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Dyslipidemias are risk factors in diseases of significant importance to public health,
such as atherosclerosis, a condition that contributes to the development of
cardiovascular disease. Unhealthy lifestyles, the pre-existence of diseases, and
the accumulation of genetic variants in some loci contribute to the development
of dyslipidemia. The genetic causality behind these diseases has been studied
primarily on populations with extensive European ancestry. Only some studies
have explored this topic in Costa Rica, and none have focused on identifying
variants that can alter blood lipid levels and quantifying their frequency. To fill this
gap, this study focused on identifying variants in 69 genes involved in lipid
metabolism using genomes from two studies in Costa Rica. We contrasted the
allelic frequencies with those of groups reported in the 1000 Genomes Project
and gnomAD and identified potential variants that could influence the
development of dyslipidemias. In total, we detected 2,600 variants in the
evaluated regions. However, after various filtering steps, we obtained
18 variants that have the potential to alter the function of 16 genes, nine
variants have pharmacogenomic or protective implications, eight have high risk
in Variant Effect Predictor, and eight were found in other Latin American genetic
studies of lipid alterations and the development of dyslipidemia. Some of these
variants have been linked to changes in blood lipid levels in other global studies
and databases. In future studies, we propose to confirm at least 40 variants of
interest from 23 genes in a larger cohort from Costa Rica and Latin American
populations to determine their relevance regarding the genetic burden for
dyslipidemia. Additionally, more complex studies should arise that include
diverse clinical, environmental, and genetic data from patients and controls
and functional validation of the variants.

KEYWORDS

dyslipidemia, genetic variant, whole genome sequences (WGS), Costa Rica, allele
frequencies, pharmacogenomic, Latin America

1 Introduction

Dyslipidemias are a group of conditions characterized by abnormal lipid levels. High
lipid profiles include hyperlipidemias or hyperlipoproteinemia. These are worldwide
diseases affecting many people. In Latin American cities such as Barquisimeto, Lima,
and Bogotá, this condition has been recorded in >70% of men and >50% of women
(Vinueza et al., 2010). Costa Rica is no exception. In a study conducted in the 2000s involving
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107,000 inhabitants of San José, it was reported that 36% of men and
22% of women had hypercholesterolemia, while 48% of men and
52% of women reported hypertriglyceridemia (Gutiérrez-Peña and
Romero-Zúñiga, 2010). These conditions have been closely linked to
the development of complex ailments such as cardiovascular
diseases and acute pancreatitis (Bruikman et al., 2017; Pretis
et al., 2018; Paredes et al., 2019), making hyperlipidemia a public
health problem in the 21st century.

A sedentary lifestyle and poor eating habits can profoundly
impact the development of these diseases (Brahm and Hegele, 2013).
The clinical approach to these cases usually includes the
implementation of exercise regimens and caloric restriction.
Additionally, multiple pieces of evidence have shown that the
genetic characteristics of an individual play a leading role in the
development of hyperlipidemias (Johansen et al., 2011; Brahm and
Hegele, 2013; Wierzbicki and Reynolds, 2019). Currently, the
diseases are considered mostly polygenic. However, variants in
genes such as the lipoprotein lipase (LPL), the low-density
lipoprotein receptor (LDLR), and apolipoprotein B (APOB) tend
to have more marked effects than other genes involved in lipid
metabolism (Johansen et al., 2011, 2014; Lewis et al., 2015; Dron
et al., 2020a, 2020b).

Most of the studies aimed at identifying the effect of the genetic
component on the presence of alterations in lipid metabolism and
the development of dyslipidemia have been performed mainly in
Anglo-Saxon and European countries. The study by Andaleon et al.
(2019) on Latin American populations is one of the most exhaustive
of this kind in this region, including Central Americans. However,
little is currently known in Latin American populations about the
genetic variants and frequencies in genes previously linked to these
conditions in other global studies.

Particularly in Costa Rica, few studies on this matter have been
published. In one study, from the Dietary Fat and Heart Disease in
Costa Rica project (also known as the Costa Rica Heart Study), they
quantified the allelic frequencies of specific variants in the APOC,
LPL, APOE, PCSK9, FADS1-two to three, and USF1 genes in
4,000 individuals from the Costa Rican Central Valley. They
reported an association of some of these variants with an
increased risk of coronary heart disease and hyperlipidemia
(Campos et al., 2001; Brown et al., 2003; Yang et al., 2004; Ruiz-
Narváez et al., 2005, 2008; Gong et al., 2011; Aslibekyan et al., 2012;
Yu et al., 2017). Other two research projects have focused on
identifying genetic variants in regions of interest, such as the LPL
gene and the APOCII promoter region in a group of 38 Costa Ricans
with hypertriglyceridemia (González-Cordero, 2018; Gutiérrez-
Ávila, 2019).

Here, we used data from 258 whole genomes from the Central
Valley of Costa Rica to identify genetic variants in genes linked to the
incidence of dyslipidemia and estimate their allelic frequencies as a
proxy of genetic burden. This is the first national portrait of the
frequency of previously reported risk variants in genes associated
with this group of diseases obtained from genomic data.
Additionally, we report the allelic frequencies of variants in genes
of interest previously identified in Costa Ricans (i.e., LDLR and
APOCII) and Latin American populations. The information
generated in this study will help guide and contextualize future
studies on dyslipidemia in Costa Rica and the region; possible next
steps include validation of 40 variants of interest in a larger

population and determining the impact of these findings on the
national healthcare system. Moreover, this study reflects the
importance of studies that include clinical, environmental, and
genetic data from patients and controls.

2 Materials and methods

2.1 Samples and genomic data

We used anonymized whole genome sequence data from two
collections. One is from the repository PSYCH-CV, a collection of
Costa Rican WGS from the NIMH-funded (National Institute of
Mental Health) study U01MH105630-04S1, which included subjects
with mania and psychosis and their relatives recruited under different
studies and anonymized in the WGS data repository (Chavarria-Soley
et al., 2021). We selected only unrelated individuals without a mental
disorder diagnosis from the families, for a total of 23 individuals. The
sequencing was carried out using the Illumina HISEQ 2000 with paired
ends. The data had a minimum coverage of 30x and a read length of
100 pb. The data were previously aligned with the BWA-MEM tool of
the BWA V0.7.15 package using the GRCH38 reference genome and
stored in CRAM format.

