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Introduction: Cuproptosis seems to promote the progression of diverse diseases.
Hence, we explored the cuproptosis regulators in human spermatogenic
dysfunction (SD), analyzed the condition of immune cell infiltration, and
constructed a predictive model.

Methods: Two microarray datasets (GSE4797 and GSE45885) related to male
infertility (MI) patients with SD were downloaded from the Gene Expression
Omnibus (GEO) database. We utilized the GSE4797 dataset to obtain
differentially expressed cuproptosis-related genes (deCRGs) between SD and
normal controls. The correlation between deCRGs and immune cell infiltration
status was analyzed. We also explored the molecular clusters of CRGs and the
status of immune cell infiltration. Notably, weighted gene co-expression network
analysis (WGCNA) was used to identify the cluster-specific differentially expressed
genes (DEGs). Moreso, gene set variation analysis (GSVA) was performed to
annotate the enriched genes. Subsequently, we selected an optimal machine-
learningmodel from fourmodels. Finally, nomograms, calibration curves, decision
curve analysis (DCA), and the GSE45885 dataset were utilized to verify the
predictions’ accuracy.

Results: Among SD and normal controls, we confirmed that there are deCRGs and
activated immune responses. Through the GSE4797 dataset, we obtained
11 deCRGs. ATP7A, ATP7B, SLC31A1, FDX1, PDHA1, PDHB, GLS, CDKN2A, DBT,
and GCSH were highly expressed in testicular tissues with SD, whereas LIAS was
lowly expressed. Additionally, two clusters were identified in SD. Immune-
infiltration analysis showed the existing heterogeneity of immunity at these two
clusters. Cuproptosis-related molecular Cluster2 was marked by enhanced
expressions of ATP7A, SLC31A1, PDHA1, PDHB, CDKN2A, DBT, and higher
proportions of resting memory CD4+ T cells. Furthermore, an eXtreme
Gradient Boosting (XGB) model based on 5-gene was built, which showed
superior performance on the external validation dataset GSE45885 (AUC =
0.812). Therefore, the combined nomogram, calibration curve, and DCA results
demonstrated the accuracy of predicting SD.

Conclusion: Our study preliminarily illustrates the relationship between SD and
cuproptosis. Moreover, a bright predictive model was developed.
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Introduction

The World Health Organization (WHO) reported that infertility
accounts for about 10%–15% of couples of child-bearing ages, with the
male factor accounting for about 50% (Practice Committee of the
American Society for Reproductive Medicine, 2015). In recent years,
the prevalence of infertility among couples at child-bearing age in
industrialized countries has reached 15%–20% (Choy and Eisenberg,
2018). Male infertility (MI) is described as the inability of the female
partner to conceive naturally due to male factors after the couple has
lived together for more than 12 months without using any
contraception (Kunisaki et al., 2022). With the development of
society, MI is on the rise year by year, which undoubtedly burdens
individuals, families, society, and the globe (Sun et al., 2017). Notably,
it is common knowledge that the spermatogenesis function of the
testes is the direct cause of semen quality. Spermatogenic dysfunction
(SD) may give rise to MI. The fact that the spermatogenic function of
the testis is issued as part of complex genetic regulation has attracted
extensive interest. Therefore, exploring associated regulators at the
genomic level may be very important to treat MI precisely.

Nowadays, many genes associated with cell death have been
identified that may play a surprising role in the process of testicular
spermatogenesis. In mouse testicular germ cells, Bai et al. (2022)
found that overexpression of FOXJ2 upregulates LAMP2A, which
activates aberrant autophagy and leads to failure of spermatogenesis
at the onset of meiosis, consequently contributing to MI. Gpx4, a
crux upstream regulator of ferroptosis, attenuates its expression
contributing to the restoring male fertility (Ingold et al., 2015).
Moreover, NLRP3 inflammasome-mediated pyroptosis is regulated
by a series of pyroptosis-related genes that may adversely affect male
fertility (Perri et al., 2022). Thus, these collective findings suggest
that cell death (CD) influence in testicular spermatogenesis cannot
be ignored. However, whether some other new modes of CD and
their associated molecular signatures play a role remains unclear and
needs further exploration.

