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Background: Many epigenetic loci have been associated with plasma triglyceride
(TG) levels, but epigenetic connections between those loci and dietary exposures
are largely unknown. This study aimed to characterize the epigenetic links
between diet, lifestyle, and TG.

Methods: We first conducted an epigenome-wide association study (EWAS) for
TG in the FraminghamHeart Study Offspring population (FHS, n = 2,264). We then
examined relationships between dietary and lifestyle-related variables, collected
four times in 13 years, and differential DNA methylation sites (DMSs) associated
with the last TG measures. Third, we conducted a mediation analysis to evaluate
the causal relationships between diet-related variables and TG. Finally, we
replicated three steps to validate identified DMSs associated with alcohol and
carbohydrate intake in the Genetics of Lipid-Lowering Drugs and Diet Network
(GOLDN) study (n = 993).

Results: In the FHS, the EWAS revealed 28 TG-associated DMSs at 19 gene regions.
We identified 102 unique associations between these DMSs and one or more dietary
and lifestyle-related variables. Alcohol and carbohydrate intake showed the most
significant and consistent associations with 11 TG-associated DMSs. Mediation
analyses demonstrated that alcohol and carbohydrate intake independently affect
TG via DMSs as mediators. Higher alcohol intake was associated with lower
methylation at seven DMSs and higher TG. In contrast, increased carbohydrate
intake was associated with higher DNA methylation at two DMSs (CPT1A and
SLC7A11) and lower TG. Validation in the GOLDN further supports the findings.

Conclusion: Our findings imply that TG-associated DMSs reflect dietary intakes,
particularly alcoholic drinks, which could affect the current cardiometabolic risk
via epigenetic changes. This study illustrates a new method to map epigenetic
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signatures of environmental factors for disease risk. Identification of epigenetic
markers of dietary intake can provide insight into an individual’s risk of
cardiovascular disease and support the application of precision nutrition.

Clinical Trial Registration: www.ClinicalTrials.gov, the Framingham Heart Study
(FHS), NCT00005121; the Genetics of Lipid Lowering Drugs and Diet Network
(GOLDN), NCT01023750.
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Introduction

Diet and lifestyle habits affect human health. As environmental
exposures to the human genome are consistent and habitual, dietary
intake and lifestyle behaviors modify epigenetic status without changing
the genomic DNA sequence, but do affect the gene expression and the
physiological function of cells and organelles (Aguilera et al., 2010;
Cavalli and Heard, 2019). In turn, an altered physiology contributes to
the risk of human diseases (Cavalli and Heard, 2019). However, the
mechanisms underlying the alteration of epigenetic status through diet
and lifestyle exposures are incompletely characterized. Increasing
evidence supports that DNA methylation measurements from the
peripheral blood mononuclear cell (PBMC) DNA are robust and
relevant biomarkers of health status, as supported by the strong
correlation between the methylation age and chronological age
(Horvath, 2013; Issa, 2014). The DNA methylation age, measured in
PBMCs, combined with plasma biomarkers, can accurately predict the
biological age (Lu et al., 2019; McCrory et al., 2021). Furthermore,
biological aging measured in PBMCs is associated with the diet and
lifestyle habits (Quach et al., 2017). Thus, epigenetic marks measured
from the PBMC DNA reflect biological aging and health status.

Epigenome-wide association studies have identified many
epigenetic marks associated with metabolic and cardiovascular
diseases (CVD) (van Dijk et al., 2015; Lai et al., 2016; Ling and
Ronn, 2019; Samblas et al., 2019). The epigenetic markers associated
with disease risk exhibit altered methylation profiles as a result of
specific environmental factors that induced those epigenetic changes
(Lai et al., 2018; Lai et al., 2020). Plasma triglyceride (TG) is a causal
metabolic risk factor of CVD independent of other risk factors,
including low-density cholesterol (LDL-C) (Raposeiras-Roubin et al.,
2021). Importantly, elevated TG levels respond to the specific dietary
and pharmacological intervention (Hunter and Hegele, 2017; Mason
et al., 2020). In this study, our objective was to map epigenetic marks of
diet and lifestyle habits for TG in two populations. To achieve this, we
first identified epigenetic marks associated with TG and then examined
the correlation between identified TG-associated epigenetic marks and
diet and lifestyle factors longitudinally measured at four time points for
up to 13 years in the Framingham Heart Study (FHS), followed by
confirmation in the second population.

Materials and methods

The Framingham Heart Study

The Framingham Heart Study, launched in 1948, is a community-
based longitudinal population study that recruited participants who

self-identified as being of European descent and lived in Framingham,
MA (Dawber et al., 1951). In 1971, the original FHS participants’
children and spouses were recruited to establish the Framingham
Offspring Study (FHS) (Kannel et al., 1979). Participants of FHS
were interviewed and clinically examined about every 4–8 years after
that. In this study, we used data from participants who took part in one
or more of the four examination cycles: exam 5 (1991–1995), exam 6
(1995–1998), exam 7 (1998–2001), and exam 8 (2005–2008) over a
mean of 13 years. Only participants who completed the diet and health
assessment questionnaires and for whom a whole-genome DNA
methylation profile was available were included in this study. The
age of participants at exam 8 ranged from 40 to 90 years with a mean of
64.7 years. These data were requested via controlled access from dbGaP
(https://dbgap.ncbi.nlm.nih.gov, with study accessions: phs000007.v28.
p10 and phs000007.v25.p9; downloaded on 27 September 2017).

The Genetics of Lipid-Lowering Drugs and
Diet Network (GOLDN) study

The GOLDN study was a subset of the Family Heart Study funded
by the NIH National Heart, Lung, and Blood Institute (Corella et al.,
2007; Lai et al., 2007). The study recruited a total of 1,327 participants
with ages ranging from 18 to 92 years, with a mean age of 48.7 years
from two study centers: Minneapolis, MN, and Salt Lake City, UT. The
main goals of the study were to identify genetic variants responsible for
individual variation in responses to a high-fat meal after a 3-week
intervention of fenofibrate, a triglyceride-lowering mediation (Lai et al.,
2007). The Institutional Review Boards at Tufts University, the
University of Minnesota, the University of Utah, and the University
of Alabama at Birmingham (United States) approved the study
protocol. The present study included 474 men and 519 women with
a completed whole-genome profile of DNA methylation and dietary
data at baseline (Corella et al., 2007). The GOLDN cohort, of European
descent, shares a similar ancestry as FHS, and it was a young cohort with
a broad spectrumof alcohol intake. Thismakes GOLDN an appropriate
population to validate the findings from FHS. The data can be accessed
from dbGaP (https://dbgap.ncbi.nlm.nih.gov) with study accessions:
phs000741.v2.p1.

