
Novel hypoxia-related gene
signature for predicting
prognoses that correlate with the
tumor immunemicroenvironment
in NSCLC

Zhaojin Li1, Yu Cui1, Shupeng Zhang1*, Jie Xu1, Jianping Shao1,
Hekai Chen1, Jingzhao Chen2, Shun Wang2, Meizhai Zeng2,
Hao Zhang2, Siqian Lu2, Zhi Rong Qian2 and Guoqiang Xing1

1Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China, 2Beidou Precision Medicine
Institute, Guangzhou, China

Background: Intratumoral hypoxia is widely associated with the development of
malignancy, treatment resistance, and worse prognoses. The global influence of
hypoxia-related genes (HRGs) on prognostic significance, tumor
microenvironment characteristics, and therapeutic response is unclear in
patients with non-small cell lung cancer (NSCLC).

Method: RNA-seq and clinical data for NSCLC patients were derived from The
Cancer Genome Atlas (TCGA) database, and a group of HRGs was obtained from
the MSigDB. The differentially expressed HRGs were determined using the limma
package; prognostic HRGs were identified via univariate Cox regression. Using the
least absolute shrinkage and selection operator (LASSO) and multivariate Cox
regression, an optimized prognostic model consisting of nine HRGs was
constructed. The prognostic model’s capacity was evaluated by Kaplan‒Meier
survival curve analysis and receiver operating characteristic (ROC) curve analysis in
the TCGA (training set) and GEO (validation set) cohorts. Moreover, a potential
biological pathway and immune infiltration differences were explained.

Results: A prognostic model containing nine HRGs (STC2, ALDOA, MIF, LDHA,
EXT1, PGM2, ENO3, INHA, and RORA) was developed. NSCLC patients were
separated into two risk categories according to the risk score generated by the
hypoxia model. The model-based risk score had better predictive power than the
clinicopathological method. Patients in the high-risk category had poor
recurrence-free survival in the TCGA (HR: 1.426; 95% CI: 0.997–2.042; p =
0.046) and GEO (HR: 2.4; 95% CI: 1.7–3.2; p < 0.0001) cohorts. The overall
survival of the high-risk category was also inferior to that of the low-risk category
in the TCGA (HR: 1.8; 95% CI: 1.5–2.2; p < 0.0001) and GEO (HR: 1.8; 95% CI:
1.4–2.3; p < 0.0001) cohorts. Additionally, we discovered a notable distinction in
the enrichment of immune-related pathways, immune cell abundance, and
immune checkpoint gene expression between the two subcategories.
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Conclusion: The proposed 9-HRG signature is a promising indicator for predicting
NSCLC patient prognosis and may be potentially applicable in checkpoint therapy
efficiency prediction.

KEYWORDS

NSCLC, hypoxia, prognosis, immune microenvironment, immunotherapy

1 Introduction

Lung cancer ranks highly among all malignancies in its prevalence
and mortality. Non-small cell lung cancer (NSCLC) accounts for
approximately 85% of all lung cancer diagnoses (Siegel et al., 2023).
Although great advances have beenmade in the research and treatment
of NSCLC, the majority of patients are diagnosed at an advanced stage,
and the efficacy of NSCLC treatment remains unsatisfactory. NSCLC
diagnosis and prognosis are currently determined by tumor stage and
histopathological assessment (Cuyun Carter et al., 2014; Wood et al.,
2022). Unfortunately, the accuracy of these standard diagnostic
procedures is insufficient, and the resulting illness outcomes in
patients with a uniform clinical diagnosis can also be inconsistent
(Balachandran et al., 2015). Consequently, the development of a unique,
accurate, and sensitive signature for early NSCLC detection and
prognostic prediction is urgently needed.

Because the demand for oxygen in the tumor is greater than the
body supplies, hypoxia has been discovered to accelerate tumor
development with the induction of a hypoxic tumor context
(Petrova et al., 2018). The hypoxic environment within tumors is
one of their most important hallmarks. Tumor formation and
incidence are frequently accompanied by a variety of adaptive
changes involving transcription factor activation, cell proliferation,
motility, apoptosis, and other signaling pathways through which
hypoxia might enhance tumor aggressiveness and medication
resistance (Gilkes et al., 2014; Muz et al., 2015; Rankin et al., 2016;
Nobre et al., 2018; Jing et al., 2019).