Copper is involved in human life activities as a trace element and
cofactor for many essential enzymes, characterized by powerful redox
activity and protein binding capacity. Functionally, copper is involved
in regulating the physiological functions of cells via maintaining
intracellular copper homeostasis. Stimulation by exogenous factors
can trigger an imbalance in intracellular coppermetabolism,mediating
cytotoxicity and ultimately damaging the organism (Kim et al., 2008).
However, copper homeostasis is associated with spermatogenesis
(Herman et al., 2020). It is common knowledge that regulating the
process of regulated cell death (RCD) is critical in determining cell fate
(Nirmala and Lopus, 2020). Notably, cuproptosis is a novel RCD
model that differs from the known RCDs (e.g., apoptosis, necroptosis,
pyroptosis, ferroptosis, etc.,) and relies mainly on mitochondrial
respiration. In mitochondrial respiration, copper ions (Cu2+) bind
to lipid-acylated components of the tricarboxylic acid (TCA) cycle,
leading to lipid-acylated protein aggregation and subsequent
downregulation of Fe-S cluster proteins, which results in
proteotoxic stress and finally CD (Tsvetkov et al., 2022).
Additionally, FDX1 and proteolipid acylation are critical factors in

regulating of cuproptosis. Cu2+ binding to the lipoylation-modified
TCA cycle regulates their oligomerization and causes Fe-S cluster
protein deficiency, mediating cuproptosis. Moreover, it has been
observed that cuproptosis-induced damage can be attenuated by
inhibiting mitochondrial pyruvate carriers and electron transport
chain activity (Cobine and Brady, 2022; Tang et al., 2022; Tsvetkov
et al., 2022). Furthermore, many recent studies suggest that abnormal
energy metabolism and oxidative stress induced by mitochondrial
dysfunction may be decisive factors involved in SD (Cheng et al., 2018;
Aitken and Drevet, 2020; Baskaran et al., 2021).

The pathogenesis of SD, however, remains unclear. Therefore,
we hypothesized that cuproptosis-related genes (CRGs) are
inextricably linked to the development of SD. In our study, we
explored our hypothesis through a bioinformatics approach to
contribute to understanding SD.

Materials and methods

Data source and pre-processing

To obtain SD-related RNA-seq and clinical data, we searched and
screened the Gene Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/geo) as of 10 November 2022, using the search
term “male infertility.” Species were set to “Homo sapiens”, by
selecting “series”, a total of 65 series were screened out. Inclusion
criteria: 1) mRNA expression profiles by array or high-throughput
sequencing; 2) tissue samples were derived from human testicular
tissue; 3) normal control and SD patient groups were included in the
dataset; 4) spermatogenic blockage occurred at either stage in the SD
patient group. Exclusion criteria: 1) duplicate datasets; 2) datasets
lacking SD sample groups; 3) datasets lacking normal control sample
groups; 4) non-testicular tissue samples; 5) studies or data on animals
or cell lines. Based on this, we retrieved a total of two eligible datasets.
The two microarray datasets (GSE4797 and GSE45885) related to SD
were downloaded from the GEO database. The GSE4797 dataset
(GPL2891 Platform) including 12 healthy (full spermatogenesis) and
16 SD (spermatid stage arrest, spermatocyte stage arrest, and Sertoli-
cell-only syndrome) testicular tissue samples were selected for
analysis. The GSE45885 dataset (GPL6244 Platform), which
included testicular tissue from 4 normal (full spermatogenesis)
subjects and 27 SD (postmeiotic arrest, meiotic arrest, and Sertoli-
cell-only syndrome) samples, were selected for validation. The raw
data of gene expression matrices from GEO datasets were processed
and normalized via the R package of “limma” (version 3.52.4).

