysis showed that the OS of patients in the high-risk group was
significantly lower than that in the low-risk group (Figure 7B).
Therefore, the risk score model was also robust in predicting OS in
the GSE31210 dataset (Figure 7C). The 1-, 3-, and 5- year’s AUCwas
0.7381, 0.7071, and 0.7296, respectively.

To better estimated the above bioinformatics results obtained
from the public databases, we detected the levels of 13 key lncRNAs
by using 5 paired LUAD tissues and corresponding adjacent non-

FIGURE 5
Screening of lncRNAs and the construction of risk scoremodel. (A)Univariate Cox regression analysis was used to identify 558 candidate lncRNAs in
the training set, and 39 lncRNAs were retained. The meaningful threshold was set as p-value < 0.05. (B) The changing trajectory of each independent
variable. The horizontal axis represents the log value of the independent variable lambda, and the vertical axis represents the coefficient of the
independent variable. (C) The confidence interval under each lambda. (D) The risk score distribution diagram; (E) Survival curve of LUAD patients with
high- and low-risk scores. (F) ROC curve at 1-, 3-, and 5- years.
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tumorous tissues. The quantitative RT-qPCR array in LUAD tissues
shows enhanced expression of upregulated lncRNAs including
APTR, CRNDE, LINC00324, OGFRP1, and LINC00526, as
shown in Figure 7D. In contrast, LINC00892, LINC01352,
PAN3-AS1, ZNF674-AS1, and ADPGK-AS1 have significantly
diminished in non-tumorous tissues. Because of limited samples,
we did not observe a significant difference in the expression of
AC008278.2 and AC093911.1 in LUAD and non-tumorous tissues.

The relationship between risk score and
clinical characteristics

It is necessary to clarify the relationship between tumor risk score
and clinical characteristics, including age, smoke, and tumor grade.
Firstly, multivariate Cox analysis determined that the lncRNA risk score
was independent of other prognostic factors, such as age, gender, smoke
and tumor stage,M-sage, N-stage, and T-stage (Figure 8A). Next, for the

convenience of clinical evaluation, we construct a nomogram by using
the risk score, T-stage, andN-stage (Figure 8B). The calibration curves of
the nomogram 1-, 3-, and 5- years showed good stability. Notably, the
ROC curve suggested that the predictive ability of the nomogram was
higher than other factors (Figures 8C, D), with the AUC values reaching
a high level above 0.75 (Figures 8E–G). Therefore, the lncRNA-based
risk score was a relatively independent prognostic indicator in LUAD.

The relationship between lncRNA risk score
and tumor mutation burden

Growing evidence suggests that tumor mutation burden (TMB)
may determine the individual response to cancer immunotherapy
(Bravaccini et al., 2021). It is important to explore the relationship
between TMB and risk score to clarify the genetic characteristics of
each ferroptosis subgroup. Correlation analysis (Figure 9A) showed
that risk score was positively associated with TMB (R = 0.22, p =

FIGURE 6
Test set and overall set to verify the risk model. (A) The distribution diagram of the risk score of the test set. (B) The survival curve of the test set. (C)
The 1-, 3-, and 5- year’s ROC curves of the test set. (D)Distribution chart of the risk score of the overall set. (E) Survival curve of the overall set. (F) The 1-,
3-, and 5- year’s ROC curve of the overall set.
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7.2 × 10−7). By comparing the TMB of patients in subgroups (Figures
9B, C), we found that TMB in the high-risk score group was higher
than in the low-risk score group. Furtherly, we used the Survminer
package in R to calculate the optimal density gradient threshold

associated with TMB and survival, and divided tumor samples in
TCGA-LUAD into two groups with high- and low- TMB scores. As
a result, we found a remarkable difference in survival between the
two groups, as shown in Figure 9D.