The second data set was from the project The Genetic
Epidemiology of Asthma in Costa Rica (dbGAP phs000988.V4.P1).
Individuals without a family relationship and an asthma diagnosis were
selected using the dbGAP metadata. In total, 234 subjects met these
criteria (called dbGAP-CV, Supplementary Table S1), and CRAM files
were downloaded from the database. The genomes of both databases
were added to a single group of 258 subjects called CR-WGS for the
variant annotation.

2.2 Variant discovery and genotype

The analysis was limited to all coordinates corresponding to the
transcriptome according to the GFF3 of Ensembl 106 for the
GRCh38 genome, including miRNAs and lncRNAs. We call these
regions the exome. Additionally, we extracted two sets of ancestry
informative markers (AIMs) sets reported by Campos-Sánchez et al.
(2013) and by Galanter et al. (2012). Each coordinate interval was
extended to 300 bp upstream and downstream (Table 1).

As a quality control measure on the reads, duplicate reads were
first removed using the MarkDuplicates tool, which is part of the
GATK package. Next, to adjust for observed systematic errors
caused by the sequencer, the GATK machine learning model
called Base Quality Score Recalibrator was implemented using
the BaseRecalibrator and ApplyBQSR commands.

We used HaplotypeCaller, GenomicsDBImport,
GenotypeGVCF, and MergeVcfs for indel-like or SNV-like
variant calling. During this process, tGRCh38/hg38 was selected
as the reference genome and the dbSNP Build 151 variant database
was used as the reference source for variants.

As a quality check on the identified variants, an error score
referred to as VQSLOD was calculated for the identified variants
using GATK’s machine learning model, Variant Quality Score
Recalibrator (VQSR). To do this, metrics obtained for each
variant are fed to the VQSR model, including variant depth,
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strand bias, and quality of the variant assigned in the previous stage,
along with lists of variants with different degrees of confidence
(DePristo et al., 2011). The evaluation of variant calling errors was
performed for indels and SNVs separately.

The databases supplied to the VQSR model are stored in GATK’s
repository “Resource bundle” “genomics-public-data”, except for the
dbSNP v151 database, which was extracted from the FTP site of the
National Center for Biotechnology Information of the United States
(NCBI). To calculate the error score in the indels, those highly validated
in theMills and 1,000 genomes gold standard data set (Mills et al., 2006)
were considered true variants. The training data were the genotypes
from the first phase of the 1000 Genomes Project (1KGP) study
obtained with the Axiom Exome Plus chip. The dbSNP
v151 database was also supplied to the model, but it was considered
a database with a lower degree of validation.

To calculate error scores for SNVs, we considered true variants as
those found in the HapMap database phase 3 release 3, part of the
International HapMap Project (Consortium et al., 2010). The training
databases were defined as the panel of phase 3 1KGP genotyped with
the OMNI 2.5 chip and the database of genotypes with a high
confidence level from phase 1 of 1KGP. Finally, the dbSNP database
was the reference source for known variants. Using ApplyVQSR, we
excluded from further analysis variants with a VQSLOD of less than
97.5% of SNVs-like variants and 95% of indel-like variants. This
bioinformatics pipeline is summarized in Figure 1.

2.3 Evaluation of bioinformatics processing

Using the GATK CollectVariantCallingMetrics tool, the
transition vs. transversion ratio (Ti/Tv) and the heterozygous vs.

homozygous alternative allele ratio (Het/non-ref Hom) were
calculated, metrics commonly used to describe the quality of the
variant calling process. These metrics were obtained separately for
each chromosome and at the exome level. The values obtained were
compared between both Costa Rican cohorts using a t-test.

Additionally, to evaluate the concordance between the allele
frequencies, a linear model was generated to contrast the frequencies
previously reported in the Costa Rica Heart Study publications and
those obtained for CR-WGS (Brown et al., 2003; Ruiz-Narváez et al.,
2005; Ruiz-Narvaez et al., 2010).

2.4 Genetic ancestry analysis

To determine if the subjects included in both Costa Rican
cohorts present an ancestry profile that fits within the pattern
observed in other Latin American populations, we used the
genotypes of 446 AIMs (Ancestry Informative Markers) described
by Galanter et al. (2012), and the ancestral populations from 1KGP
panel (European-EUR, African-AFR, and East Asian-EAS) (Auton
et al., 2015; Sudmant et al., 2015). We used the EAS group as a proxy
of Native American ancestry since most of the ancestry of Native
Americans comes from the East Asian population (Wang et al.,
2019), given the scarcity of genomic data for this population group.
Subjects from Barbados (ACB) and subjects with African ancestry
from the South West of USA (ASW) were not considered members
of AFR, nor were Utahns (CEUs) part of the EUR group since they
are Americans. The CLM (Colombia), MXL (Mexico), PEL (Peru),
and PUR (Puerto Rico) groups were considered Latin American.

The genotypes of the 446 AIMs were downloaded for
200 randomly selected individuals for each ancestral group (AFR,

TABLE 1 Genomic coordinates selected for variant calling.

Use in the study Identifier Source of coordinates Source of identifiers

Quality control analysis RNA coding regions from Ensembl Release 106

Variant training set for GATK,
‘Variant Quality Score
Recalibration’ (VQSR)

RNA coding regions from Ensembl Release 106

Ancestry estimates based on
Costa Ricans studies

78 variants from dbSNP dbSNP variants: Ensembl Genes 106
database, GRCh38.p13.genome coordinates

extracted from BioMart

Campos-Sánchez et al. (2013)

Ancestry estimates compared
to American groups from

1KGP phase 3

446 variants from dbSNP dbSNP variants: Ensembl Genes 106
database, GRCh38.p13. genome coordinates

extracted from BioMart

Galanter et al. (2012)

Exonic variants in genes
involved in lipid metabolism

and dyslipidemias

ABCA1, ABCG1, ABCG4, ABCG5, ABCG8,
ABHD5, ANGPTL3, APOA1, APOA2,

APOA4, APOA5, APOB, APOC1, APOC2,
APOC3, APOC4, APOD, APOE, APOF,
APOH, APOL1, APOL2, APOL3, APOL4,
APOL5, APOL6, APOM, APOO, CD36,