Evaluation of immune cell infiltration

Using the CIBERSORT algorithm (https:/cibersort.stanford.edu/)
and LM22 signature matrix, the relative abundance of 22 types of
immune cells in each sample was calculated according to available
gene expression data. CIBERSORT was used to obtain the inverse
convolution p-value for each sample using Monte Carlo sampling.
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The transcriptional feature matrix of the 22 immune cells was also
used to simulate the calculation. The sum of the percentages of
22 immune cells in each sample was 1. Here, we set the number
of simulations calculated to 1,000, and samples with a p-value <0.
05 were identified as the exact immune cell subtype.

Correlation analysis of CRGs and immune
cell infiltration

Spearman correlation analysis was used to determine the
correlation coefficient between CRGs and the relative abundance

of immune cells to illustrate the relationship between CRGs and SD-
related immune cell characteristics. p-values less than 0.05 were
considered to be significantly correlated. The result is presented via
the R package of “ggplot2” (version 3.4.0).

Cluster analysis of SD patients

The optimal number of clusters was evaluated based on a
combination of cumulative distribution function (CDF) curve,
consistent clustering score, and consensus matrix. We set the
maximum number of fractals k = 9.

FIGURE 1
Flow chart of this study.
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Gene set variation analysis (GSVA)

GSVA enrichment analysis was performed using the R
package of “GSVA” (version 1.44.5). We obtained the files “c2.
cp.kegg.symbols” and “c5. go.symbols” from the MSigDB website
database (http://www.gsea-msigdb.org/gsea/msigdb). GSVA
scores were calculated using the R package “limma” (version 3.
52.4), and |t value of GSVA scores| > 2 were considered to be
significantly altered.

Weighted gene co-expression network
analysis (WGCNA)

WGCNA used the R package of “WGCNA” (version 1.71) to
identify co-expression modules. The top 25% of genes with the
most considerable fluctuations were selected for subsequent
WGCNA analysis to ensure the accuracy of the results. Firstly,
the Pearson correlation coefficient between two genes was
calculated, and the gene expression similarity matrix was

FIGURE 2
Identification of deCRGs in SD (A) The expression levels of 18 CRGs among spermatogenic normal and dysfunctional testicular tissues in the GEO
database (B) Heatmap of deCRGs (C) The location of 18 CRGs on chromosomes (D) Gene relationship network diagram of 11 deCRGs (E) Correlation
analysis of 11 deCRGs. Red and green colors represent positive and negative correlations, respectively. The correlation coefficient was expressed as the
area of the pie chart (F) The relative abundance of 22 infiltrated immune cells between normal and dysfunctional testicular tissues (G) Boxplots of
differences in immune infiltration between SD and normal controls (H)Heatmap showed the correlation between 11 deCRGs and infiltrated immune cells.
*p < 0.05, **p < 0.01, ***p < 0.001.
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constructed accordingly. Secondly, the gene expression similarity
matrix is transformed into an adjacency matrix, and a soft
threshold power β generates an enhanced adjacency matrix.
Thirdly, the Pearson correlation analysis constructed an
unsupervised gene co-expression relationship matrix with an
enhanced adjacency matrix. Based on the topological overlap
measure (TOM), an indicator of the degree of association
between genes, it was turned into a topological matrix.
Fourthly, based on the inter-gene dissimilarity (1-TOM), genes
with similar gene expression patterns were divided into the same
gene module using the average linkage hierarchical clustering
method. Additionally, a dynamic shearing algorithm was used to
determine gene co-modules from the systematic clustering tree,
and gene modules with similarity higher than 75% were merged.
Finally, the relationship between module membership (MM) and
gene significance (GS) was computed for each gene within the
target module to verify the reliability of the selected module.

Construct predictive models based on
multiple machine-learning methods

We used the R package of “caret” (version 6.0.93) to build
machine-learning models based on two different clusters of CRGs,
which include support vector machine (SVM), eXtreme Gradient
Boosting (XGB), generalized linear model (GLM) and random

forest model (RF). SVM is a class of generalized linear classifiers
that perform binary data classification through supervised
learning. It is unique in solving small samples, non-linear and
high-dimensional pattern recognition (Krause et al., 2007). XGB
can be understood as a parallel prediction model with multiple
trees, which iterates continuously, generating a new tree at each
iteration, so that the predicted values keep approximating the true
values (Babajide Mustapha and Saeed, 2016). GLM, on the other
hand, establishes the mathematical expectations of the response
variables through link functions and can predict the relationship
between linear combinations of variables (Takada et al., 2017).
Furthermore, RF is an integrated machine-learning approach that
uses a variety of autonomous decision trees to predict classification
or regression (Rigatti, 2017).