With the popularization of transcriptome sequencing technology,
an increasing number of studies have shown that hypoxic tumor
microenvironments are associated with worse clinical presentation
and prognosis (Magnon et al., 2007; D’Ignazio et al., 2017). Previous
studies have demonstrated that hypoxia-related genes (HRGs) are
linked to prognosis in LUAD patients with disease stages I–II (Sun
et al., 2020). However, clinical outcomes, oncogenic pathways, and
treatment responses remain unclear in NSCLC patients.

Prior studies have verified the critical roles of hypoxia in
promoting immunological escape and tumor immune
suppression. For example, hypoxia stimulates the recruitment of
immunosuppressive cytokines and suppressive cells, consequently
hampering immune effector cells and prompting immunological
escape (Qian et al., 2019). Because the codependency between the
immunological state and hypoxia in the tumor microenvironment
could lead to alterations in immune activity, treatment response, and
prognosis in NSCLC, an integrated analysis of the immunological
state and hypoxia might have promising prognostic utility and
provide supplementary knowledge to facilitate the development
of transformational studies on and treatment strategies for NSCLC.

We thus extracted data from multiple independent NSCLC
cohorts to screen candidate HRGs and established a related
signature, with the aim of determining its capacity to predict

clinical outcomes, TME features, and therapeutic efficacy in
NSCLC patients.

2 Methods

The overall research strategy, including the building and
verification of the HRG risk model, is depicted in Figure 1.

2.1 Data preparation and processing

From the UCSC Xena database, NSCLC clinical data and
transcriptome expression profiles for LUAD and LUSC patients
in The Cancer Genome Atlas (TCGA) were downloaded. A total of
1,011 tumor and 108 normal samples were employed for HRG
expression differential analysis and as a training set for the
construction of the risk score model. All scores indicating the
degree of hypoxia in the tumor, such as the Winter, Buffa, and
Ragnum hypoxia scores (Winter et al., 2007; Buffa et al., 2010;
Ragnum et al., 2015), were obtained from TCGA. The higher these
scores, the more hypoxic is the tumor.

For external validation, four microarray datasets together with
detailed clinical characteristics were retrieved from the Gene
Expression Omnibus (GEO) (GSE30219, GSE31210, GSE37745, and
GSE50081) using theGEOquery R package. A total of 628 tumor samples
were acquired, and the clinical characteristics are listed in Supplementary
Table S1. Batch effects were eliminated using the sva package (Leek et al.,
2012), and the scale functionwas used to standardize the expression value
before model construction and validation.

2.2 Identification of differentially expressed
HRGs

A total of 190 of 200 HRGs and available data were retrieved
from the MSigDB Hallmark database (Supplementary Table S2),
and the expression of these genes was extracted from integrated
datasets (Liberzon et al., 2015). Differential analysis between tumor
and normal samples of 190 HRGs was performed using the limma
package in the TCGA database. Genes with p values less than
0.05 were defined as differentially expressed HRGs (DEHRGs).
Volcano mapping was then performed using the ggplot2 package.

2.3 Building and verifying an HRG-based risk
model

We conducted univariate Cox regression analysis based on overall
survival to determine prognostic DEHRGs (p < 0.05). The DEHRGs
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related to OS were identified by least absolute shrinkage and selection
operator (LASSO) regression analysis using the glmnet package to
shrink the gene set associated with prognosis. To achieve the optimal
model, we combined the remaining genes step by step and tested
performance. Ultimately, nine genes were selected, and a multivariate
Cox regression analysis was adopted to build a prognostic risk model.
The algorithm used to determine the patient’s risk level was as follows:

Risk score � 0.10515 × STC2 exp + 0.0234 × ALDOA exp

+ 0.02207× MIF exp + 0.13426 × LDHA exp

+ 0.09928 × EXT1 exp − 0.01151× PGM2 exp

− 0.1475 × ENO3 exp − 0.16294 × INHA exp

− 0.14694 × RORA exp

A risk score was then obtained for all patients. Patients were
separated into two risk categories by using the median risk score of
patients.