CELSR2, CETP, CILP2, CREB3L3,
CYP26A1, FADS1, FADS2, FADS3,
GALNT2, GCKR, GPD1, GPIHBP1,

HMGCR, KLHL8, LCAT, LDLR, LDLRAP1,
LIPA, LIPC, LIPE, LIPG, LMF1, LPL, LRP1,
MLXIPL, MTTP, MYLIP, NCAN, NPC1L1,
PCSK9, PLA2G7, PLIN1, PLTP, PNPLA2,
PPARA, SCARB1, SORT1, STAP1, TRIB1,

USF1

Genetic symbols: Ensembl Genes 106
database, GRCh38.p13. genome coordinates

extracted from BioMart

Plaisier et al. (2009), Nakayama et al. (2010),
Johansen et al. (2011, 2014), Johansen and
Hegele (2011), Vasquez-Vidal (2014), Lewis
et al. (2015), Dron et al. (2019, 2020b), Sarraju

and Knowles (2019)
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EUR, EAS) and all available samples for ACB, ASW, CEU, CLM,
MXL, PEL, and PUR individuals. Genotypes were extracted for both
Costa Rican cohorts, which were integrated with the 1KGP dataset.
Principal component analysis (PCA) was performed using the
number of alternative alleles by AIM. Only AIMs without
missing genotypes were included. We estimated the similarity
relationships between American populations and AFR, EUR, and
EAS using the allelic frequencies in the TreeMix v1.13 program
(Pickrell and Pritchard, 2012).

To assess whether the ancestry of both Costa Rican cohorts was
consistent with the profile previously reported for subjects from
the Costa Rican Central Valley, we performed a genetic admixture
analysis using STRUCTURE v2.3.4 (Hubisz et al., 2009) using
78 AIMs described by Campos-Sánchez et al. (2013). We used the
same ancestral groups as before (AFR, EUR, EAS). We integrated
the genotypes for such AIMs in both Costa Rican cohorts and those
reported for Costa Rican groups from the North Region (2013-
NR), South Region (2013-SR), the Caribbean region (2013-CR),
and the Ventral Valley (2013-CV) (Campos-Sánchez et al., 2013).
The integrated database contained 1,067 individuals for the
analysis in STRUCTURE (Hubisz et al., 2009). The run
parameters were: ‘Length of Burnin Period’ or the number of
iterations to reduce the effect of the initial configuration set to
50,000, ‘Number of MCMC Reps after Burnin’ or the number of
iterations of the model to obtain accurate estimates set to 100,000,
genetically admixed individuals, the groups could have correlated
allele frequencies, and the ancestral groups were EUR, AFR and
EAS groups. With these parameters, we performed ten simulations
assuming that the population had three ancestral groups. These
results were merged using CLUMPP and DISTRUCT through the
CLUMPAK tool (Rosenberg, 2004; Jakobsson and Rosenberg,
2007; Kopelman et al., 2015). Three plots were generated, one
representing genetic structure, a ternary plot of genetic admixture,
and a principal component analysis (PCA) using the number of
alternative alleles per variant. Only AIMs with complete genotypes

were included. Kruskal-Wallis test was applied to determine
ancestry similarities among Costa Rican and Latin American
populations, from there we built 95% confidence intervals
considering Tukey correction to identify specific differences
between pairs of populations.

2.5 Annotation of variants

We studied the variants identified within a set of 69 genes that
have a key role in lipid metabolism or that contain variants that have
been associated with changes in blood lipid levels (Table 1). We
annotated the variants found in the regions of interest with
information hosted in Ensembl release 109 using its REST API
v15.5 (Cunningham et al., 2021). Pathogenicity predictions,
phenotypic associations, and population genetics information
were extracted for each variant.

The variant type was determined using Variant Effect Predictor
(VEP) v7 (Cunningham et al., 2021). In silico predictions of
pathogenicity for missense variants were generated using the
traditional tools PolyPhen2 and SIFT (Flanagan et al., 2010) and
two more recently developed tools, ClinPred and REVEL (Ioannidis
et al., 2016; Alirezaie et al., 2018; Gunning et al., 2021). Phenotypic
association annotations were done with Ensembl API REST which
uses ClinVar and NHGRI-EBI GWAS catalog databases (Landrum
et al., 2017; Buniello et al., 2019).

To contrast the variant´s population frequencies found in the
CR-WGS group with those reported in extensively characterized
populations, we collected the frequencies of the 1KGP, EAS, EUR,
AFR, AMR, and all 1KGP (ALL) groups. Fisher’s exact tests were
performed to determine which of the variants found have a different
allelic frequency in the group of Costa Rican genomes compared to
the 1KGP populations. A significance level of 0.05 adjusted with the
Bonferroni correction was used as the threshold to determine if the
frequency between the two populations was different.

FIGURE 1
Bioinformatics pipeline based on the Best Practices Variant Calling from GATK.
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2.6 Identification and characterization of
variants of interest

The study considered a polymorphic site as a variant of
interest if (1) it was a risk variant according to three or more
sources of functional annotation or if (2) the variant was
previously reported in Costa Rica or Latin America within the
context of metabolism of lipids and dyslipidemias. This produced
two lists of variants of interest: one consisted of risk variants
annotated by bioinformatic predictions found in the genes from
Table 1, and the other includes the variants that have been
reported in Costa Ricans and Latin Americans in the genes of
interest in the context of lipid metabolism or dyslipidemia.

The list of risk variants with more than one count determined by
bioinformatic predictions met at least three of the following criteria:
(1) be categorized by PolyPhen2 as possibly harmful (P) or probably
harmful (D), (2) being categorized by SiFT as a deleterious variant by
having a score less than 0.05, (3) having an index calculated by
REVEL greater than 0.5 (it groups 13 predictive tools), (4) having the
ClinPred score greater than 0.5 or (5) having a phenotype reported
by ClinVar or NHGRI-EBI GWAS catalog which was related to lipid
metabolism or an increased risk of developing and suffering from
dyslipidemia. The pharmacogenomics variants were identified from
ClinVar and NHGRI-EBI GWAS catalog and annotated with
PharmGKB (www.pharmgkb.org).

We used the jVenn tool (Bardou et al., 2014) to generate Venn
diagrams to visualize the consensus between the different sources in
determining risk variants.