Distinct clusters are used as response variables, and cluster-
specific DEGs are selected as explanatory variables. The 16 SD
samples were randomly divided into a training set (N = 11) and a
validation set (N = 5) in a ratio of 7 to 3. The R package of “caret”
automatically adjusted the parameters of these machine
learning models via grid search, where we all perform using
default parameters. Subsequently, evaluation was performed by
5-fold cross-validation. The R package “DALEX” (version 2.4.2)
was then used to interpret the four machine learning models
and visualize the residual distributions and feature importance.
The R package of “ pROC” (version 1.18.0) was used to
visualize the area under the curve (AUC) of the receiver

FIGURE 3
Identification of CRG clusters in SD (A) Consensus clustering matrix when k = 2 (B–D) Representative CDF curves (B), CDF delta area curves (C), and
the score of cluster-consensus (D) (E) PCA visualized the distribution of the two clusters.
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operating characteristic (ROC). After identifying the best
machine learning model, the first 5 key variables were
the predictor genes that can be used as SD correlations.

Finally, the ROC curve results of the GSE45885 dataset were
used to validate the diagnostic value of the machine learning
model.

FIGURE 4
Identify the molecular and immunological features between the two clusters. (A) Heatmap of the expression patterns of the 11 CRGs between the
two clusters. (B) Boxplots of 11 CRGs expressed between the two clusters. (C) Relative abundance maps of 22 infiltrating immune cells between the two
clusters. (D) Boxplots of immune infiltration differences between the two clusters.
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FIGURE 5
Co-expressionnetworkofDEGs in SD (A)Set soft thresholdpower (B)Thecluster tree dendrogramof co-expressionmodules is shown indifferent colors (C)
Cluster diagramofmoduleeigengenes (D)TOMheatmapof 11modules (E)Heatmapof correlation analysis ofmodule eigengeneswith clinical features. Rows and
columns represent modules and clinical features, respectively (F) Scatter plot of the genetic significance of the blue module members with SD.
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FIGURE 6
Co-expression network of DEGs between the two cuproptosis clusters (A) Set soft threshold power (B) The cluster tree dendrogram of co-
expression modules is shown in different colors (C) Cluster diagram of module eigengenes (D) TOM heatmap of 8 modules (E) Heatmap of correlation
analysis of module eigengenes with clinical features. Rows and columns represent modules and clinical features, respectively (F) Scatter plot of the
genetic significance of the turquoise module members with Cluster1.
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Construction of the nomogram model and
the independent validation analysis

The R package “rms” (version 6.3.0) was used to construct the
nomogram model, with each predictor having a corresponding score
and the “total score” being the sum of the scores of the predictors.
Additionally, the predictive power of the nomogram model was
estimated using calibration curves and decision curve analysis
(DCA). The external dataset GSE45885 was used to validate the
ability of the prediction model to distinguish between SD and
normal controls. Furthermore, the ROC curves were visualized using
the R package “pROC”.

Statistical analysis

Continuous variables are presented as mean ± standard deviation,
while categorical variables are expressed as percentages. R software
(Version 4.2.0, https://www.r-project.org/) was used for all data analysis

and statistical analyses in this study. The Wilcox test was used to assess
whether there was a statistical difference between the two groups. The
relationship between CRGs expression levels and immune cells was
analyzed using the Spearman correlation analyses. We considered the
result statistically significant when the p-value was less than 0.05.