To determine the predictive ability of this model for tumor
recurrence, recurrence-free survival was compared between two risk
categories using stage I and II cases in the TCGA and GEO
databases.

Overall survival (OS) was also compared between the two risk
categories using all patients. The survivalROC R package was
employed to plot the receiver operating characteristic (ROC)
curves of 1-, 3-, and 5-year OS in the training cohort, and the
same method was used in the validation cohort.

2.4 Independent determination of risk
models and construction of clinical
nomograms

Multivariate Cox regression analysis was applied to construct an
independent prognostic model. A nomogram was used to predict
patient survival rates, and the performance was verified by drawing

calibration curves. ROC curves and the concordance index were
introduced to detect the reliability of the HRG model. Clinical
features were incorporated into multivariate Cox regression to
determine whether the risk model was an independent indicator
of prognostic prediction.

2.5 Functional enrichment analysis

The gene sets of the Kyoto Encyclopedia of Genes and Genomes
and the Hallmark gene sets were downloaded from MSigDB. The
enrichment scores of individual patients were computed with the
GSVA R package. Using the limma package, the enrichment score
was then compared between two TCGA risk categories, and the
difference in HRG expression between the two categories was also
analyzed. A cluster heatmap was used to show the top 30 genes with
the most significant p values.

2.6 Immunological features of the tumor
microenvironment

Immunomodulators, a group of immunoregulatory genes
containing antigen-presenting factors, ligands, and receptors, play
crucial roles in cancer immunotherapy, and the expression of HRGs
and immunomodulators was compared with the Spearman
correlation method.

In addition, the differences in their infiltration abundance in the
tumor microenvironment affected the patients’ outcomes and the
efficiency of immunotherapy. Therefore, the ssGSEA algorithm was
employed to compute immune cell abundance in individual
patients. Using the Spearman correlation method, the correlation
between the hypoxia-related model and immune cells was analyzed,
and, finally, the difference in immune cell abundance between the
two risk categories was assessed.

FIGURE 1
Diagrammatic representation of the analytical process used in this study.
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FIGURE 2
Building of the HRG model in the TCGA-NSCLC cohort. (A) Volcano graphic showing how HRG expression differs in tumor and normal samples
based on both fold change and statistical significance. (B) Results of univariate Cox regression analysis presented in a forest plot, with gene name in the
first column and box plot depicting the hazard ratio (HR) and its corresponding 95% confidence interval in the second column. (C,D) LASSO analysis for
estimating the number of contributing components. (E) Correlation analysis of HRG expression in the risk model using Spearman’s correlation. *p <
0.05; **p < 0.01; ***p < 0.001. (F) Results of protein interaction analysis of the HRG model.
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Immunomodulator-related genes and immune cell-type
marker genes were obtained from the TCGA immune
response working group (Charoentong et al., 2017; Thorsson

et al., 2018). The immunological score was computed with the
estimate package, and we compared the difference between the
two risk categories.

FIGURE 3
Prediction ability of the HRGmodel for the recurrence and stage of NSCLC patients. (A–C) TCGA cohort Fisher test outcomes for T andN stages and
pathological stages comparing two risk categories. (D) Analyzing the differences between two risk categories on three known hypoxia scores. *p < 0.05;
**p < 0.01; ***p < 0.001. (E,F) Recurrence survival curves for two risk categories. E: TCGA cohort, F: GEO cohort.
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FIGURE 4
Prognostic data analysis from the training and validation cohorts as well as verification of themodel’s precision. (A,B) The risk score curve is displayed
in the top part. The distribution of the risk score, survival duration, and patient status are presented in themiddle part. A heatmap of HRGs in the classifier is
shown in the bottom part. (A) TCGA cohort, (B) GEO cohort. (C,D) NSCLC patient Kaplan‒Meier survival curve comparing two risk categories. (C) TCGA
cohort, (D) GEO cohort. (E,F) ROC curve in the TCGA cohort (E) and GEO cohort (F).
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2.7 Statistical analysis

Kaplan‒Meier curves and the log-rank test were used to
compare the survival rate between various subcategories. The
independent prognostic significance of the clinical features in OS
was detected by univariate and multivariate Cox proportional
hazard regression analyses. The prognostic prediction significance
of the risk models for 1/3/5-year OS was evaluated by ROC curves
and area under the curve (AUC) values. Differences in TMN stage
and clinicopathologic stage composition between the two risk
categories of the TCGA cohort were analyzed by Fisher’s test.
The correlation analysis of HRGs with immune cell abundance
and with immune regulator-related genes was performed using
Spearman’s correlation analysis. The Wilcoxon test was applied
to compare immune cell infiltration. p values less than 0.05 were
defined as significant. R 3.6.1 was used to conduct all the analyses.