Dietary intake and food grouping

In FHS, foods and nutrients were derived from the 126-item
modified Willett semi-quantitative food frequency questionnaire
(FFQ) in the fifth to eighth study examinations (1991–2008)
(Wang et al., 2014). Dietary exposures were classified as follows:
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1) daily absolute intake of nutrients/bioactives, including all
macronutrients, fiber, vitamins, minerals, and bioactives
(i.e., absolute intake). Macronutrients (i.e., fat, carbohydrate, and
protein) were further expressed and analyzed as percentages of total
energy intake; 2) individual food items (servings/week or servings/
day) as captured by the FFQ (i.e., 129 food items); and 3) food
groups, whereby individual food items were classified into 31 food
groups. All dietary and lifestyle variables were summarized in
Supplementary Table S2. Physical activity scores were estimated
based on the Paffenbarger questionnaire of the Harvard Alumni
Activity Survey (Lee and Paffenbarger, 1998). The physical activity
was not available for exam 6. Other lifestyle exposures included
alcohol intake (grams per day or number of days per week of alcohol
drinking) and smoking (number of cigarettes per day). In GOLDN,
dietary assessment was conducted using the Diet History
Questionnaire (Corella et al., 2007; Lai et al., 2007) and dietary
intake was estimated based on the Harvard University Food
Composition Database, the USDA database, and the Minnesota
Nutrient System (Dawber et al., 1951). These unique characteristics
of dietary records at four time points and epigenomic profiling
available at exam 8 in FHS provided a solid foundation to examine
the connection between obesity-associated epigenome signals and
diet and lifestyle habits on TG.

Genome-wide DNA methylation

Genome-wide DNA methylation of isolated DNA samples in
both cohorts (FHS and GOLDN) was measured using Infinium
HumanMethylation450 K arrays (Illumina) as described (Absher
et al., 2013; Marioni et al., 2015). For FHS, DNA methylation data
were requested from dbGaP (accession: phs000724.v9.p13). For
both FHS and GOLDN, quality control (QC) processing was
applied to the raw IDAT files as described (Morris et al., 2014;
Lai et al., 2018). To adjust for the heterogeneity of cell-type
composition in the blood across samples, we calculated principal
components (PCs) with β scores of all filtered autosomal DNA
methylation sites (DMSs) using the PCA function implemented in
SNP and VARIATION SUITE 8.9.0 (SVS 8.9.0, GoldenHelix Inc.,
Bozeman, MT, USA). The first five PCs were used as covariates to
control for heterogeneity of different cell types in all analyses, which
was well demonstrated in previous studies (Hidalgo et al., 2014; Irvin
et al., 2014). After QC, 415,202 DMSs remained and were included
in this study. Among them, 76.7% (of total passing QC) of the CpGs
were annotated as genic, whereas 23.8% of CpGs across the genome
can be considered intergenic. Annotation was based on the human
genome build GRCh37/hg19.

Transcription analysis of epigenetic variants

FHS transcriptome data were acquired from dbGaP under
accession #phe00002.v6. Transcriptome profile was performed
using the Affymetrix Human Exon 1.0 ST array on mRNA
isolated from PBMC collected from the FHS Offspring Cohort
participants after overnight fasting at exam 8 (McManus et al.,
2017). The quality control and normalization of the raw gene
expression data have been described (Katz et al., 2006; Joehanes

et al., 2013). In this study, we obtained gene expression data for
572 participants who were not taking medication for hypertension,
dyslipidemia, or diabetes to avoid interference of the medications on
gene expression. Of the 19 identified TG-associated DMS regions,
transcript data were sought for the gene harboring that DMS. For
13 transcripts, such data were available. To determine whether
identified TG-associated DMSs were associated with
corresponding mRNA expression in the PBMC, we examined the
correlation between each identified DMS and gene expressions of
the targeted gene with mixed linear models while controlling for age
and sex, cell-type heterogeneity, and family relation.

Epigenetic mapping of environmental
factors for plasma triglyceride

Step 1—Epigenome-wide association study for TG
We conducted an epigenome-wide scan for TG using a mixed

linear regression model to identify DMSs associated with TG. Log-
10 transformed TG was modeled as the dependent variable and
DMSs as predictors while controlling for sex and age at exam 8, cell-
type heterogeneity, and family relationship as a random effect. The
analysis was implemented in SVS 8.9.0. A Bonferroni test was
applied to correct for multiple testing with epigenome-wide
significance at 1.10E-07 (Lai et al., 2016). The total phenotypic
variance of TG explained by identified epigenetic loci was estimated
in participants not taking lipid-lowering medication using the multi-
locus mixed model while controlling for sex, age, cell-type
heterogeneity, and family relationship. Smoking and physical
activities, as a part of the environmental factors, were not
adjusted in this model.

Step 2—Association between TG-associated DMSs
and dietary intake and lifestyle factors

To identify environmental factors associated with TG-
associated DMSs, we conducted environment and epigenetic
association analyses with all three categorizations of dietary
exposure (Supplementary Table S2), and with lifestyle factors,
measured in each of the four exams of FHS. For each DMS, the
DNA methylation level was modeled as the dependent variable in
a linear mixed model with each dietary intake and lifestyle factor
as a predictor while controlling for sex, age at exam 8, cell-type
heterogeneity, and family relationship as a random effect. As age
is the key factor that was associated with DNA methylation
measured at exam 8, the association models at exams 5, 6, and
7 were further controlled for age at exam 8. The analyses were
conducted in two models: all participants (All) while controlling
for lipid-lowering medication and in a sample of participants
without lipid-lowering medication (No lipid med). These
association tests were conducted and implemented in the SVS
(v8.9.0).

For each DMS as a dependent variable, to correct for multiple
testing, we estimated the total number of independent variables
represented by all dietary intake and lifestyle factors using a
correlation matrix method (Li and Ji, 2005). For each of the four
exams, all dietary intake predictors were calculated and classified
in a similar way (Wang et al., 2014), with the number of dietary
variables ranging from 267 to 391 (Supplementary Table S2, this
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range across the four exams was mainly the result of different
availability of data on nutrient/bioactives). In all cases, the
estimated independent factors ranged from 153 to 170. Using
Bonferroni adjustment for each DMS, we corrected for multiple
testing with p = 0.05/170, = 0.0003.