We calculated the number of variants in homozygous and
heterozygous states, and the total present per subject to reflect
the genetic burden of dyslipidemia-related variants in the
population. These metrics were obtained for the set of variants
categorized by VEP as LOW, MODERATE, and HIGH risk, and the
set of variants categorized as variants of interest in the present study.
The data was represented in distribution plots.

2.7 Code for bioinformatic analysis

In addition to the tools mentioned above, we used the free
programming languages Python 3.7 and R 4.1.2. Python was used to
manage the variant call workflow, annotate the variants, manipulate the
data, and generate visualizations. Rwas used to generate the visualizations
produced from the TreeMix results. All code can be found in the GitHub
repository https://github.com/jcvalverdehernandez/cr_dislipidemia_
2022.

3 Results

3.1 Variant call metrics met exome quality
standards

The relationship Ti/Tv obtained for both datasets had a mean
of 2.33 (Figure 2A). For exomes, it is reported that Ti/Tv values
around 3.0 usually indicate that the data have adequate quality
(Wang et al., 2015). This metric is sensitive to the genome region
and functionality; thus, including intronic regions could reduce
this ratio, similar to what we observe in our data. We used
transcriptome coordinates that include coding and non-coding
sequences (miRNAs and lncRNAs), as specified in the transcript
coordinates from Ensembl 106.

The average HET/non-ref HOM ratio observed for both
cohorts was 1.66 (Figure 2B). The expected value of this index
is 2.0 for whole-genome sequencing variants. However, this
highly depends on ancestry (Wang et al., 2015). In the study
by Wang et al. (2015), average exome estimates varied from 1.4 to
two in Asians and Africans, respectively.

Additionally, an exome average of 137,593 SNVs and
13,273 indels were identified per individual for both cohorts
(Figure 2C). All metrics per chromosome and cohort are in
Supplementary Figure S1; Supplementary Table S1. Moreover,

FIGURE 2
Exome quality metrics for the variant calling process performed in the PSYCH-CV and dbGAP-CV cohorts. (A) TI/TV ratio per individual calculated
from variants reported in dbSNP, (B) HET/non-ref HOM ratio per individual, (C) number of variants identified per individual.
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PSYCH-CV and dbGAP-CV presented similar metrics for the three
metrics (t-test p-value >0.05).

Finally, allelic frequencies previously reported at various
polymorphic sites in the Costa Rica Heart Study were significantly
correlated (r = 1.00, p = 1.8e-13) with those observed in CR-WGS. This
result suggests a high similarity between these cohorts and that variant
calling was accurate (Supplementary Figure S2).

3.2 The ancestry of Costa Rican genomes is
consistent with previous studies

The ancestry analyses validated that PSYCH-CV and dbGAP-
CV cohorts have a genetic profile consistent with that expected from
a random sample of Costa Ricans from the Central Valley. They also
reveal an ancestry profile similar to other Latin American groups in
1KGP, such as CLM, MXL, and PEL.

Principal component analysis (PCA) captured around 40.58%
(between principal components 1 and 2) of the genetic variation
using the panel of 446 AIMs in the three ancestral groups and the
six American groups (Figure 3A). We observed that the PSYCH-
CV and dbGAP-CV individuals appear to have more similarity
with the Colombian (CLM) subjects in European and Asian
ancestry, and in the AFR only for PSYCH-CV. Additionally,
PSYCH-CV presented similarities with the AFR and EAS

component of Mexicans (MXL) (Supplementary Table S3).
These observations were verified by building 95% confidence
intervals (Supplementary Table S4), which are also reflected in
the genetic structure plot (Figure 3C). The genetic distance tree
also groups Costa Rican genomes with Latin American and
European groups (Figure 3B).

When contrasting the genetic ancestry of PSYCH-CV and
dbGAP-CV using 78 AIMS we observed complete similarity in all
three ancestry components among them. Using these same
markers we compared ancestry with the Costa Rican groups
described by Campos-Sánchez et al. (2013) and observed the
most significant similarity with the Central Valley group
(2013-CV) in all three ancestry components for PSYCH-CV,
but only for AFR and EAS for dbGAP-CV. Moreover, both
groups showed similar AFR ancestry compared to the South
(2013-SR), and EAS ancestry compared to the Caribbean
Region (2013-CR). PSYCH-CV also presented AFR ancestry
similar to 2013-CR (Figures 4A, B; Supplementary Table S3).
These observations were verified by building 95% confidence
intervals (Supplementary Table S4). The rest of the confidence
intervals reflected statistically significant differences. The PCA
captured approximately 36.33% of the genetic variation between
principal components 1 and 2. These results provided confidence
that CR-WGS represented the Central Valley population of
Costa Rica.

FIGURE 3
Genetic similarity between Latin American individuals based on genotypes of 446 AIMs reported by Galanter et al. (2012). (A) Principal component
analysis. (B) Genetic relationships between the populations included in the analysis according to TreeMix estimates. (C) Individual genetic structure plot.
Featured 1KGP populations - EUR: Eastern Europe, AFR: Africa, EAS: Eastern Asia, ACB: Barbados, ASW: African Ancestry in Southwest US, CEU: Utah,
CLM: Colombia, MXL: Mexico, PEL: Peru, PUR: Puerto Rico, PSYCH-CV: Psychiatric study Central Valley, dbGAP-CV: dbGAP Central Valley.
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3.3 Polymorphic sites identified in genes of
interest

We identified 2,600 polymorphic sites in CR-WGS in the
69 genes of interest (Table 1) consisting of 2,460 SNVs and
140 indels (Table 2). However, only 2,553 were annotated in
dbSNP. We detected 47 new variants not reported previously in
dbSNP. Multiallelic variants represented 2.9% of all variants
detected.