3 Results

3.1 Differential expression analysis of HRGs
in the training cohort

Genes that are expressed normally in both tumor and normal
tissues do not typically play a significant role in the development and
progression of tumors. Therefore, it is necessary to exclude such
genes from the analysis beforehand.

Differential analysis between 1,011 tumor and 108 normal
samples on 190 HRGs was performed, and 160 genes were
significantly differentially expressed (Supplementary Table S3) in
the TCGA cohort. Of these, 72 genes were downregulated in tumor
tissues, while 88 were upregulated. The differentially expressed
volcano map is shown in Figure 2A.

The analysis revealed that a majority of HRGs showed
significant differences in expression, highlighting the importance
of the hypoxia pathway as a mechanism underlying tumor growth
and metastasis.

3.2 Building of the HRGmodel in the training
cohort

Although there may be aberrant gene expression, it may not
necessarily affect a patient’s survival status or time. Thus, the
identification of hypoxia-related genes that are linked to
prognosis is crucial.

In total, 990 NSCLC cases in the TCGA cohort with detailed OS
information were identified. To further identify prognosis-related
DEHRGs, 160 DEHRGs were analyzed using univariate Cox
regression analysis, and 41 genes were significantly correlated with
prognosis (Supplementary Table S4). A forest mapwas used to display
the prognosis-related HRGs’ hazard ratios and the matching
confidence intervals (CIs), which demonstrated that the majority
of candidates were at risk (Figure 2B). To ensure the stability and
feasibility of the model, LASSO regression analysis was performed
with the optimum λ value to reduce the scope of candidates, and
25 DEHRGs were identified (Figures 2C, D). Finally, by performing
multivariate Cox regression, nine genes (STC2, ALDOA,MIF, LDHA,

EXT1, PGM2, ENO3, INHA, and RORA) were selected to construct a
risk prognostic model. In the TCGA training cohort, patients were
split into two risk categories based on the median risk score. Notably,
compared to patients in the low-risk category, those in the high-risk
category were more likely to experience relapse (HR: 1.426; 95% CI:
0.997–2.042; p = 0.046; Figure 3E).

A linear regression analysis was conducted to determine the
interaction of these nine genes; the results indicated that
25 candidates exhibited high correlation, such as ALDOA and
LDHA, ALDOA and STC2, ALDOA and MIF, and ENO3 and
EXT1 (Figure 2E). In addition, protein interaction analysis was
performed on these nine genes using the STRING online database
and visualized by Cytoscape. We observed that ALDOA, LDHA,
ENO3, and PGR2 strongly interacted with multiple genes—in the
end, these four candidates were regarded as the core genes
(Figure 2F).

Fisher’s test showed that the percentage of stage I samples,
T1 samples, and N0 samples in the low-risk category (stage: 59.7%;
T: 36.1%; N: 72.5%) was greater than the percentage in the high-risk
category (stage: 43.5%; T: 20.9%; N: 57.9%) (Figures 3A–C). The
difference in M0 staging in the low-risk category was not significant
in comparison with the low-risk category (Supplementary Figure
S1). A higher risk score indicates higher expression levels of most
HRGs, which are associated with a more advanced disease stage, a
larger tumor size, and increased lymph node involvement. One
possible explanation for the higher proportion of stage I, T1, and
N0 samples in the low-risk category compared with the high-risk
category is that HRGs are expressed more strongly in later-stage and
more invasive tumors, which may lead to higher risk scores and
worse prognoses. In addition, the lack of a significant difference in
M0 staging between the low- and high-risk categories may be due to
distant metastasis being less affected by hypoxia than local tumor
growth and invasion. The Buffa, Winter, and Ragnum hypoxia
scores in the high-risk category were greater than those in the
low-risk category (Figure 3D), implying that the established model
could effectively evaluate the degree of hypoxia.