Step 3—Mediation analysis
As alcohol and carbohydrate intake were the strongest and most

consistent exposures associated with TG-associated DMSs across all
four exams, mediation analysis was conducted only in participants
not taking lipid-lowering drugs (to avoid potential interference of
the medication) to identify causal relationships between exposures
of alcohol and carbohydrate intake, and TG with DMSs as the
mediators. Furthermore, to test if alcohol and carbohydrate intake at
earlier exams had a causal effect on TG at exam 8 via epigenetic
status (as mediators), mediation analysis was conducted with
alcohol and carbohydrate intake at earlier exams (exams 5, 6,
and 7) as exposures. The CAUSALMED procedure in SAS 9.4
(SAS, Cary, NC) was used for the mediation analysis (Robins
and Greenland, 1992; Pearl, 2001). To be consistent, both alcohol
and carbohydrate consumption, which were normalized to the total
energy intake at each exam, were treated as the exposure variables,
with TG at exam 8 as the outcome variable and 11 DMSs for alcohol
intake and 10 DMSs for carbohydrate intake at exam 8 as mediators.
In addition, as age, smoking, physical activity, BMI, and medications
for hypertension and diabetes were important factors that were
associated with DNA methylation, which was measured at exam 8,
the association analyses at exams 5, 6, and 7 were further adjusted for
age, smoking, physical activity, BMI, medications for hypertension
and diabetes at exam 8. The significance threshold was adjusted for
multiple tests using the Bonferroni correction at p-value = 0.0045
(0.05/11). The total, direct, and indirect effects were estimated via
mediation analysis. The natural indirect effect (NIE) quantified the
effect of alcohol consumption on TG mediated by the DMS, while
the natural direct effect (NDE) quantified the residual effect not
mediated by the DMS. The total effect is the sum of the direct and
the indirect effects (Robins and Greenland, 1992; Lok and Bosch,
2021). Mediation analysis was conducted further for different types
of alcoholic drinks (servings/week) in all four exams using identical
models.

Validation in GOLDN

For validation, we only focused on two key dietary factors
identified as having the greatest impact on TG, alcohol, and
carbohydrate intake (Supplementary Table S4). Hence, the
replication was conducted only for 12 identified TG-associated
DMSs that were associated with alcohol (11 DMSs) and
carbohydrate (10 DMSs) intake. We replicated three steps of
epigenetic mapping in the GOLDN cohort. Step 1: 12 DMSs
were examined for association with plasma TG in a mixed linear
model while controlling for sex, age, geographic location, family
relationship, and cell-type heterogeneity. Step 2: alcohol and
carbohydrate intake normalized to the total energy were
associated with 12 DMSs with adjustment for potential
confounding factors as in FHS. Step 3: mediation analysis was
conducted the same way as in FHS while controlling for

potential confounding factors. For validation, no correction for
multiple testing was applied (i.e., statistical significance at p ≤ 0.05).

Results

Epigenome-wide association of plasma
triglyceride

The demographic characteristics of the participants of the FHS
cohort at exam 8 are provided in Supplementary Table S1. To
identify DMSs associated with plasma TG, we conducted an
epigenome-wide association study (EWAS) while controlling for
sex, age, BMI, family relationship, and cell-type heterogeneity. In the
FHS cohort of 2,264 participants available at exam 8, we identified
28 DMSs at 16 genic regions significantly associated with plasma TG
at the epigenome-wide significance of p ≤ 1.1E-07 (n = 2,264,
Table 1). Considering the potential confounding effect of lipid-
lowering medication on TG, we additionally conducted an EWAS in
only those 1,184 participants not using lipid-lowering medication
(Table 1). Only 10 loci associations reached epigenome-wide
significance in the smaller sample (Table 1). Among the
28 identified loci, individual DMSs accounted for variance in TG
ranging from 1.3% to 6.8%. In total, 28 loci accounted for 15.3% of
TG phenotypic variance. As some loci were highly correlated, 19 loci
were selected to represent the 28 loci based on clusters in the
correlation matrix. Together, these 19 loci account for 15% of
TG phenotypic variance.

Dietary and lifestyle factors associated with
DMS in four exams

To characterize and map epigenetic status in relation to
environmental exposures, we first examined the association
between 19 DMSs and all dietary measures and lifestyle factors
in four exams over an average of a 13-year timeframe. For each TG-
associated DMS, we examined its association with each of the dietary
and lifestyle exposures in two linear mixed models: all participants
(All) and participants not taking lipid-lowering medication (No
lipid med), while controlling for sex, age at exam 8, family
relationship, cell-type heterogeneity, and medications for
hypertension and type 2 diabetes in four exams.

Figure 1 shows the Manhattan plot of associations between
19 DMSs and all dietary and lifestyle factors measured and estimated
at exam 8 for all participants (Figure 1A, n = 1923) and participants
not taking lipid-lowering medication (Figure 1B, n = 1,041). After
correction for multiple testing (p = 0.0003), 35 dietary and lifestyle
variables were associated with methylation at cg06690548 in
SLC7A11 when all participants were included in the analysis
(Figure 1A; Table 2). Only 10 of those dietary measures were
associated with cg06690548 in participants who did not take the
lipid-lowering medication (Figure 1B, n = 1,041).

In exam 8 with all participants (All), 16 of 19 DMSs were
associated with at least one of the dietary and lifestyle variables
(Table 2). Three DMSs (cg19494588, cg27431877, and
cg02316713) showed few associations with dietary variables,
and these could be more sensitive to exposures not analyzed
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TABLE 1 Epigenetic variants associated with fasting plasma triglyceride of the Framingham Heart Study at Exam 8.

All participants (n = 2,264)a Participants no lipid med (n = 1,184)b

DMS Chr Position Gene cGenic
region

dCpG
island

p-value Beta Beta SE Variance
explained
(%)

p-value Beta Beta SE Variance
explained
(%)

cg17901584 1 55,353,706 DHCR24 TSS1500 S_Shore 3.29E-15 −0.598 0.075 2.7 5.58E-10 −0.657 0.105 3.1

cg03725309 1 109,757,585 SARS genic S_Shore 5.12E-09 −0.697 0.119 1.5 5.65E-06 −0.695 0.153 1.7

cg16246545 1 120,255,941 PHGDH genic S_Shore 6.13E-12 −0.520 0.075 2.1 9.75E-07 −0.508 0.103 2.0

cg14476101 1 120,255,992 PHGDH genic S_Shore 7.05E-15 −0.445 0.057 2.7 1.17E-07 −0.420 0.079 2.3

cg19693031 1 145,441,552 TXNIP 3′UTR 1.52E-16 −0.576 0.069 3.0 7.64E-06 −0.440 0.098 1.6

cg06690548 4 139,162,808 SLC7A11 genic 1.38E-11 −0.371 0.055 2.0 2.57E-09 −0.514 0.086 2.9