We classified 2,277 variants (unique rsIDs) into 2,769 impact
annotations assigned in VEP based on the in silico consequence of
the variant according to the Sequence Ontology (SO) term. This means
that a variant could have different impact annotations depending on the
region of the gene and the alternative transcript they belong to. For
example, the rs5088 in APOA2 had five annotations: intron variant,

synonymous variant, 3-prime UTR variant, downstream gene variant,
and splice region variant; three had a MODIFIER, and two had a LOW
impact. In summary, 349 variants had a LOW impact (low risk of
affecting gene transcripts), 397 MODERATE, and eight HIGH risks. It
was impossible to assign an expected risk to consequences assigned to
1,941 of the variants using VEP; these consequences are referred to as
MODIFIER (Supplementary Table S3). To get an idea about the genetic
burden for dyslipidemia in our sample, we plotted the number of
variants per individual (Figures 5A–C). The subjects presented on
average 56.22 LOW impact variants (34.9 and 21.36 in heterozygous
and homozygous state, respectively), 47.29 MODERATE impact
variants (27.23 and 20.06 in heterozygous and homozygous state,
respectively), and 1.03 HIGH impact variants (0.82 and 0.43 in
heterozygous and homozygous state, respectively).

According to Fisher’s exact tests implemented to contrast the
allele frequencies of the 2,174 variants detected in CR-WGS and
those of the groups belonging to 1KGP, we observed that AMR,
EUR, and ALL groups are the most similar to CR-WGS (Figure 6A).
These differed individually from CR-WGS in 54, 214, and 452 allelic
frequency variants, respectively (Figure 6B). On the other hand, EAS
and AFR presented statistically significant differences in the
frequency of the alleles of 694 and 1,082 polymorphic sites
compared to CR-WGS, respectively (Supplementary Figure S4).

The eight variants associated with high-risk consequences
according to VEP are summarized in Table 3. These are located
in eight genes and include stop gained and start lost annotations;
most were heterozygous and presented 1 to 37 copies in CR-

FIGURE 4
Genetic admixture in PSYCH-CV and dbGAP-CV using 78 AIMs reported by Campos-Sánchez et al. (2013). (A) Principal component analysis, (B)
Genetic admixture ternary diagram. (C) Individual genetic structure plot. AFR: Africa, EAS: East Asia, EUR: Europe, AMR: Latin America, 2013-CR: Costa
Ricans from the Caribbean Region, 2013-NR: Costa Ricans from the North Zone, 2013-SR: Costa Ricans from the South Zone, 2013-CV: Costa Ricans
from the Central Valley, PSYCH-CV: Psychiatric study Central Valley, dbGAP-CV: dbGAP Central Valley.

TABLE 2 Variant calling statistics for the panel of 69 genes involved in lipid
metabolism.

Metric Total SNVs Indels

Variants identified 2,600 2,460 140

Not in dbSNP 47 44 3

In dbSNP 2,553 2,416 137

Multiallelic 75 37 38

Biallelic 2,525 2,423 102
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WGS. Interestingly, rs328G and rs132642T are homozygous in
two different individuals each. SNV rs328 was reported as
benign in other Latin American studies and ClinVar
(Table 6), while rs132642 has no annotation in ClinVar.
Allele frequencies from 1KGP and gnomAD exomes are low
(up to 11%, Table 3).

Forty-one variants in 21 genes were associated with
phenotypic traits categorized as protective, drug response,
association, risk factor, likely pathogenic, and pathogenic
(Figure 7). The genes with more than one variant with
phenotypic traits categorized as risk or pathogenic factors
(i.e., risk factor, pathogenic or likely pathogenic) were APOA5,
APOB, APOE, APOL1, CD36, GCKR, LDLR, LPL, PCSK9, and
PLA2G7.

Seven variants were annotated with features associated with drug
response and two with protective features in APOB, APOE, and
HMGCR genes (Table 4). The allelic frequencies of the alternate
allele ranged from 0.01 to 0.76. These nine variants are present in
1KGP populations but we observed statistical differences in the allelic
frequencies of seven of the variants. All variants presented annotations
in ClinVar, including associations with traits such as warfarin,
atorvastatin, and statins responses, and one protective against
metabolic syndrome.

Of the missense variants identified within the genes of interest
listed in Table 1, 18 were categorized as risk variants by more than

three sources used for functional annotation and had more than one
count in CR-WGS (Figure 8; Table 5). These variants were located in
16 genes. The alternate allele frequencies ranged from 0.00389 to
0.09143 and 0.00001–0.08852 in CR-WGS and ALL, respectively.
Thirteen variants were only present in CR-WGS and ALL; three were
reported in AMR and CR-WGS, one in EUR and AMR, one in AFR
and AMR, and one in EAS and AMR. In this list, only rs1801689 in
APOH presented allelic frequencies significantly different from AFR
and EAS, and rs202022169 in CELSR2 showed statistical differences
with ALL. Additionally, only nine variants had a phenotype
association in ClinVar, GWAS, or Teslovich et al. (2010),
including sitosterolemia, cholesterol levels, hypertriglyceridemia,
apolipoproteinemia, familial hypercholesterolemia, among others.

Finally, only eight variants previously linked to lipid metabolism
or the development of dyslipidemia in Costa Ricans and Latin
Americans were found in CR-WGS (Table 6). These variants
were in ABCA1, ABCG8, CELSR2, and LPL genes, with
frequencies ranging from 0.004 to 0.031. The variant
rs1231383321 in LPL is a private variant found in one individual
(heterozygous, sequencing depth 16:21) from CR-WGS.

In summary, we identified 40 variants of interest related to
dyslipidemia in CR-WGS. Subjects in our sample presented on
average 7.49 of these variants (Figure 5D). Moreover, 60% of the
subjects have two or three variants in homozygous state and 20% of
the subjects present five variants in heterozygous states.

FIGURE 5
Variant burden of (A) low, (B) moderate, and (C) high impact variants annotated by VEP, and (D) the 40 variants of interest selected in the present
study.
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FIGURE 6
Observed differences between allelic frequencies in genes associatedwith lipidmetabolism in Costa Ricans compared to those reported in 1KGP. (A)
Probability, according to Fisher’s test, that the polymorphic sites have differences in their allele frequencies. The dotted line marks the significance
threshold with the Bonferroni fit. Variants are categorized as LOW, MODERATE, and HIGH by VEP. (B) The number of variants with allelic frequencies
significantly different from those observed in the Costa Rican cohort studied. CR-WGS: Costa Rican genomes evaluated in this study, ALL: all
Subjects from 1KGP phase 3, EAS: East Asia, EUR: Europe, AFR: Africa, AMR: Latin America.
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4 Discussion

4.1 Exome quality metrics

The bioinformatics workflow used to perform variant calling on
the PSYCH-CV and dbGAP-CV cohorts revealed metrics (Ti/Tv
and HET/non-ref HOM ratios) within expected values for adequate
quality exomes (Wang et al., 2015). Although Ti/Tv ratios were
lower than the standard (Wang et al., 2015), we must consider that
the exome regions included mature transcripts, miRNAs, and
lncRNAs coordinates in Ensembl 106 that could impact lowering
the values of this metric. Moreover, HET/non-ref HOM ratios for
both cohorts were within the standard for Asians and Africans since
this metric is sensitive to ancestry (Wang et al., 2015).