Moreover, the scatter plot of OS status showed that, in
comparison with low-risk category patients, more deaths were
observed in the high-risk category (Figure 4A). More
importantly, high-risk category patients (n = 495) had a worse
prognosis than low-risk patients (n = 495) (p < 0.0001; HR: 1.778;
95% CI: 1.457–2.169; Figure 4C). To accurately evaluate the
prognostic performance of the nine-gene signature, ROC analysis
was conducted using the 1-, 3-, and 5-year cutoff values of OS—the
AUC values were 0.679, 0.654, and 0.588, respectively, indicating
that our prognostic model had good predictive performance in
patients with NSCLC (Figure 4E).

Early-stage cancer patients are more highly represented in the low-
risk category based onHRGs than in the high-risk category. Thus, when
we specifically only analyzed early-stage patients, we discovered that
significant differences in overall survival still existed between high- and
low-risk categories in early-stage cancer prognostic indicators
(Supplementary Figure S2). This finding suggests that risk
stratification based on HRGs can still be used to effectively predict
the overall survival of NSCLC patients, even when analyzing only the
subset of patients in the early stages of the disease.

To summarize, a model based on the expression of HRGs that
are prognostically relevant can effectively assess the extent of
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hypoxia, exhibit a close correlation with clinical staging, and reveal
significant differences in recurrence, survival, and overall survival
between high- and low-risk categories.

3.3 External validation of the HRG
prognostic model

External validation plays a crucial role in improving the
reliability and reproducibility of scientific research. By confirming
the generalizability and applicability of research findings, external
validation can help to identify and correct potential problems and
limitations in study design and methodology.

To evaluate the prognostic capability of this novel HRG-based
risk model, external cohorts were obtained from the GEO. The risk
score was computed via the identical formula described before. The
patients were separated into two risk categories using the median
score. In recurrence-free survival analysis, patients in the high-risk
category had a higher tendency to relapse than low-risk patients
(HR: 2.374; 95% CI: 1.743–3.233; p < 0.0001; Figure 3F).

Scatter plots for death events are displayed in Figure 4B. High-
risk category patients showed higher mortality rates than patients in
the low-risk category. Additionally, we confirmed the performance
of our HRG risk model for OS in the GEO cohort. As expected, a
worse OS was indicated by a higher risk score (p < 0.0001, HR: 1.81,
95% CI: 1.428–2.295; Figure 4D). Figure 4F shows the 1-, 3-, and 5-
year cutoff OS values in the validation dataset; the AUC values were
0.668, 0.643, and 0.623, respectively. ROC analysis further verified
the effectiveness and reliability of the HRG risk model for prognostic
prediction in NSCLC patients.

In our external dataset validation analysis, we found that our
model demonstrated strong predictive performance for both overall
survival and recurrence-free survival, indicating that it is both stable
and generalizable.

3.4 Analysis of independent prognostic
factors in the HRG risk model

Patients with complete clinical information were identified to
construct risk prognostic models; Table 1 displays the clinical
information. Along with risk scores, clinical stage, age, and sex
were considered in a multivariate Cox regression analysis to
determine independent prognostic markers. According to the
outcome, the risk score was an independent prognostic factor in
the TCGA (HR: 0.58, 95% CI: 0.47–0.71; Figure 5A) and GEO
cohorts (HR: 0.65, 95% CI: 0.50–0.84; Figure 5B).

We also calculated the conformance index (C-index) of these
three clinical factors and risk score within 1–5 years of OS time. For
the TCGA cohort, the results suggested that the C-index of the risk
score was greater than that of other clinical factors (Figure 5C), and
that the C-index had a similar numerical approximation between the
risk score and clinicopathological stage in the GEO cohort
(Figure 5D).

The ROC curve of the risk score was detected with these three
clinical factors for the 3-year OS. The AUC value of the risk score
was greater than that of the other three clinical characteristics in
both cohorts (Figures 5E, F).

Taken together, even when other factors that may affect
patient prognoses were taken into account, the risk score had

TABLE 1 The clinical pathological information of TGCA and GEO cohorts.