cg19494588 5 146,195,103 PPP2R2B genic 6.67E-10 −0.371 0.060 1.7 1.00E-05 −0.351 0.079 1.6

cg26403843 5 158,634,085 RNF145 genic N_Shelf 9.61E-09 0.393 0.068 1.5 5.27E-05 0.378 0.093 1.3

cg21429551 7 30,635,762 GARS genic S_Shore 4.09E-11 −0.366 0.055 1.9 1.01E-09 −0.466 0.076 3.0

cg03068497 7 30,635,838 GARS genic S_Shore 7.89E-09 −0.297 0.051 1.5 7.61E-09 −0.411 0.071 2.7

cg19390658 7 30,636,176 GARS genic S_Shore 4.52E-10 −0.415 0.066 1.7 1.19E-11 −0.603 0.088 3.7

cg05014727 10 6,214,016 PFKFB3 genic 3.32E-08 −0.474 0.086 1.3 4.16E-03 −0.321 0.112 0.7

cg26262157 10 6,214,079 PFKFB3 genic 8.12E-08 −0.470 0.087 1.3 5.51E-05 −0.455 0.112 1.3

cg07504977 10 102,131,012 intergenic intergenic N_Shelf 2.04E-12 0.608 0.086 2.2 2.64E-05 0.503 0.119 1.4

cg11376147 11 57,261,198 SLC43A1 genic 8.43E-13 −1.440 0.200 2.3 2.21E-08 −1.494 0.265 2.5

cg00574958 11 68,607,622 CPT1A 5′UTR N_Shore 3.98E-25 −2.561 0.244 4.7 9.43E-16 −2.875 0.353 5.2

cg09737197 11 68,607,675 CPT1A 5′UTR N_Shore 8.55E-11 −1.034 0.158 1.9 2.04E-05 −0.906 0.212 1.5

cg17058475 11 68,607,737 CPT1A 5′UTR N_Shore 3.81E-23 −1.796 0.179 4.3 1.86E-10 −1.507 0.234 3.3

cg27431877 12 124,911,924 NCOR2 genic S_Shore 1.04E-07 0.834 0.156 1.3 2.17E-02 0.481 0.209 0.4

cg07434438 16 72,961,899 ZFHX3 genic 4.20E-08 −0.599 0.109 1.3 1.42E-03 −0.466 0.146 0.8

cg20544516 17 17,717,183 SREBF1;

MIR33B

genic S_Shore 7.85E-11 0.982 0.150 1.9 7.57E-05 0.774 0.195 1.3

cg08129017 17 17,728,660 SREBF1 genic S_Shore 3.11E-09 0.576 0.097 1.5 1.72E-05 0.547 0.127 1.5

cg11024682 17 17,730,094 SREBF1 genic S_Shelf 1.27E-09 0.682 0.112 1.6 7.39E-03 0.393 0.146 0.6

cg22304262 19 47,287,778 SLC1A5 genic, 5′UTR N_Shelf 1.37E-08 −0.499 0.088 1.4 2.72E-05 −0.500 0.119 1.4

cg02316713 21 43,619,559 ABCG1 TSS1500 1.52E-08 0.609 0.107 1.4 2.16E-04 0.538 0.145 1.1

cg27243685 21 43,642,366 ABCG1 genic S_Shelf 2.51E-14 0.925 0.121 2.6 3.24E-09 0.949 0.159 2.8

cg00222799 21 43,655,464 ABCG1 genic Island 1.72E-10 0.588 0.092 1.8 6.01E-04 0.423 0.123 1.0

cg06500161 21 43,656,587 ABCG1 genic S_Shore 1.23E-35 1.355 0.107 6.7 7.79E-14 1.071 0.142 4.5

aAll participants adjusted for age, sex, family relationship, cell heterogeneity, and medications for lipid lowering, hypertension, diabetes.
bParticipants not using lipid-lowering medication adjusted for age, sex, family relationship, cell heterogeneity, and medication for hypertension and diabetes.
cGenic region includes the transcription start site to the end of 3′UTR.
dCpG Island indicates the location relative to CpG island.
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here or not available in this population. Interestingly, across four
exams, each DMS showed a similar pattern of association with
dietary intake and lifestyle factors (Supplementary Figures S1A, B
for exam 5, Supplementary Figures S2A, B for exam 6, and
Supplementary Figures S3A, B for exam 7), with exam
8 showing the greatest number of significant associations. A
summary of all significant associations between each DMS and
each dietary and lifestyle variable is presented in two parts
(Supplementary Table S3): in all participants (All) and in the
subset limited to those not taking lipid medication (No lipid med).
We observed 427 associations in all participants and 289 in
participants not taking lipid-lowering medication summed over
four exams, respectively, representing 102 and 74 unique
associations between TG-associated DMSs and diet and lifestyle
factors (Table 2, Supplementary Table S3). Among those
associations between DMSs and dietary measures, we found
exams 5, 6, and 7 shared, respectively, 37.2%, 37.2%, and 54.1%
of the exam 8 associations for all participants, and 51.0%, 46.9%,
and 67.3% for participants not taking lipid medication (Table 2).

To define the impact of specific diet and lifestyle habits as
exposures that alter epigenetic status, we then ranked dietary and
lifestyle measures by summarizing the total number of associations
with DMSs over four exams (Supplementary Table S4). Among all
dietary and lifestyle measures, the following dietary measures
showed strong associations with 19 DMSs: alcohol intake (g/d),
carbohydrate intake (% total energy intake), total sugar intake (g/d),
smoking (number of cigarettes per day), vitamins B1 and B2 without
counting supplements, dairy desserts/ice cream, calcium, animal fat/
saturated fat, fat intake, vitamin D, and protein intake, accounting
for 84.8% of all associations (Supplementary Tables S3, S4).

A total of 11 DMSs were most strongly associated with alcohol
intake across all four exams with p-values varying from 2.89E-04 to
8.37E-70, with individual DMSs accounting for methylation
variation ranging from 0.7% to 14.6% (Table 3). Interestingly,
among the 10 DMSs that were associated with carbohydrate
intake (% total energy intake), nine also were associated with
alcohol intake, yet these nine DMS were associated with alcohol
and carbohydrate intake in opposite directions (Table 3).