Results

CRGs expression and immune infiltration in
SD patients

To explore the correlation between cuproptosis and testicular
spermatogenic function, we retrieved a total of 65 series. Based on
the inclusion and exclusion criteria, only two datasets met the
requirements. Therefore, patients with SD from the GEO cohort
(GSE4797 and GSE45885) were enrolled (Supplementary Table S1).
Figure 1 illustrates the flow of our study. We identified 11 differentially
expressed CRGs (deCRGs). Among them, the expression levels of

FIGURE 7
Identification of specific clusters of DEGs and their biological functions (A) Crossover genes of the cuproptosis clusters module and the SDmodule
(B–C) Differences in hallmark pathway (B) and biological functions (C) activities between upregulated and downregulated DEGs ranked by t-value of
GSVA.
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ATP7A, ATP7B, SLC31A1, FDX1, PDHA1, PDHB, GLS, CDKN2A,
DBT, and GCSH were higher. In contrast, the expression level of LIAS
was largely lower in the testicular tissues of SD than in normal controls
(Figures 2A, B). Figure 2C shows the locations of CRGs on
chromosomes. To investigate the role of CRGs in the progression of
SD, we performed a correlation analysis of these deCRGs. Notably, the

gene relationship network diagram showed a close relationship between
these deCRGs (Figure 2D). Among them, ATP7A and DBT showed a
strong synergistic effect (coefficient = 0.77), while PDHA1 and LIAS
showed a significant antagonistic effect (coefficient = −0.74).
Furthermore, most of these genes showed a positive correlation with
each other (Figure 2E).

FIGURE 8
Construction of SVM, RF, XGB, and GLM machine models. (A) The cumulative residual distribution of the four models. (B) Residual Boxplots of the
fourmachine learningmodels, where the red dots indicate the rootmean square of the residuals (C) The important features in SVM, RF, XGB, andGLM. (D)
ROC analysis of four machine learning models with 5-fold cross-validation in the test set.
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Figure 2F shows the immune infiltration analysis based on the
CIBERSORT algorithm, demonstrating the difference in the proportion
of 22 infiltrated immune cell types between the two groups, and
therefore was employed to elucidate whether there are differences in
the immune system between SD and normal controls. Figure 2G shows
that SD patients presented higher levels of mast cell resting infiltration
and normal controls had higher levels of infiltration of the B-cell naive
phase, T-cell follicular helper phase, and dendritic cell activation.
Meanwhile, the correlation between immune cell infiltration and
deCRGs is represented in Figure 2H.

Identification of cuproptosis clusters in SD

We used a consensus clustering algorithm to group 16 SD samples
based on the expression profiles of 11 CRGs, by whichwe elucidated the
expression patterns associated with cuproptosis in SD. The number of
clusters was most stable when k = 2, and the CDF curve fluctuated

between 0.2 and 0.6 (Figures 3A, B). Figure 3C shows the area under the
CDF curve when k = 2 to 9. When k = 2, the consistency score of each
subtype was the largest and closest (Figure 3D). Figure 3E shows a
significant difference in the principal component analysis (PCA)
between these two clusters.

Differences in CRGs and immune infiltration
characteristics between two clusters

Firstly, we assessed the expression differences of 11 CRGs
between Cluster1 and Cluster2 to explore the molecular features
between clusters. We observed a different CRG expression profile
between the two cuproptosis clusters (Figure 4A). Cuproptosis
Cluster1 showed high expression levels of LIAS, while
Cuproptosis Cluster2 showed high levels of ATP7A, SLC31A1,
PDHA1, PDHB, CDKN2A, and DBT (Figure 4B). In addition,
Figure 4C shows that the immune microenvironment between

FIGURE 9
Validation of a 5-gene-based XGBmodel. (A)Construction of a nomogram to predict SD risk based on a 5-gene XGBmodel (B, C)Calibration curves
(B) and DAC (C) to assess the predictive ability of the nomogram model (D) ROC of the 5-gene-based XGB model in GSE45885 datasets.
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cuproptosis Cluster1 and Cluster2 was altered. Furthermore,
cuproptosis Cluster2 exhibited a higher proportion of CD4+

T cell memory rest (Figure 4D).