FIGURE 7
The risk score model was validated by the external dataset GSE31210. (A) The distribution of risk scores. (B) The survival probability was higher in the
high-risk group compared with the low-risk group. (C) The 1-, 3-, and 5-year ROC curves of the external dataset. (D) Relative expressions of 13 key
lncRNAs in LUAD tissues (LUAD) and corresponding adjacent non-tumorous tissues (normal).N= 5 in each group. *p < 0.05, **p < 0.01, ***p < 0.001, ns =
no significance.
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In addition, we quantified the distribution of somatic variation
in LUAD driver genes between low-risk and high-risk score groups,
meanwhile, the top 30 driver genes with the highest mutation

frequency were compared (Figures 9E, F). By analyzing the
mutation annotation files of the TCGA-LUAD cohort, we found
that there were noteworthy differences in mutation profiles between

FIGURE 8
Relationship between tumor risk score and clinical characteristics. (A) Multivariate cox analysis of clinical characteristics and risk score. (B)
Nomograms of clinical characteristics and risk score. (C) Calibration charts of nomograms in 1-, 3-, and 5-year. (D) DCA distribution map of nomograms
in 1-, 3-, and 5-year. (E–G) ROC curves in 1-, 3-, and 5-year.

Frontiers in Genetics frontiersin.org11

Mao et al. 10.3389/fgene.2023.1118273

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1118273


the low- and high-risk subgroups. These results may provide insight
into understanding the mechanisms of LUAD ferroptosis status and
gene mutations in immune checkpoints.

LncRNA risk score and immune cell
infiltration (ICI)

To investigate the relationship between risk score and tumor
immune microenvironment, we used GSEA to assess the state of
infiltration of 28 different immune cells from the TCGA-LUAD
dataset (Supplementary Table S5). As a whole, LUAD patients
had a high infiltration ratio of CD56+ dim natural killer cells,
central memory CD4+ T cells, central memory CD8+ T cells,

immature dendritic cells, myeloid-derived suppressor cell
(MDSC), monocytes, natural killer cells, plasmacytoid
dendritic cells, and regulatory T cells. LUAD tissues were less
infiltrated by neutrophils, eosinophils, and type 17 T helpers
(Figure 10A).

According to our hypotheses test, the infiltration level of active
CD4+ T cells was significantly higher in the group with high-risk
score than in the group with low-risk score. In contrast, the
infiltration of activated B cell, activated CD8+ T cell, central
memory CD4+ T cell, eosinophil, γδ-T cell, immature B cell,
immature dendritic cell, mast cell, monocyte, natural killer cells,
T follicular helper cells, and type 2 T helper cells in high-risk score
group were significantly lower than in the low-risk score group
(Figure 10B).

FIGURE 9
The relationship between tumor risk score and tumor mutation burden. (A) The risk score was positively correlated to TMB. (B,C) Violin chart and
proportional distribution bar chart showed that TMB was higher in the high-risk score group than in the low-risk score group. (D) The survival curve
showed patients in the high TMB have a better survival probability than the low TMB group. (E)High-risk group genemutation waterfall chart. (F) Low-risk
group gene mutation waterfall chart.
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The lncRNA risk score had a good predictive
ability in evaluating the response of
immunotherapy

To explore the predictive ability of risk score in predicting the
benefit of immunotherapy, we analyzed the immunophenoscore
(IPS) of samples from the TCIA database and the
IMvigor210 cohort of immunotherapy patients (http://
researchpub.gene.com/IMvigor210CoreBiologies). Multiple
tumors can be predicted to respond to immunotherapy based
on IPS, which can determine whether they are immunogenic. In
Figures 11A–D, we found four types of low-risk score, namely, ips_

ctla4_neg_pd1_neg, ips_ctla4_pos_pd1_neg, ips_ctla4_neg_pd1_
pos, and ips_ctla4_pos_pd1_pos. IPS scores of patients in the low-
risk group were significantly higher than those in the high-risk
group, suggesting that immunotherapy was more likely to be
effective. Patients who received anti-PD-L1 immunotherapy in
the IMvigor210 cohort were divided into high- and low-risk
groups. As a result, the group with low-risk scores showed a
higher objective response to anti-PD-L1 therapy (Figure 11E).
Moreover, patients with low-risk scores lived signifificantly longer
than patients with high-risk scores (Figure 11F), and the increased
risk in the IMvigor210 cohort correlated with the higher objective
response rate (Figure 11G). In summary, these results suggest that

FIGURE 10
The relationship between tumor risk score and immune cells infiltration. (A)Heat map of the distribution of the immune cells infiltration. (B) Box plot
of the difference in immune cells infiltration between high- and low-risk score group. *p < 0.05, **p < 0.01, ***p < 0.001, ns = no significance.
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the ferroptosis-related lncRNAs-based risk score may indicate the
response to immunotherapy in LUAD.