FIGURE 1
(A) Association between 19 DMSs and dietary intake and lifestyle factors at exam 8. All participants (n = 1919) were examined while controlling the
association tests for sex, age at exam 8, cell-type, family relationship, and medications for lipid lowering, hypertension, and diabetes. (B) Association
between 19DMSs and dietary intake and lifestyle factors at exam8. Association tests included participants (n= 1,041) not taking lipid-loweringmedication
while controlling for sex, age at exam 8, cell-type, family relationship, and medications for hypertension and diabetes.
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Mediation analysis: Effects of alcohol and
carbohydrate intake on TG

Considering the strong association between DMSs with TG and
alcohol and carbohydrate consumption, and the opposing direction
of the influence of these two dietary factors, we conducted a
mediation analysis to examine the potential causal effects of
alcohol and carbohydrate intake on plasma TG. Mediation
analysis was conducted in all four exams only in those
participants not taking lipid-lowering medication to exclude the
effect of lipid medication on TGwhile controlling for covariates (sex,
age, BMI, physical activity, smoking status, cell-type heterogeneity,
and medication for type 2 diabetes and hypertension at exam 8). For
exam 8, seven DMSs (cg14476101, cg19693031, cg06690548,
cg21429551, cg11376147, cg20544516, and cg22304262) exhibited
significant mediated effects related to alcohol intake (% total energy)
on TG (Figure 2A, Supplementary Table S5). Notably, the positive
direction of the estimated value remained the same for all these sites
across all four exams, whereas the natural indirect effect (NIE) of
cg20544516 became insignificant in exams 5 and 6. This suggests
that the positive effects of alcohol intake on TG are mediated

through seven DMSs at seven genes (PHGDH, TXNIP, SLC7A11,
GARS, SLC43A1, SREBF1, and SLC1A5). Also, we found that
TXNIP-cg19693031, SLC7A11-cg06690548, GARS-cg21429551,
and CPT1A-cg00574958 showed a negative natural direct effect
(NDE) on (decreased) TG in exams 7 and 8 (Supplementary
Table S5).

To determine if different types of alcohol exhibit differential
mediated effects on TG, we undertook further mediation analysis by
four types of alcoholic drinks: beer, red wine, white wine, and liquor
(all as servings per week). As shown in Supplementary Figure S4,
beer and liquor showed strong indirect mediated effects (NIE) on
(increased) TG through SLC7A11-cg06690548 over all four exams
and to some extent, through cg14476101 and cg21429551 over most
of the four exams. Red wine and white wine showed mediated
significant positive effects on TG only via SLC7A11-cg06690548.
Interestingly, as shown in Supplementary Figure S5, while not
significant, red and white wine showed negative non-mediated
effects (NDE—not through mediation) on (decreased) TG,
whereas beer and liquor showed no trend for these effects on TG.

For carbohydrate intake, as a percentage of the total energy, only
DMSs cg06690548 and cg00574958 showed significant negative

TABLE 2 Numbers of dietary and lifestyle measures that were associated with each of 19 TG-associated epigenetic variants in four exams of the FraminghamHeart
Study.

DMS Exam 5 Exam 6 Exam 7 Exam 8

All (n =
1800)

No lipid
med (n =
1710)

All (n =
1985)

No lipid
med (n =
1,746)

All (N =
2,014)

No lipid
med (N =
1,618)

All (N =
1,923)

No lipid
med (N =
1,041)

Total Total—No
lipid med

cg17901584 0 0 5 5 3 5 10 1 18 11

cg03725309 9 9 23 18 8 5 9 0 49 32

cg14476101 7 8 10 8 9 7 10 5 36 28

cg19693031 4 3 4 3 10 11 35 10 53 27

cg06690548 15 12 14 13 22 18 19 9 70 52

cg19494588 0 0 0 1 0 0 0 0 0 1

cg26403843 1 1 0 0 1 1 1 1 3 3

cg21429551 8 8 8 6 9 8 5 3 30 25

cg26262157 0 0 0 0 0 0 1 0 1 0

cg07504977 0 1 2 1 5 1 11 3 18 6

cg11376147 6 7 7 6 9 9 7 0 29 22

cg00574958 10 9 5 6 17 8 23 10 55 33

cg27431877 0 0 0 0 0 0 0 0 0 0

cg07434438 0 0 0 0 0 0 2 1 2 1

cg20544516 0 0 2 2 3 3 3 3 8 8

cg08129017 7 8 4 4 5 2 2 0 18 14

cg22304262 7 7 6 6 7 4 6 3 26 20

cg02316713 0 0 0 0 1 0 0 0 1 0

cg06500161 1 3 1 1 4 2 4 0 10 6

Total 75 76 91 80 113 84 148 49 427 289
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TABLE 3 12 Epigenetic variants associated with alcohol consumption or/and carbohydrate intake across four exams in FHS.

Exam DMS Alcohol intake (grams/day) Carbohydrate intake (% total energy)

p-value Beta Beta SE Variance explained (%) p-value Beta Beta SE Variance explained (%)