TCGA cohort (n = 964) GEO cohort (n = 628)

Gender

Female 389 (40.4%) 286 (45.5%)

Male 575 (59.6%) 342 (54.5%)

Age (years)

<45 21 (2.2%) 11 (1.8%)

≥75 181 (18.8%) 74 (11.8%)

45–60 199 (20.6%) 185 (29.5%)

60–75 563 (58.4%) 358 (57.0%)

Overall survival time

Mean (SD) 2.52 (2.52) 4.78 (3.23)

Median [min, max] 1.78 [0.00274, 19.9] 4.61 [0.0164, 21.3]

Clinical stage

Stage I 498 (51.7%) 446 (71.0%)

Stage II 272 (28.2%) 150 (23.9%)

Stage III 162 (16.8%) 28 (4.5%)

Stage IV 32 (3.3%) 4 (0.6%)

Recurrence-free survival time

Mean (SD) 2.66 (2.63) 4.26 (3.29)

Median [min, max] 1.79 [0.0110,19.9] 4.31 [0.160,21.3]

Missing 391 (40.6%) 90 (14.3%)
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a significant and distinct impact on patient outcomes. It
performed better than other clinical parameters in predicting
overall survival.

3.5 Building and verifying the prognostic
nomogram system

To assist clinical practitioners with more accurate predictions of
patient survival rates during treatment and management, we
constructed a clinical nomogram that serves as an important
auxiliary decision-making tool.

Using the “rms” and “survival” R packages, we generated a
nomogram containing the risk score and valuable clinical
parameters predicting 1-, 3-, and 5-year overall survival of
NSCLC patients in the TCGA dataset and a calibration plot that
analyzed estimated and actual overall survival to assess the
effectiveness of the prognostic nomogram (Figure 6A). The
calibration plot showed that the nomogram’s estimated survival

and actual survival rates were highly correlated (Figures 6B–D). It is
possible to evaluate the probability of a patient surviving at a certain
time according to the patient’s clinical information and gene
expression levels using this clinical prognosis nomogram. In
conclusion, this nomogram system for predicting the overall
survival of patients based on gene expression and clinical
information is reliable.

3.6 Biological pathway analysis related to the
HRG risk model

Different biological mechanisms often lead to distinct
prognostic outcomes in cancer patients. KEGG pathway and
cancer-related hallmark gene set analyses were performed to
clarify the biological mechanisms that were related to the risk model.

In the low-risk category, several metabolically related pathways,
such as histidine, fatty acid, and ether lipid metabolism, were highly
enriched (Figure 7A). The metabolism of these amino acids and

FIGURE 5
Independent prognostic factor determination and predictive accuracy comparison. (A,B) Results of TCGA cohort (A) and GEO cohort’s multivariate
Cox regression analysis (B). (C,D) Concordance index curve of 3 clinical parameters and risk scores for OS time from 1 to 5 years, (C) TCGA cohort, (D)
GEO cohort. (E,F) Multi-index ROC curve of the risk score and other clinical parameters for 3-year OS time, TCGA cohort (E) and GEO cohort (F).
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lipids was reported to be closely associated with tumors (Currie
et al., 2013; Li and Zhang, 2016; Bian et al., 2021). Interestingly,
immune-related pathways were observed to cluster in the low-risk
category, such as the T-cell and B-cell receptor signaling pathways.
Conversely, for the high-risk category, cell proliferation-related
pathways such as the G2/M checkpoint, E2F targets, and MYC
targets were enriched. It is worth noting that hypoxia was also
identified in the high-risk category, as anticipated (Figure 7B). The
expression heatmap of the 30 most significant DEHRGs between the
two risk categories is shown in Supplementary Figure S3. It is evident
from the heatmap that there is a significant difference in the
expression levels of these genes.

In summary, there are significant mechanistic differences
between the low-risk and high-risk categories, with the immune

features of the former and proliferation characteristics of the latter
being consistent with their respective prognostic outcomes.

3.7 Characteristics of the tumor immune
microenvironment associated with HRG
models

To further explore the risk score and immunity, we performed a
correlation analysis of immune cell abundance and HRG expression
in the risk model. The findings revealed an extensively significant
negative correlation between immune cell abundance and HRGs,
such as ENO3, INHA, and ALDOA. RORAwas positively correlated
with most immune cell types (Figure 8A).