Screening of gene modules and
construction of co-expression networks

We established a co-expression network of normal controls and
SD patients by WGCNA and identified key gene modules associated
with SD. When the soft threshold power was 12, the scale-free
R2 approached 0.9, and co-expressed gene modules under this
condition were identified (Figure 5A). Subsequently, the dynamic
cutting algorithm obtained a total of 11 co-expression modules with
different colors and a TOM heatmap (Figures 5B-D). In addition,
similarities and contiguities in the co-expression of module-clinical
features (normal control and SD) were analyzed by applying the
genes in these 11 modules. We found the strongest association of the
blue module with SD, which includes 431 genes (Figure 5E). Moreso,
there was a positive correlation between the blue module and the
module-related genes (Figure 5F).

Further, we analyzed key gene modules closely related to the
cuproptosis clusters by WGCNA. When the soft threshold parameter
β = 9, R2 = 0.9, and the scale-free network was constructed under this
condition (Figure 6A). Eight modules were identified as important and
contained 3624 genes, and the heatmap shows the TOM of all module-
related genes (Figures 6B-D). Analysis of the relationship between
modules and clinical traits (Cluster1 and Cluster2) revealed a high
correlation between turquoise modules (545 genes) and SD clusters
(Figure 6E). Furthermore, the results of the correlation analysis showed a
significant positive correlation between the turquoise modules and the
corresponding genes (Figure 6F).

Identification and functional annotation of
cluster-specific DEGs

Five hundred forty-five module-related genes of the cuproptosis
clusters and 431 module-related genes of SD were intersected to
obtain a total of 51 cluster-specific DEGs (Figure 7A). Enrichment of
these genes for pathways and biological functions was performed by
GSVA analysis. The enrichment results of the pathways revealed
that cell cycle, spliceosome, and non-homologous end joining were
reinforced in upregulated DEGs. At the same time, glycerolipid
metabolism, and ascorbate and aldarate metabolism activity were
enhanced in downregulated DEGs (Figure 7B). Notably, the
functional enrichment esults showed that the upregulated genes
were remarkably related to regulating calcium ion export across the
plasma membrane, RNA polyadenylation, and transport along the
microtubule (Figure 7C).

Building machine learning models

To further screen out specific genes with high diagnostic value,
we built four machine learning models via the R package of “caret”,
SVM, XGB, GLM, and RF, based on the expression profiles of
51 cluster-specific DEGs in the SD training set. The results of the

residual distribution of the four models show that GLM had the
highest residuals, while SVM, RF, and XGB had relatively low
residuals (Figures 8A, B). Figure 8C ranks each model’s top
15 significant characteristic variables according to the root mean
square error (Figure 8C). To further evaluate the discriminative
performance of the four machine learning algorithms in the test set,
we computer-plotted the ROC curves for 5-fold cross-validation. RF,
SVM, and XGB machine learning models, have an AUC of 1, while
GLM’s was only 0.583 (Figure 8D). In summary, XGB was selected
as the best model because we believe it can best distinguish between
different patient populations. Finally, we identified five genes, FXN,
APOM, NPC2, HSD17B10, and UNC119, in the XGB model as the
most critical predictive genes for further analysis.

Evaluating machine learning models

We constructed a nomogram to assess the risk of cuproptosis
clusters in 16 SD patients, and its primary purpose was to evaluate
the predictive performance of the XGB model (Figure 9A). The
prediction efficiency of the nomogram model was assessed using
calibration curves and DCA. The calibration curves show minimal
error between the actual SD clustering risk and the predicted risk
(Figure 9B). Additionally, the DCA demonstrated that the
nomogram has high accuracy and can provide a reference for
clinical decision-making (Figure 9C). Subsequently, we validated
the prediction model for 5-gene on another dataset including
testicular tissue from normal controls and SD patients. The AUC
of 0.812 for the GSE45885 dataset illustrates the satisfactory
performance of the 5-gene prediction model (Figure 9D),
implying that our diagnostic model helps distinguish SD from
normal controls.