5 cg03725309 5.10E-11 −0.00037 0.00006 2.4 0.004 0.00030 0.00010 0.5

cg14476101 7.43E-23 −0.00112 0.00011 5.3 3.01E-08 0.00116 0.00021 1.7

cg19693031 1.13E-07 −0.00050 0.00009 1.6 0.054 0.00033 0.00017 0.2

cg06690548 2.10E-56 −0.00188 0.00011 13.1 2.92E-18 0.00193 0.00022 4.2

cg21429551 1.09E-19 −0.00109 0.00012 4.5 1.87E-06 0.00105 0.00022 1.3

cg07504977 0.024 0.00018 0.00008 0.3 1.27E-03 −0.00046 0.00014 0.6

cg11376147 7.61E-13 −0.00024 0.00003 2.8 8.37E-07 0.00030 0.00006 1.4

cg00574958 5.19E-06 −0.00013 0.00003 1.2 1.47E-05 0.00022 0.00005 1.0

cg20544516 0.009 0.00012 0.00004 0.4 0.334 −0.00008 0.00008 0.1

cg08129017 1.09E-08 0.00039 0.00007 1.8 0.045 −0.00025 0.00012 0.2

cg22304262 8.08E-16 −0.00058 0.00007 3.6 1.35E-05 0.00058 0.00013 1.1

cg06500161 0.034 0.00013 0.00006 0.3 0.004 −0.00032 0.00011 0.5

6 cg03725309 5.25E-11 −0.00036 0.00005 2.2 1.89E-03 0.00030 0.00010 0.5

cg14476101 3.93E-29 −0.00126 0.00011 6.2 5.11E-09 0.00116 0.00020 1.7

cg19693031 7.14E-13 −0.00066 0.00009 2.6 3.03E-04 0.00058 0.00016 0.7

cg06690548 8.37E-70 −0.00205 0.00011 14.6 9.30E-21 0.00195 0.00021 4.3

cg21429551 1.02E-19 −0.00107 0.00012 4.1 3.55E-05 0.00085 0.00021 0.9

cg07504977 0.007 0.00021 0.00008 0.4 5.24E-04 −0.00047 0.00013 0.6

cg11376147 9.84E-16 −0.00026 0.00003 3.2 4.68E-07 0.00029 0.00006 1.3

cg00574958 2.89E-04 −0.00010 0.00003 0.7 3.03E-07 0.00024 0.00005 1.3

cg20544516 2.44E-05 0.00018 0.00004 0.9 0.029 −0.00017 0.00008 0.2

cg08129017 3.64E-06 0.00031 0.00007 1.1 0.002 −0.00037 0.00012 0.5

cg22304262 4.61E-14 −0.00056 0.00007 2.8 2.12E-03 0.00040 0.00013 0.5

cg06500161 1.26E-03 0.00019 0.00006 0.5 1.59E-02 −0.00025 0.00011 0.3

7 cg03725309 1.22E-12 −0.00038 0.00005 2.5 5.82E-05 0.00036 0.00009 0.8

cg14476101 2.89E-32 −0.00131 0.00011 6.8 2.47E-09 0.00113 0.00019 1.8

cg19693031 5.43E-13 −0.00066 0.00009 2.6 1.25E-05 0.00067 0.00015 0.9

cg06690548 4.69E-66 −0.00195 0.00011 13.7 8.00E-23 0.00192 0.00019 4.7

cg21429551 8.43E-18 −0.00100 0.00011 3.6 3.46E-09 0.00116 0.00019 1.7

cg07504977 0.012 0.00019 0.00008 0.3 3.23E-06 −0.00059 0.00013 1.1

cg11376147 8.89E-16 −0.00026 0.00003 3.2 2.06E-07 0.00028 0.00005 1.3

cg00574958 7.54E-06 −0.00012 0.00003 1.0 3.01E-11 0.00030 0.00004 2.2

cg20544516 2.74E-05 0.00018 0.00004 0.9 0.007 −0.00020 0.00007 0.4

cg08129017 1.05E-05 0.00030 0.00007 1.0 0.088 −0.00019 0.00011 0.1

cg22304262 1.31E-11 −0.00050 0.00007 2.3 5.90E-05 0.00050 0.00012 0.8

cg06500161 1.01E-04 0.00023 0.00006 0.8 1.06E-06 −0.00048 0.00010 1.2

8 cg03725309 1.68E-09 −0.00031 0.00005 1.9 4.71E-05 0.00039 0.00009 0.9

(Continued on following page)
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mediation effects on (decreased) TG for all four exams (Figure 2B,
Supplementary Table S6). This observation suggests that
carbohydrate intake shows negative effects as TG through those
DMSs at genes ABCG1 and CPT1A. On the other hand, all 10 DMSs
show significant positive non-mediated effects (natural direct effect)
on TG in exam 8, but not in other exams, except for cg00574958 in
exam 7. This observation implies that the non-mediated effects of

carbohydrate are not as long-lasting as those mediated effects
through DMS as mediators from carbohydrate consumption.

To determine if alcohol consumption and carbohydrate intake
mediate effects on TG independently of each other, we performed the
mediation analysis for carbohydrate and alcohol while controlling
additionally for alcohol intake or carbohydrate intake, respectively.
The results showed that both mediated effects remain significant after

TABLE 3 (Continued) 12 Epigenetic variants associated with alcohol consumption or/and carbohydrate intake across four exams in FHS.

Exam DMS Alcohol intake (grams/day) Carbohydrate intake (% total energy)

p-value Beta Beta SE Variance explained (%) p-value Beta Beta SE Variance explained (%)

cg14476101 1.01E-27 −0.00118 0.00011 6.1 5.43E-07 0.00099 0.00020 1.3

cg19693031 1.17E-13 −0.00065 0.00009 2.9 1.85E-04 0.00060 0.00016 0.7

cg06690548 8.39E-61 −0.00183 0.00011 13.3 3.20E-15 0.00163 0.00021 3.2

cg21429551 9.17E-12 −0.00077 0.00011 2.4 0.007 0.00055 0.00021 0.4

cg07504977 0.047 0.00015 0.00007 0.2 1.48E-06 −0.00064 0.00013 1.2

cg11376147 2.74E-15 −0.00025 0.00003 3.2 1.23E-05 0.00025 0.00006 1.0

cg00574958 5.12E-06 −0.00012 0.00003 1.1 3.13E-09 0.00028 0.00005 1.8

cg20544516 2.15E-05 0.00018 0.00004 0.9 0.002 −0.00023 0.00008 0.5

cg08129017 7.41E-06 0.00029 0.00007 1.1 0.002 −0.00037 0.00012 0.5

cg22304262 1.06E-14 −0.00055 0.00007 3.1 0.017 0.00031 0.00013 0.3

cg06500161 0.008 0.00015 0.00006 0.4 3.46E-06 −0.00047 0.00010 1.1

FIGURE 2
Effects of alcohol consumption (A) and carbohydrate intake (B) on plasma TG via epigenetic mediators. Mediation analysis was conducted in all four
examswhile controlling for sex, age, BMI, physical activity, smoking status, cell-type heterogeneity, andmedications for type 2 diabetes and hypertension
at exam 8 (as DNAmethylation was measured at exam 8). (A) Indirect effects of alcohol intake (% total energy) on TG through 11 DMSs as mediators were
estimated for four exams (exams 5—8) using mediation analysis in participants not taking lipid-lowering medication while controlling for covariates
(sex, age BMI, physical activity, smoking status, cell-type heterogeneity, and medication for type 2 diabetes and hypertension at exam 8). (B) Indirect
effects of carbohydrate intake (% total energy intake) on TG through 10 DMSs as mediators were estimated for four exams (exams 5–8) using mediation
analysis in participants not taking lipid-lowering medication while controlling for covariates (sex, age, BMI, physical activity, smoking status, cell-type
heterogeneity, and medication for type 2 diabetes and hypertension at exam 8). Orange and blue bars indicate significant and non-significant mediation
effects of carbohydrate intake on TG after correction for multiple testing, respectively.
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mutual adjustment (alcohol consumption or carbohydrate intake
reciprocally, Supplementary Tables S5, S6), except for carbohydrate
intake on TG at cg06690548 (p = 0.4283). This underscores that
alcohol consumption and carbohydrate intake mostly affect TG
independently through the mediators of the epigenetic status of
the respective genes. In addition, there were no significant
interactions between the mediators (DMSs) and exposures (alcohol
or carbohydrate intake) effect on TG (Supplementary Tables S5, S6).