FIGURE 6
Clinical prognostic nomogram was created and validated. (A) Nomogram, taking into account risk score, tumor stage, age, and sex, predicted the
likelihood of 1-, 3-, and 5-year OS. (B–D) 1-, 3-, and 5-year OS calibration curves; predicted survival probability graphed along the x-axis, whereas actual
survival probability is represented along the y-axis.
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In the TCGA cohort, immune cell abundance was calculated
between the two risk categories. The abundance of activated
CD8 T cells, activated B cells, effector memory CD8 T cells, and

central memory CD4 T cells was higher in the low-risk category
(Figure 8C). In addition, the immune score of the low-risk category
was significantly greater than that of the high-risk category (Figure 8B).

FIGURE 7
Difference in biological pathways and cancer-related gene sets between the two risk categories. (A) Heatmap of GSVA enrichment of the KEGG
pathway. Red represents high enrichment scores, while blue represents low enrichment scores. (B) Bar graph of hallmark gene set enrichment score. The
color indicates the significance of the difference, and the x-axis represents the enrichment score fold change in this hallmark gene set between high- and
low-risk categories.
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FIGURE 8
Association analysis of HRGs with TIME in the TCGA cohort. (A) Correlation analysis of HRGs in risk signature and immune cell abundance. (B)
Comparison of immune score in the two subcategories. (C)Quantitative analysis of immune cell abundance between patients in the two risk categories.
(D) HRGs and immunomodulator-related gene correlation analysis. Red represents a positive correlation, while blue represents a negative correlation in
the heatmap. *p < 0.05; **p < 0.01; ***p < 0.001.
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To illustrate the relationship between the HRG model and the
immune microenvironment, we generated the correlation pattern of
the HRG model and immune-modulator-related genes. The results
demonstrated that an extensively significant negative correlation
existed, including STC2, ALDOA, MIF, LDHA, EXT1, PGM2,
ENO3, and INHA. Only RORA was positively correlated with
most immune modulators (Figure 8D).

The low-risk category was associated with high immune cell
infiltration, immune-modulator-related gene expression, and
immune scores, which are indicative of favorable clinical
outcomes related to preexisting anticancer immunity.

3.8 Immune checkpoint expression between
risk categories

In consideration of the therapeutic significance of treatment
approaches related to immune checkpoint blockade in NSCLC, the
correlation between the risk score and several immune checkpoints,
such as PD1, PDL1, and CTLA4, were analyzed. In the low-risk
category, we found a substantial increase in the expression of PD1 and
CTLA4, while the expression of PDL1 was not significantly different
(Figure 9).

4 Discussion

NSCLC has a significant fatality rate and is one of the most
frequently diagnosed cancers worldwide. Identifying accurate and
effective signatures is of great importance for NSCLC prognostic

prediction. Here, we constructed a novel HRG signature in a large
NSCLC cohort, and training and validation datasets were used to
confirm the signature’s efficacy.

Increasing evidence suggests that NSCLC patients who have
intratumoral hypoxia have a worse prognosis and a more aggressive
form of the disease (Carmeliet and Jain, 2011; Krock et al., 2011;
Semenza, 2012; Eales et al., 2016; Mittal, 2018; Tirpe et al., 2019). Many
monogenic studies of HRGs have been related to prognosis and tumor
immunity in several cancers (Lee et al., 2019; Liu et al., 2020; Zhang
et al., 2020). However, there has been no systematic investigation
connecting TME features with the hypoxia-related signature in
NSCLC. By combining data from many separate NSCLC studies, we
were able to generate and verify a unique hypoxia risk signature. The
established model confirmed that this signature could be used to
effectively predict clinical outcomes and TME characteristics.