Discussion

As the most common histological type of lung cancer, LUAD
accounts for 40%–50% of all lung cancer cases (Bray et al., 2018). It
severely affects human health and possesses both extremely high
morbidity and mortality (Cheng et al., 2021). Despite great efforts
having been made in developing novel treatments, however, LUAD
still received a poor prognosis (Hirsch et al., 2017). In recent years,
studies have demonstrated that ferroptosis is an important
regulatory mechanism for tumor growth and is important for
chemoradiotherapy and immunotherapy of tumors (Chen et al.,
2021). In addition, lncRNAs have been amajor focus of research into
ferroptosis. However, the underlying relationship between
ferroptosis-associated lncRNAs and the prognosis of LUAD
patients remains quite limited. In this study, the expression
profiles of ferroptosis-related genes in TCGA-LUAD dataset
showed individual heterogeneity. Moreover, the expression

profiles were correlated with the overall survival (OS) of LUAD
patients. We also found that gene mutations could affect the
expression of ferroptosis-related genes. Our results were then
used to construct the risk score model with 13 ferroptosis-related
lncRNAs. In univariate and multivariate Cox regression analysis, the
risk score model was found to be a relatively independent prognostic
indicator of the clinical features of LUAD patients. In addition, this
study indicated the risk score model can well evaluate the benefit of
LUAD patients receiving immunotherapy.

Liu et al. established the ferroptosis potential index (FPI) to
reveal the functional roles of ferroptosis and found high FPI
predicted poor prognosis in several tumors, highlighting the
potential value of cancer classification based on ferroptosis-
related genes expression (Liu et al., 2020). As a result of the
expression of tumor ferroptosis-related genes and consensus
clustering, we divided the samples into Fer-1 and Fer-2 groups. It
was interesting to note that patients in the Fer-1 group had a median
survival time of 898 days, significantly longer than Fer-2 group
patients, who had a median survival time of 685 days. The
differences in survival time between the two ferroptosis subtypes
were probably determined by differences in biological functions and

FIGURE 11
The relationship between tumor risk score and the response of immunotherapy. (A–D) Immunophenoscore was significantly higher in the low-risk
group than in the high-risk score group. (E–G) Low-risk score patients who received anti-PD-L1 treatment had better responses to immunotherapy and
significantly longer survival time than high-risk score patients. CR = complete response, PR = partial response, PD = progressive disease, SD = stable
disease. *p < 0.05, **p < 0.01, ***p < 0.001.
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signaling pathways as well as differences in immune cell infiltration.
There seems to be a close relationship between Fer-1-enriched
pathways and biological processes related to xenobiotic stimulus,
hormone metabolism, and antibiotic metabolism. While Fer-2 was
mostly enriched in viral entry into the host cell, leukotriene
metabolism, and fluid transport. In addition, we discovered
samples from Fer-1 were significantly more infiltrated with mast
cells, immature B cells, eosinophils, activated B cells, activated
dendritic cells, and immature dendritic cells than samples from
Fer-2. In early-stage LUAD patients, mast cell abundance was
associated with prolonged survival (Bao et al., 2020). Also, Han
et al. found that upregulated glucose-6-phosphate isomerase (GPI)
was associated with poorer survival, clinical stage, N stage, and
primary therapy outcomes in LUAD. While GPI expression was
negatively correlated with infiltrating levels of CD8+ T cells, central
memory T cells, dendritic cells, macrophages, mast cells, and
eosinophils (Han et al., 2021), which is consistent with our study
findings. Thus, this result showed the value of the classification of
Fer-1 and Fer-2 in predicting the survival of LUAD patients.