Validation in GOLDN

The general characteristics of the participants of the GOLDN
population are provided in Supplementary Table S1. Compared to
the FHS cohort, the amount of alcohol consumption is significantly
lower (2.0% vs. 10.8% of the total energy) in the GOLDN population.
The participants of GOLDN are younger (mean age: 48.6 vs. 66.3)
than those in the FHS at exam 8.

For validation of the 12 identified DMSs that were associated
with alcohol (11 DMSs) and carbohydrate (10 DMSs) intake in FHS,
we replicated the three steps of epigenetic mapping analysis
previously performed in the GOLDN study. For Step 1,
epigenetic associations of 12 DMSs and TG are presented in
Supplementary Table S7. Except for cg20544516 and cg22304262,
all DMSs showed significant association with TG. For Step 2, as
shown in Supplementary Table S8, all DMSs, except for 3
(cg19693031, cg21429551, and cg07504977), exhibited significant
association with alcohol intake. Five of 10 DMSs showed significant
trends or associations with carbohydrate intake. For Step 3,
mediation analysis (Supplementary Table S8), four of the DMSs
showed the significant positive mediated effects of alcohol intake on
TG, whereas three DMSs mediated negative effects of carbohydrate
intake on TG. Considering the differences between GOLDN and
FHS for mean age (48.7 years—GOLDN vs. 66.3 years–FHS) and
geographic locations, it is evident that the results in two cohorts are
similar, especially for the mediation analysis.

Epigenetic variants and associated gene
expression

To examine whether identified TG-associated DMSs are
associated with the transcription activity, we examined the
correlation between these DMSs and the expression of the genes
to which the DMSs were mapped. This was done using a mixed
linear regression model for the participants of the FHS cohort who
did not use medications for hypertension, dyslipidemia, or diabetes
and controlling for cell-type heterogeneity and age and sex. Among
19 DMSs, gene expression data for 13 corresponding genes were
measured in the PBMC at exam 8. Eight of 13 DMSs were negatively
associated with expression of the accompanying gene in which the
DMS is located (Supplementary Table S9). This observation
supports a function for epigenetic variants in regulating gene
expression, such that DNA methylation generally suppresses the
expression of the targeted gene (Jones, 2012). The non-significant
association observed for the other five genes could be because of the
low expression levels in PBMC or cyclical characteristics of the
expression.

Discussion

This study sought to characterize the nature of the relationship
between the epigenetic status and diet and lifestyle for TG. To
accomplish this, we first identified DMSs associated with TG by
conducting an EWAS and then examined the relationship between
those TG-associated DMSs and diet and lifestyle habits over a period
of ~13 years. While there was a trend for more factors associated
with TG-epigenetic marks in the last exam than in the earlier exams,
several dietary factors showed a consistent correlation with
epigenetic marks over all four exams. The most impactful dietary
and lifestyle factors include alcohol and carbohydrate intake, total
sugar, smoking, vitamins B1 and B2, dairy desserts, calcium,
saturated fat, total fat, vitamin D, protein, and sweet baked foods
(Supplementary Table S3). The validation in a second cohort
(GOLDN) further supports the consistent associations of alcohol
and carbohydrate intake with TG-associated epigenetic marks.

TG is a causal risk factor for CVD (Raposeiras-Roubin et al.,
2021), in addition to LDL-C. EWAS identified 19 independent
DMSs, which accounted for ~15% of the total TG variation. Over
four exams, we observed many associations between the 19 TG-
associated DMSs and diet and lifestyle factors, encompassing 102 of
these factors. The strongest and most consistent associations were
alcohol and carbohydrate intake, representing 11 of 19 DMSs.
Alcohol intake accounts for 13.3% of cg06690548 methylation
variation at SLC7A11. Although high alcohol intake (greater than
two drinks/day) was associated with increased TG (Foerster et al.,
2009; Klop et al., 2013), other studies have indicated that alcohol
intake is associated with increased HDL-C and decreased TG, and
increased risk of hypertension, coronary heart disease, and
myocardial infarction (Rosoff et al., 2020). A recent study based
on the UK Biobank cohort demonstrated that the apparent benefits
of light or moderate alcohol intake was diminished by healthy
lifestyle factors and, importantly, any amount of alcohol
consumption was associated with an increased CVD risk
(Biddinger et al., 2022). The lifetime average consumption of
alcohol is positively associated with accelerated biological aging,
as estimated by GrimAge (Kresovich et al., 2021) with cg06690548 at
SLC7A11 being the key contributor to GrimAge (Lu et al., 2019).
Our study found that 13 of 19 DMSs were associated with alcohol
intake. Themediation analysis results further support that the effects
of alcohol intake increased TG via differential DNA methylation of
seven DMSs at PHGDH, TXNIP, SLC7A11, GARS, SLC43A1,
SREBF1, and SLC1A5. The different types of alcoholic drinks,
notably beer, red wine, white wine, and liquor, showed consistent
mediated effects on TG through CpG methylation at SLC7A11.
Although total alcohol intake decreased population-wide from exam
5 to exam 8 (Parekh et al., 2021), all 11 DMSs exhibited consistent
associations with alcohol intake across the four exams (Table 3).
Alcohol could have a cumulative effect on DMSs from exam 5 to
exam 8 (Table 3), but this remains to be unequivocally illustrated.
The high consumption of alcohol affecting risk of CVD, myocardial
infarction, and aging could be confounded by unhealthy lifestyle
choices such as smoking. Nevertheless, our results suggest that
alcohol and carbohydrate intakes and smoking are the most
critical lifestyle factors acting epigenetically to modulate plasma TG.