The most noticeable feature of malignant tumors is hypoxia. Prior
studies have demonstrated that hypoxia contributes to the aggressive
development of lung cancer (Smolle et al., 2020; Ouyang et al., 2021; Lane
et al., 2022). However, due to its multifaceted nature, hypoxia’s precise
function in NSCLC progression is unclear. In the current research, we
screened nine HRGs closely associated with NSCLC. Of these, four genes
had been proven to be involved in tumor malignancy. ALDOA, an
oncogene, has been identified as being involved in tumor cell malignant
growth and worsening prognosis in hepatoma and pancreatic cancer (Ji
et al., 2016). LDHA promotes papillary thyroid carcinoma metastasis by
regulating EMT gene transcription (Hou et al., 2021). STC2 could
promote the metastasis of HNSCC through the PI3K/AKT/Snail
signaling pathway (Yang et al., 2017). In addition, EXT1 was
demonstrated to participate in the process of cancer proliferation and
migration by methylation regulation (Kong et al., 2021). Our results
showed that this four-gene signature affecting the prognosis of NSCLC
was incorporated into the risk model, suggesting that the established
signature performed well in recurrence and prognosis prediction.

Hypoxia is a very important participant in the TME through
various mechanisms. HRGs affect the infiltration of various immune
cell subtypes which reshape the TIME. In particular, hypoxia enhances
PD-L1 expression in multiple tumor cells through HIF-1’s direct
binding to the HRE in the PDL1 promoter. The activity of T and
NK cells is suppressed as a result of LDHA stimulation of the lactate
metabolism (Brand et al., 2016). ALDOAhas been shown to activate the
NLRP3 inflammasome and induce the secretion of proinflammatory
factors to regulate anticancer immune responses (Bai et al., 2022).
RORA regulates ILC3s, macrophages, and Treg cells, which are crucial
for ILC2 development (Haim-Vilmovsky et al., 2021). In addition, MIF
regulates the inhibition of immune responses by enhancing harmful
inflammation and eventually leads to the promotion of cancer
metastasis (Sumaiya et al., 2022). In general, all the collective
evidence inspired us to investigate the potential use of the hypoxia
risk score to predict immunological features.

This study revealed a negative correlation between the risk score
and the TIS and TIICs (such as activated B cells, activated CD8 T cells,
central memory CD4 T cells, and effector memory CD8 T cells), which
suggests that patients in the low-risk category had more preexisting
anticancer immunity in their TME (Figure 8C). It is accepted that
immune checkpoints prevent anticancer immunity in the TME
(Nishino et al., 2017). Consistently, in the present study, the hypoxia
risk score showed a negative correlation with the expression of several
immune checkpoints, such as CTLA-4 and PD-1 (Figure 9). The TIS

FIGURE 9
Gene expression comparison relating to immunological
checkpoints in the two categories. Middle line of the box represents
the median of the data, while the upper and lower limits of the box
represent the upper and lower quartiles of the data, the line
extending from the box represents 1.5 times the interquartile range
(IQR) from the upper and lower quartiles. *p < 0.05; **p < 0.01; ***p <
0.001.
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and immune checkpoint expression were considerably greater in low-
risk category patients, indicating increased anticancer immunity and
additional therapeutic targets in the TME. In other words, low-risk
patients may gain more from ICB treatment, which may reactivate
dormant tumoricidal immunity in the TME (Liu et al., 2021).

The innovative aspect of this study is its development of a prognostic
model for NSCLC that can be used to predict the prognosis of both lung
adenocarcinoma and lung squamous cell carcinoma without the need to
distinguish specific cancer types. This approach potentially simplifies the
diagnostic and treatment process for clinicians. Additionally, the ability to
use this model to predict recurrence in NSCLC patients enhances its
clinical utility. The study’s large sample size and good predictive
performance in RNA-seq and microarray data platforms further
highlight its strengths. Overall, the novel approach of using a
prognostic model for different types of NSCLC represents a
significant advancement in the field of cancer research. Nevertheless,
this investigation had a few limitations. The risk score algorithm needs to
be validated in real-world prospective cohort studies since the data used
in the present research came from public sources. The sequencing
techniques used for this research cohort varied and the accuracy of
this formula might be affected to some extent. Additionally, the majority
of patients were Caucasian, underscoring the need to investigate the risk
score’s accuracy as a predictor of outcomes in patients of other races.

5 Conclusion

In total, a unique nine-gene risk score signature was established
for NSCLC. The risk score was proven to correlate with OS,
functional enrichment, the immune microenvironment, and
therapy responsiveness. Additionally, it accurately predicted
prognosis possibility depending on age, sex, and disease stage.
These observations suggest that molecular risk stratification may
aid in prognostic prediction and personalized precision therapy for
NSCLC.
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