A total of 13 ferroptosis-related key lncRNAs were identified by
LASSO regression. What’s more, a risk score model associated with
tumor immune cell invasionwas constructed based on these 13 lncRNAs.
Interestingly, the risk score not only showed the ability to predict the
overall survival of LUAD patients but was also associated with tumor
mutation burden and evaluating the response of immunotherapy.
Among the 13 key lncRNAs, LINC01352 is an important prognostic
risk assessment factor for LUAD (Lu et al., 2021). By down-regulating
miR-423-3p and inducing tumor suppressor protein p21, ZNF674-AS1
inhibits NSCLC growth. As a result, the low survival rate of NSCLC
patients is significantly correlated with ZNF674-AS1 downregulation (Liu
Y. et al., 2021). Linc00324 is over-expressed in a variety of cancer cell lines
and tumoral tissues. Some researchers believe LINC00324 can be
regarded as a promising candidate for the development of diagnostic
and prognostic panels, what’smore, can be used as a therapeutic target for
a wide range of cancers (Ghafouri-Fard et al., 2022). A study suggested
that Linc00324 overexpression accelerated the proliferation, migration,
and invasion of LUAD cells by activatingmiR-615-5p/AKT1 axis (Zhang
L. et al., 2021). CRNDE is a long non-coding RNA that has been
demonstrated to be involved in multiple biological processes of
different cancers as well as a potential diagnostic biomarker and
prognostic predictor (Lu et al., 2020). Among the downstream targets
of CRNDE, miR-641, CDK6, and miR-338-3p promote lung cancer cell
proliferation and inhibit cell apoptosis (Fan et al., 2019; Jing et al., 2019).
There have been reports that plncRNA-1, also known as CBR3-AS1, has
different effects on different kinds of tumors. As an example, CBR3-AS1
modulates JNK1/MEK4 and enhancesMAPK signaling by binding miR-
25-3p competitively, suggesting it is a breast cancer prognosis marker
(ZhangM. et al., 2021). Further, CBR3-AS1 is a poor prognosticmolecule
for osteosarcomas and colorectal cancer. Accordingly, high levels of
CBR3-AS1 inhibit colorectal cancer metastasis by targeting the PI3K/
Akt pathway (Zhang et al., 2018). MinHou et al. found that CBR3-AS1 is
associated with the prognoses of LUAD by activating the signal from the
Wnt/β-catenin. (Hou et al., 2021). Despite its antisense lncRNA gene
status, little is known about the role of ADPGK-AS1 in lung cancer.
However, it has been reported to contribute to cervical, gastric, and
colorectal cancer (Nagasaki et al., 2012; Jiang andWang, 2020; Zhong Q.
et al., 2021). ADPGK-AS1 has been shown to inhibit miR-205-5p
downregulation in pancreatic cancer, which is negatively correlated

with cancer cell proliferation, migration, and invasion, and positively
correlated with apoptosis rates. The EMT process can thus be strongly
induced in vivo by it (Song et al., 2018). Liu et al. demonstrated that
downregulation ofOGFRP1 inhibited the progression ofNSCLC through
miR-4640-5p/eIF5A axis (Liu X. et al., 2021). Furthermore, it has been
reported that OGFRP1 is highly expressed in NSCLC tissues and
significantly correlated with the prognosis of LUAD patients (Cui
et al., 2021). As another core ferroptosis-related lncRNA noted in this
study, APTR has been shown to reduce miR-132-3p and enhance
YAP1 expression, which in turn promotes osteosarcoma progression
(Guan et al., 2019). However, no study to date had demonstrated the
relationship between APTR and lung cancer. It showed that
AC008278.2 was a protective lncRNA was one of 19 genomic
instability-related lncRNAs that correlated with somatic mutation
pattern, immune microenvironment infiltration, immunotherapeutic
response, drug sensitivity, and survival of NSCLC patients (Zhang
et al., 2022). While as for PAN3-AS1 and AC093911.1, little has been
studied in current diseases or molecular mechanisms. Further excavation
is required to understand the role of these lncRNAs in lung cancer
development.