Alcohol is more energy dense than carbohydrates. In this study,
our results indicated that alcohol intake and carbohydrate intake
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exhibited opposite effects on TG through the epigenetic
mechanisms. This can be explained as the epigenetic regulation
of gene expression by dietary exposure. Alcohol intake was strongly
and negatively associated with nine DMSs, except cg20544516 (i.e., a
positive association), across four exams (Table 3: Supplementary
Table S3). Considering that low methylation generally led to high
expression of the targeted genes (Supplementary Table S9), high
consumption of alcohol intake increased the gene expression, and
increased TG, for example, cg06690548 at SLC7A11 (Lohoff et al.,
2021). Indeed, mediation analysis implied that alcohol intake was
associated with increased TG through seven DMSs in seven gene
regions (PHGDH, TXNIP, SLC7A11, GARS1, SLC43A1, CPT1A, and
SLC1A5) as mediators. In contrast, carbohydrate intake was strongly
correlated with six of the same DMSs (excluding PHGDH), but in
the opposite direction (Table 3). High methylation generally leads to
low expression of targeted genes. Thus, high intake of carbohydrate
intake causes low expression of targeted genes (Supplementary
Table S9), for example, cg00574958 at CPT1A (Lai et al., 2020),
and decreased TG. Again, the mediation results support that
carbohydrate shows negative effects on (decreased) TG through
two DMSs (cg00574958 and cg06690548) as mediators. From the
perception of biochemistry and metabolism, the opposite effects of
alcohol and carbohydrate on TG reflected by their different effects
on hepatic lipid metabolism. Alcohol can induce hypoglycemia
(Marks, 1978) and disturb all aspects of hepatic lipid metabolism
through fatty acid transporters, TG synthesis, and mitochondrial β-
oxidation (You and Arteel, 2019). Among the seven genes identified
by mediation analysis, SCD and SREBF1 function in TG synthesis,
and CPT1A and TXNIP are involved in mitochondrial β-oxidation.
Alcohol directly and indirectly affects expression of these genes
through epigenetic modification and then hepatic lipid flux which
ultimately leads to lipid accumulation. In contrast, carbohydrates are
essential nutrients for energy metabolism. There is strong evidence
that carbohydrate intake, which accelerates the elimination of
alcohol from the blood, can counteract this effect of alcohol
intake (Rogers et al., 1987), thereby having the opposite effect on
the epigenetic state. Thus, to some extent, carbohydrate intake
counteracts the effects of alcohol and then has an opposite effect
on TG through epigenetic modification of target genes, especially
SLC7A11 and CPT1A, although the exact molecular mechanism
remains to be elucidated.

From a mechanistic perspective, male C57BL/6J mice fed an
ethanol-containing diet exhibited higher levels of liver TG,
indicating hepatic steatosis and, interestingly, altered diurnal
oscillations of core clock genes in the liver but not in the
suprachiasmatic nucleus, compared to control mice (Filiano
et al., 2013). The prominent findings in the current analysis are
the consistent associations between TG-associated DMSs and
alcohol, with alcohol acting as the mediator to affect TG. Many
of those same DMSs have been observed as associated with alcohol
and diseases consequential to heavy drinking. For example, a
recently published EWAS identified the same CpG sites noted
here in SLC7A11, SLC43A1, and PHGDH, with a different CpG
observed in SLC1A5, all associated with alcohol consumption
(Lohoff et al., 2021). The top EWAS probe cg06690548, mapped
to cystine/glutamate transporter SLC7A11, was replicated in the
second cohort of alcohol use disorders (AUD) and control
participants showing strong hypomethylation in AUD (P < 1E-

17). Importantly, decreased methylation at cg06690548 in SLC7A11
was consistently associated with clinical measures, including
increased heavy drinking days. Additionally, hypomethylation at
cg06690548 was associated with the elevated total cholesterol and
TG levels (Lohoff et al., 2021). Regarding PHGDH, encoding
phosphoglycerate dehydrogenase, increased lipid accumulation,
and reduced NAD + activity were seen in mouse Phgdh-
knockout primary hepatocytes incubated with free fatty acids,
effects that were reversed upon Phgdh overexpression, including
reduced hepatic TG accumulation (Sim et al., 2020). SLC1A5 is
known as a transporter of alanine, serine, and cysteine but transports
glutamine in a Na + -dependent manner in the liver (Scalise et al.,
2018). A comparison of rats fed a high-alcohol diet either
supplemented with glutamine (at 0.84%) or not indicated that
hepatic fat deposition, inflammation, altered liver function, and
hyperammonemia in the glutamine group were all attenuated (Xiao
et al., 2021).

The dietary assessment of the FHS cohort from exams 5 to 8 in
13 years uses data from four standardized exams (Wang et al., 2014),
making their use in such analyses as presented here a distinct
advantage. This study examined all dietary intakes measured at
four different time points in FHS. Several key foods, such as alcohol,
carbohydrate, ice cream, and sugar, plus smoking, showed
consistent correlation with the identified DMSs across four
exams. In sum, our results clearly show that the observed
associations between methylation levels at specific CpGs and
outcomes related to metabolic diseases can be strongly mediated
by various exposures. Hence, we believe that this epigenetic mapping
approach can be applied to other environmental exposures in
relation to any phenotype and disease. While many
environmental factors, such as diet, pollutant exposure, and
social stress, are known to be associated with disease risk, it is
often speculated under what mechanism and if such exposures are
the cause of the disease risk. Our approach illustrated that if an
environmental factor is a potential cause of disease through
epigenetic mechanisms, then the identified epigenetic markers
can be used for prediction of cardiovascular disease, for example,
with prediction based on machine learning methods (Lee et al.,
2022). Hence, identification and understanding of the epigenetic
markers signifying exposures may facilitate diagnostics and
prevention of such diseases by modifying those exposures.

This study is not without its limitations. One of those is the
measurements of epigenetic status were performed in PBMCs,
which may not be the optimal tissue for epigenetic signals of diet
and lifestyle habits as related to TG. Yet, DNA methylation
measured from blood DNA can accurately predict the biological
age (Horvath, 2013), which is associated with environmental
exposure (Quach et al., 2017). Second, the loci described here are
from the study population alone, and are not to be considered as
general-use biomarkers of exposure to alcoholic drinks or other
dietary factors, because equating the methylation status at specific
loci with exposure to alcohol would be unethical (Santalo and
Berdasco, 2022). In addition, although the associations between
TG-associated DMSs at exam 8 and diet and lifestyle habits were
observed in four exams in 13 years and confirmed by replication in a
second cohort (GOLDN), it must be recognized that this evidence
does not rule out the reverse causation of TG on DNA epigenetic
changes (Davey Smith and Hemani, 2014; Sayols-Baixeras et al.,
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2018). Furthermore, such epigenetic marks of diet and lifestyle could
be specific to given environments and populations. Therefore, the
conclusions based on the findings from the current study must be
interpreted with caution.

In conclusion, this study illustrated an example to map
epigenetic signatures of diet and lifestyle habits for TG. Our
results indicate that dietary factors of alcohol and carbohydrate
are associated with specific DNA methylation markers and could
mediate the observed associations between diet and cardiometabolic
risk factors. Epigenetic markers of dietary intake provide insight into
an individual’s risk of cardiovascular disease and improve the
application of precision nutrition.
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