Discussion

MI is an illness caused by multiple factors leading to male
reproductive dysfunction, and the SD of the testes is one of the
critical causes (Skakkebaek et al., 1994; Krausz, 2011). The typical
phenotype of SD severely impaires spermatogenesis, leading to
azoospermia or severe oligospermia, with genetic factors often
being the underlying cause of this phenomenon (Song et al.,
2016). Studying the CD process in male germ cells at the genetic
level will reveal the relationship between the interactions of various
factors. The use of individualized treatment modalities in
reproductive medicine also provides opportunities for the
treatment of MI. Therefore, the role of finding a more
appropriate molecular cluster to guide the development of a
personalized treatment plan for SD-induced MI cannot be
underestimated (Arato et al., 2020). Cuproptosis is a recently
reported copper-dependent mode of CD, mainly manifested by
the aggregation of lipidated mitochondrial enzymes, and is
closely associated with disease progression (Tsvetkov et al., 2022).
However, the precise mechanisms of regulation of SD by cuproptosis
have not been uncovered. Therefore, we in this study attempted to
elucidate the role of CRGs in SD and immune microenvironments
utilizing bioinformatics analysis. Furthermore, we also used the gene
signature associated with cuproptosis to predict SD subtypes.
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Firstly, we analyzed the expression of CRGs in the testicular
tissue of SD patients and normal controls. Expression levels of
11 CRGs were significantly up-or downregulated in SD, including
ATP7A, ATP7B, SLC31A1, FDX1, PDHA1, PDHB, GLS, CDKN2A,
DBT, GCSH, and LIAS, indicating that CRGs play a significant role
in the development of SD. Moreso, CDKN2A is associated with
cellular processes in germ cells under the regulation of long non-
coding RNA (lncRNA) (Joshi and Rajender, 2020).

Secondly, we calculated the correlation between these deCRGs to
further explore the crosstalk between cuproptosis and SD. Our
research also found significant synergistic or antagonistic effects
between some cuproptosis regulators. In addition, the relative
abundance of immune cells was changed between SD patients
and normal controls. SD patients presented higher infiltration
levels of mast cells resting. Normal controls had a higher
infiltration level of B cells naive, T cells follicular helper, and
dendritic cells activated. This suggests to us that alterations in
the function of some immune cells in the testicular immune
microenvironment may play an important role in
spermatogenesis. Using unsupervised cluster analysis, the
expression landscape based on CRGs was further used to
illustrate the different modes of cuproptosis regulation in SD,
resulting in the identification of two different CRG clusters.
Cluster2 is characterized by a higher immune fraction and a
relatively high level of immune infiltration, indicating that its
immune microenvironment is differs from Cluster1. Additionally,
Cluster2 was characterized by enhanced expressions of ATP7A,
SLC31A1, PDHA1, PDHB, CDKN2A, and DBT, and higher
proportions of resting memory CD4+ T cells.

In the experimental autoimmune orchitis model characterized
by testicular spermatogenic dysfunction, Nagahori et al. observed
numerous CD4+ T cells around the seminiferous tubules (Nagahori
et al., 2021). In Cluster2, overexpression of CRGs further illustrates
the relevance of cuproptosis to immune infiltration. SLC31A1 is
mainly localized in the plasmamembrane, and its role is to regulate a
certain range of intracellular Cu2+ concentration, which is associated
with the development of immune function (Yu et al., 2019). Lu et al.
found that SLC31A1 can regulate the cell viability, proliferation,
cycle progression, and activation of CD4+ T cells (Lu et al., 2021).
Overexpression of PDHA1 increases reactive oxygen species (ROS)
production, mitochondrial respiration, and apoptosis (Wang et al.,
2022), which may be a driver of the disturbance of the testicular
immune microenvironment. Increased expression of CDKN2A
correlates with a lymphocyte phenotype associated with
immunosenescence (Bourlon et al., 2020). Although the
mechanisms of CRGs in SD immune regulation are less studied,
it can be speculated based on previous studies and the results of this
study that cuproptosis may play an important role in SD immune
infiltration. How to prevent and treat SD by regulating the balance of
copper in immune cells needs further in-depth study. In addition,
fifty-one cluster-specific DEGs indicated that cell cycle, spliceosome,
and non-homologous end joining were reinforced in upregulated
DEGs. At the same time, glycerolipid metabolism, and ascorbate and
aldarate metabolism activity were enhanced in downregulated
DEGs. In conjunction, we speculated that Cluster2 might be
more closely related to the progression of SD.