On average, each individual from CR-WGS contained 137k
SNVs per exome (210 Mb), but the regions included non-coding
sequences that can accumulate more variants. According to the
literature, the expected count of SNVs per exome (33 Mb) ranges
between 15,000 and 20,000, the determining factor of this variation
being the coordinates used to define the exome and the ancestry (Ng
et al., 2009; Stitziel et al., 2011). In contrast, there are three million
SNPs in a genome (Stitziel et al., 2011). Moreover, the average Ti/Tv
ratio, HET/non-ref HOM ratio, and SNV per individual were almost
identical in PSYCH-CV and dbGAP-CV (t-test p-value >0.05),
confirming the possibility of adding both cohorts for variant
annotation.

4.2 Concordance with the ancestry of Costa
Ricans from the Central Valley

The results obtained from the ancestry analysis showed that
PSYCH-CV and dbGAP-CV samples show a genetic admixture
consistent with Latin American populations and ancestry studies
from the Central Valley (Campos-Sánchez et al., 2013). There is also
a high concordance between the allele frequencies reported for CR-
WGS to the sample of Costa Ricans from the Central Valley without
diagnosed disease studied in the Costa Rica Heart Study. All this

suggests that the allelic frequencies obtained from CR-WGS are
representative of the general population of the Central Valley of
Costa Rica and that conclusions from this study can have
implications in healthcare policies.

CR-WGS presented an ancestry profile similar to some Latin
American groups reported in 1KGP. Of the four Hispanic groups
included in 1KGP, the Costa Rican group closely resembles the EUR
and EAS component of Colombians (AFR also for PSYCH-CV), and
the AFR and EAS component of Mexicans only for PSYCH-CV.
This is consistent with previous studies as reviewed by (Adhikari
et al., 2017; Wang et al., 2019). The impact of this finding in the
study of dyslipidemias in Latin America should be studied further to
determine whether conclusions derived from Costa Rican
populations apply to other Latin American groups with high
European ancestry.

PSYCH-CV and dbGAP-CV samples have comparable
admixture proportions to Central Valley samples from Campos-
Sánchez et al. (2013), which is consistent with the origin of both
cohorts. Notably, the European component was lower in CR-WGS
(mean 0.47) and the Asian (used as a proxy of Amerindian) was
higher (mean 0.46) compared to Campos-Sánchez et al. (2013)
(EUR 0.569 and EAS 0.364). This may be because, in the present
study, the East Asian population (EAS) reported in 1KGP was used
as the ancestral group instead of an Amerindian group, as in the
study by Campos-Sánchez et al. (2013). Although EAS has been used
in previous ancestry studies as a group analogous to Native
Americans due to their historical origin and because EAS is a
broad and standardized group (Wang et al., 2019), it is
recommended in future studies to use genomic information from
Native Americans for ancestry estimations.

4.3 Pharmacogenomic variants

According to the functional annotation extracted from ClinVar
and GWAS Catalog, at least nine identified variants have been
reported to impact either the efficacy, safety, or metabolism of
therapeutic agents (Table 3). Eight of these variants are found in

TABLE 3 High-risk variants frequency and presence of homozygous individuals for the alternate allele in CR-WGS.

Gene dbSNP
rsID

Alleles
(REF/
ALT)

Impact Alternative
allele

frequency in
CR-WGS
(count)

Samples
homozygous for
least frequent

allele

Depth of
REF:ALT in

least
frequent
allele

1KGP
frequency
Global for

least frequent
allele

gnomAD
exomes
frequency

Global for least
frequent allele

APOC4 rs5164 G/A stop_gained 0.0019 (1) 0.0027 0.0004

APOL3 rs132642 T/A start_lost 0.9027 (464) 2 0:30, 0:37 0.0584 0.1146

APOL4 rs192225524 C/A stop_gained 0.0311 (16) 0.0009 0.0005

CD36 rs3211938 T/G stop_gained 0.0019 (1) 0.0309 0.0061

GCKR rs146053779 C/T stop_gained 0.0096 (5) 0.0014 0.0009

GPD1 rs144009925 A/G start_lost 0.0039 (2) - 0.0003

LPL rs328 C/G stop_gained 0.0719 (37) 2 0:27, 1:34 0.0924 0.0921

SCARB1 rs749801989 T/C start_lost 0.0116 (6) - 0.0001
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PharmGKB, but three have no conclusive evidence, or no
association was found with a pharmacogenomics phenotype.

Four variants in APOB showed phenotypes associated with
response to warfarin, according to ClinVar; they all presented
frequencies above 34%. The same variants are reported in
PharmGKB, but only two have a significant association with
warfarin. Variants rs1042034 and rs693 were studied in Korean
patients under warfarin treatment and the risk of hemorrhage, but
the T and G alleles, respectively, were not associated (Yee et al.,
2019). However, in the same study, the G allele in rs1367117 and
the G allele in rs6789899 were associated with an increased risk of
hemorrhage when using warfarin in people with heart valve
replacement.