TMB has emerged as a promising novel biomarker in predicting
the prognosis and immune response in cancers, although the effect
and the prognostic role of the TMB on outcomes varied dramatically
across cancer types (Hellmann et al., 2018; Wang Z. M. et al., 2021).
There are researches showed that higher TMB tends to form more
new antigens, making tumors more immunogenic, improving clinical
response to immunotherapy, and prolonging the overall survival (Lv
et al., 2020; Wu et al., 2020). This is consistent with that patient in the
high TMB scores group has better OS in our study. However, there are
also studies showing the opposite. A study by Wang et al. found high
TMB had a significantly poor prognosis in thymic epithelial tumors
patients (Wang Z. M. et al., 2021). While Gao et al. discovered that
higher TMB had a negative correlation with the prognosis of
pancreatic ductal adenocarcinoma (Gao et al., 2020). The results of
this study showed risk score had a modest positive correlation with
TMB score, however, the risk score was negatively correlated with
patients’ OS, indicating an independent role of the risk score in
predicting the response to immunotherapy in LUAD patients.

Harnessing an anti-tumor immune response has long been a
fundamental strategy in cancer immunotherapy. According to the
previously proposed tumor immunoediting hypothesis, tumor cells
entering the immune escape phase can create an immunosuppressive
state within the tumor microenvironment by subverting the same
mechanisms that under normal conditions help regulate the immune
response and prevent damage to healthy tissue (Carbone et al., 2015). In
the last decade, higher objective response rates have been observed by
targeting the PD-L1/PD-1 immune checkpoint pathway. This stems
from distinct mechanisms of action that restore tumor-induced
immunity deficiency selectively in a tumor microenvironment (TME)
(Sanmamed and Chen, 2018). The therapeutic efficacy of these anti-PD1
therapies relies on endogenous tumor-antigen-specific T cells that are
functionally held in check in the TME due to PD-L1 inhibitory signaling
through PD-1. Anti-PD therapy results in the adaptive increase of
functional T cells, which translates into tumor regression (Herbst
et al., 2022). Until now, immunotherapy has shown considerable
clinical success in the treatment response of many LUAD patients.
Using T cells, monoclonal antibodies, or immune checkpoint inhibitors,
immunotherapy stimulates the immune system to attack tumor cells
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(Forde et al., 2018; Passiglia et al., 2018). What’s more, growing studies
have reported that the immune-related features of cancers such as the
intensity of CD4+ T cells and CD8+ T cell infiltrates, macrophages, and
natural killer (NK) cells, different B cell sub-populations were correlated
with immunotherapeutic responsiveness in lung cancer (Stankovic et al.,
2018). In this present study, we found a functional enrichment analysis
that suggested that ferroptosis-related lncRNAs were mainly involved in
immune pathways. Besides, immature dendritic cells, myeloid
suppressive cells, monocytes, and regulatory T cells displayed a high
level of LUAD. However, neutrophils, eosinophils, and type 17 T helper
cells were the major low-level infiltrating cells. Additionally, our results
revealed the relationship between immune cell infiltration (ICI) and the
survival of LUAD patients. Based on these findings, these ferroptosis-
related lncRNAs provide potential targets for combined treatments with
immune checkpoint inhibitors.

There are some limitations of our study. Firstly, only data
obtained from TCGA was used to construct a ferroptosis-related
lncRNA prognostic model and to evaluate its validity. Secondly, the
number of lung samples used on detecting the expression levels of the
identified 13 key ferroptosis-associated lncRNAs was limited.
Therefore, more work is needed to fully elucidate the mechanisms
underlying the effects of ferroptosis-related lncRNAs on LUAD.

Conclusion

In conclusion, our study identified two ferroptosis subtypes to
predict clinical outcomes and therapeutic responses in LUAD
patients. The construction of a new risk score model with
13 ferroptosis-associated lncRNAs provides a candidate model for
the evaluation of the LUAD prognosis. Our results demonstrate that
LUAD patients in the high-risk score group presented worse OS,
higher TMB, and lower immune activity. This study might contribute
to the optimization of risk stratification for survival and personalized
management of LUAD patients.
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