As research has progressed and evolved, machine learning
models have been increasingly used to predict sperm parameters

in MI (Zeadna et al., 2020; Ory et al., 2022). Compared with
traditional univariate analysis, machine learning usually uses
multi-factor analysis methods, which fully consider the
relationships between variables. Therefore, machine learning
models are more accurate, and the results are more credible. The
R package of “caret” we used is a comprehensive machine learning
toolkit designed to solve prediction problems. The feature of this
package is the ability to quickly get all the materials ready, including
the whole process of data pre-processing, model training, and model
prediction (Lee and Kim, 2022). We compared the prediction
performance of four machine learning models, XGB, SVM, GLM,
and RF. An XGB-based prediction model was constructed with very
high predictive validity (AUC = 1) in the test set. Subsequently, we
selected five important variables (FXN, APOM, NPC2, HSD17B10,
and UNC119) to construct a 5-gene-based XGB model. FXN gene
encodes frataxin, which is a mitochondrial protein, and with its
decrease, mitochondrial metabolism is seriously disrupted
(O’Connell et al., 2022). Importantly, mitochondria are closely
related to the spermatogenic function of testis (Okuda et al.,
2011), suggesting that FXN may be a potential therapeutic
strategy for MI patients. APOM is a high-density lipoprotein-
associated apolipoprotein, which is involved in the reverse
transport of cholesterol (Mosialou et al., 2010). APOM
expression is regulated by its gene. At present, many studies have
shown that the APOM gene is related to diabetes, dyslipidemia,
obesity, and other diseases (Zhang et al., 2017; Sramkova et al., 2019;
Liu et al., 2020), which are high-risk factors leading to MI. Moreso,
the NPC2 gene encodes NPC2, a small soluble protein that can
transfer cholesterol at a terrific speed. NPC2 directly binds to free
cholesterol in the internal lysosomal membrane to regulate the
homeostasis of intracellular cholesterol (Abdul-Hammed et al.,
2010). Notably, testis cholesterol efficiently protects the blood-
testis barrier (BTB). The level of NPC2 protein in male mice
exposed to low dose rate chronic radiation was significantly
reduced, having potential BTB damage and immune infertility
(Son et al., 2015). Moreover, the effects of HSD17B10 and
UNC119 in testicular spermatogenesis and on MI have not been
reported and deserve further study.

In an externally validated dataset, the 5-gene XGB-based model
(AUC = 0.812) accurately predicted SD, demonstrating its good
diagnostic value for SD. In addition, we constructed a nomogram
model for diagnosing SD using five genes, FXN, APOM, NPC2,
HSD17B10 and UNC119. Our results show the good predictive
performance of the model, indicating that this model has potential
for clinical application. Together, the 5-gene-based XGBmodel used
to differentiate subtypes of SD is satisfactory.

Our study still has some limitations that need to be addressed
in future research. First, our current study was performed based
on a comprehensive bioinformatics analysis, although we applied
an external dataset for validation, and additional clinical or
experimental evaluation is required to make sure the different
genes in human SD were involved in cuproptosis. Furthermore, a
greater number of SD samples are needed to elucidate the
accuracy of cuproptosis-related clusters. In addition, the
potential relevance of CRGs and immune cell infiltration in
SD needs to be further explored. Moreover, more detailed
clinical characteristics are required to determine the
performance of the predictive model.
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Conclusion

In summary, our study found a significant correlation between
CRG and SD and between CRG and immune cells infiltrated in SD.
In addition, some immune heterogeneity between the two clusters in
SD was identified. Thus, machine learning models can accurately
assess the subtypes of SD, and a 5-gene XGB-based model may be
the best choice. Notably, our study illustrates a novel relationship
between cuproptosis. Furthermore, it establishes a promising
predictive model to assess the risk of cuproptosis subtypes.
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