It has been observed in previous studies that the variants
rs429358 and rs7412 in APOE can alter the efficacy of statin-type
drugs such as lovastatin, atorvastatin, or pravastatin to reduce blood
cholesterol levels (Mega et al., 2009; Ciuculete et al., 2017; Guan et al.,

2019). A study in hypercholesterolemic Chilean patients showed that
these variants impact statins response (Lagos et al., 2015). Campos et al.
(2001) studied the interaction of APOE genotypes (using the HhaI
enzyme) and fat plasma with lipoprotein levels and low-density
lipoproteins in Costa Ricans. Moreover, rs7412 has shown protective
effects against SARS-CoV-2 (Espinosa-Salinas et al., 2022). Due to their
high allelic frequencies, these variants are candidates for further
pharmacogenomic studies in Costa Ricans and Latin American
populations (Table 4). On the other hand, rs769450 is an intron
variant interpreted as a drug response to warfarin in ClinVar but
without assertion criteria. However, in dbSNP, this variant is supported
by Musunuru et al. (2012) and Son et al. (2015) associated with
decreased risk of elevated triglycerides and LDL (low-density
lipoprotein) phenotype, respectively. Additionally, in PharmGKB,
allele A is not associated with the risk of hemorrhage during
warfarin treatment in people with heart valve replacement compared
to allele G.

FIGURE 7
Variants with clinical significance according to the phenotypic associations reported in ClinVar.
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In HMGCR, the genotype TT in rs17238540 is associated with
reduced LDL cholesterol in patients treated with simvastatin (Krauss
et al., 2008). Furthermore, the genotype GT, compared to TT,
showed a decreased reduction in total cholesterol under
pravastatin treatment (Chasman et al., 2004). This marker should
be studied in more detail in patients under statin treatment.

The only protective variant found was rs3816873 inMTTP. This
is a microsomal triglyceride transfer protein that catalyzes the
transport of triglyceride, cholesteryl ester, and phospholipid
between phospholipid surfaces. This variant was associated with
protection against metabolic syndrome in ClinVar and OMIM
(https://omim.org/entry/157147#0009) and is a benign variant in
abetalipoproteinemia.

4.4 Risk variants

Alterations in the expression levels or the functioning of the
genes involved in lipid metabolism evaluated in this study can cause
imbalances in the lipid profile and lead to the development of
dyslipidemia. Eight variants presented high impact in VEP; only
two were homozygous for the recessive allele (Table 3). For instance,
rs132642 in APOL3 had no annotation in ClinVar, and rs328 in LPL
is annotated as benign in the phenotype hyperlipoproteinemia type
I. This mutation truncates the last two codons of the protein.
Evidence from Kobayashi et al. (1992) was from a heterozygous
individual and performed expression studies in Cos-1 cells.
Faustinella et al. (1991) presented the case of two homozygous

brothers in rs328 with another mutation Asp156Gly in LPL. They
confirmed in vitro that the carboxyl terminus of LPL was not
responsible for hyperlipoproteinemia type I. The minor allele
frequencies of rs132642 and rs328 are 5.8% and 9.25% in dbSNP
(1KGP Global group). All other five high-risk variants identified in
Costa Ricans are presented as heterozygous, and only two have
ClinVar annotations with uncertain or conflicting interpretations
(CD36, GCKR, and GPD1). In dbSNP, five of these variants (rs5164,
rs192225524, rs146053779, rs144009925, and rs749801989) have
frequencies below 0.1% in the Global populations of 1KGP and
gnomAD exomes. These deserve further study in Latin American
populations because of their low allelic frequencies in the same
databases (0.3%).

Sixteen out of the 69 genes evaluated contained risk variants
defined by more than three bioinformatic tools (Figure 8; Table 4).
The genes of the apolipoprotein family with risk variants include
APOA5, APOE, APOH, and APOL1. According to Su & Peng (Su
and Peng, 2020), APOA5 and APOE participate in the assembly of
VLDLs. The study by Zhou et al. (2018) reported that variants in
APOA tend to impact plasma triglyceride levels more than
cholesterol. Several studies have linked the presence of the C
allele in SNV rs3135506 with elevated plasma triglyceride levels
(Ruiz-Narváez et al., 2005; Li et al., 2014). Surendran et al. (2012)
found an allele frequency of 21% in patients with severe
hypertriglyceridemia, while the control group presented a
frequency of 9%. This variant reached an allelic frequency of 9%
in the Costa Rican group and did not show significant differences
with the other 1KGP groups.

TABLE 4 Variants found in genes of interest that are associated phenotypically with pharmacogenomic or protective traits against diseases. CR-WGS: Costa Rican
genomes evaluated in this study, ALL: all Subjects from 1KGP phase 3, EAS: East Asia, EUR: Europe, AFR: Africa, AMR: Latin America. * Significantly different allelic
frequency (p < 0.05) compared to CR-WGS.

Gene dbSNP
rsID

Alleles
(REF/ALT)

Alternative allele frequency Protective or pharmacogenetic traits

CR-
WGS

1KGP Phase 3

ALL EUR EAS AFR AMR

APOB rs1042034 C/T 0.76163 0.62959* 0.78230 0.27976* 0.87594* 0.74927 Allele T per ClinVar: Warfarin response

APOB rs1367117 G/A 0.34496 0.16932* 0.29821 0.11507* 0.07791* 0.28674 Allele A per ClinVar: Warfarin response Allele A per
HGRI-EBI GWAS catalog: Medication use HMG CoA
reductase inhibitors

APOB rs679899 G/A 0.40116 0.48502 0.47415 0.86408* 0.13010* 0.39193 Allele A per ClinVar: Warfarin response

APOB rs693 G/A 0.44961 0.25099* 0.44234 0.06150* 0.20953* 0.37752 Allele A per ClinVar:Warfarin response

MTTP rs3816873 T/C 0.27432 0.24980 0.26043 0.13591* 0.26096 0.17867 Allele C per ClinVar:
Metabolic syndrome, potection against

APOE rs429358 T/C 0.07004 0.15055* 0.15506* 0.08630 0.26777* 0.10374 Allele C per ClinVar: Warfarin response

APOE rs7412 C/T 0.06615 0.07507 0.06262 0.10019 0.10287 0.04755 Allele T per ClinVar: atorvastatin response - Efficacy,
Warfarin response
Allele T per NHGRI-EBI GWAS catalog: Response to
statins (LDL cholesterol change), Lipoprotein-associated
phospholipase A2 activity change in response to
darapladib treatment in cardiovascular disease

APOE rs769450 G/A 0.31712 0.32727 0.41153 0.21825 0.35022 0.29682 Allele A per ClinVar: Warfarin response

HMGCR rs17238540 T/G 0.01362 0.03554 0.01689 - 0.10816* 0.02449 Allele G per ClinVar:Statins, attenuated cholesterol
lowering by
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On the other hand, several studies have associated the presence
of the T allele of the rs7412 variant belonging to APOE with high
blood cholesterol levels, mainly provided by LDLs, and with high
body mass index (Thompson et al., 2009; Tejedor et al., 2014).
Although the frequency of this variant in Costa Ricans is 6.6%
while that of Latin Americans registered in 1KGP is 4.75%, no
statistically significant differences were found between them;
evaluating this in other parts of the country or increasing the
size of the sample can help clarify whether this trend dissipates or
becomes more robust. Although little is known about the
molecular role of APOH in lipid metabolism, it has been
observed in various populations that the presence of some
variants associated with the functioning of this apolipoprotein
affects LDL cholesterol levels (Willer et al., 2013). The C allele of
the rs1801689 variant has been linked to changes in blood LDL
levels; this variation alters the affinity of APOHwith phospholipids

(Mather et al., 2016). The variant rs775820342 in APOL1 presented
low frequencies in CR-WGS and ALL and is not reported in
ClinVar. This is a missense variant with computational
pathogenic evidence that could be studied further.

Five risk variants were identified in three genes involved in lipid
transport, ABCA1, ABCG5, and ABCG8, from the ABC transporter
family. ABCA1 participates in the formation of HDLs by
translocating cholesterol and phospholipids from the interior of
the cell to nascent HDLs. The variant rs766619359 in this gene is a
missense mutation. The alternate T allele is almost absent in 1KGP
(0.004%) and gnomAD (0.0064% genomes, 0.0024% exomes); no
reports are available in ClinVar, suggesting that this is a pathogenic
variant.

On the other hand, ABCG5 forms a heterodimer with
ABCG8 that mediates the absorption and excretion of sterols at
multiple levels (Feingold, 2000). Of the risk variants identified, only

FIGURE 8
Concordance between sources used to identify variants of interest according to their pathogenicity or association with alterations in the lipid profile.
(A) Venn diagram with the categorization of missense variants found in genes associated with lipid metabolism and the development of hyperlipidemia.
(B) The number of variants annotated by shared sources.
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rs11887534 in ABCG8 has been associated with changes in the levels
of HDLs in the blood in response to statin treatment (Sałacka et al.,
2021). Additionally, rs200433692 in ABCG8 is a missense mutation

almost absent in population databases such as 1KGP (0.04%),
gnomAD (0.0071% genomes, 0.0088% exomes), and ExAC
(0.0116%).

TABLE 5 Allele frequency and annotation of variants that produce alterations in genes involved in lipid metabolism that are categorized as risky by more than
three sources and with more than one count in CR-WGS. CR-WGS: Costa Rican genomes evaluated in this study, ALL: all Subjects from 1KGP phase 3, EAS: East Asia,
EUR: Europe, AFR: Africa, AMR: Latin America, S: SIFT, P: PolyPhen2, R: REVEL, C: ClinPred. * Significantly different allelic frequency (p < 0.05) compared to CR-WGS.

Gene dbSNP
rsID

Alleles (REF/
ALT)

Allele frequency Annotation

CR-
WGS

1KGP Phase 3

ALL AFR EUR AMR EAS Classified
as

functional

Phenotype association

ABCA1 rs766619359 C/T 0.00778 - - - - - S, P, R, C

ABCG8 rs11887534 G/C 0.05038 0.06050 0.07639 0.07952 0.09654 0.01388 S, P ClinVar: SITOSTEROLEMIA
GWAS: C-reactive protein levels or
LDL-cholesterol levels (pleiotropy)
Teslovich: Cholesterol, total | Low-
density lipoprotein cholesterol

ABCG8 rs200433692 C/T 0.00581 0.00039 - - 0.00288 - S, P, C

APOA5 rs3135506 G/C 0.09143 0.05571 0.06732 0.06759 0.11671 - S, P ClinVar: Familial hypertriglyceridemia
GWAS: Low density lipoprotein
cholesterol levels | High density
lipoprotein cholesterol levels | Total
cholesterol levels | Total triglycerides
levels

APOE rs7412 C/T 0.06614 0.07507 0.10287 0.06262 0.04755 0.10019 S, P, R ClinVar: Apolipoproteinemia E1 |
atorvastatin response - Efficacy, Familial
type 3 hyperlipoproteinemia |
Hypercholesterolemia GWAS:
Cholesterol, total | HDL cholesterol | High
density lipoprotein cholesterol levels |
LDL cholesterol | Lipid metabolism
phenotypes | Lipoprotein A levels |
Lipoprotein-associated phospholipase A2
activity change in response to darapladib
treatment in | Response to statins (LDL
cholesterol change) | Triglyceride levels

APOH rs1801689 A/C 0.03112 0.01637 0.00151* 0.04075 0.03602 0.00099* S, P, R

APOL1 rs775820342 G/A 0.00389 - - - - - S, P, C

CD36 rs146027667 G/T 0.00389 - - - - - S, P, R

CELSR2 rs202022169 T/C 0.01937 0.00079* - - 0.00432 - S, P, R

CELSR2 rs1203365203 G/A 0.00387 - - - - - S, P, C

CREB3L3 rs779860332 C/A 0.00389 - - - - - S, P, R, C

GCKR rs146175795 G/A 0.01162 0.00439 - - 0.02161 0.00694 S, R, C ClinVar: Hypertriglyceridemia

LCAT rs4986970 A/T 0.00778 0.00838 0.00151 0.02683 0.00720 - S, P, R ClinVar: LCAT deficiency GWAS:
Apolipoprotein A1 levels, Total
cholesterol levels

LDLR rs148698650 G/A 0.00389 0.00079 0.00075 - 0.00288 - S, R ClinVar: Familial hypercholesterolemia

LIPE rs1166099993 G/A 0.00389 - - - - - S, P, C

LPL rs118204057 G/A 0.00583 0.00019 - - 0.00144 - P, R ClinVar: Hyperlipidemia, familial
combined, LPL related |
Hyperlipoproteinemia, type I GWAS:
High density lipoprotein cholesterol levels
| Triglyceride levels

PPARA rs1800206 C/G 0.03501 0.02276 0.00529* 0.05864 0.03458 - S,R ClinVar:
HYPERAPOBETALIPOPROTEINEMIA,
SUSCEPTIBILITY TO

SCARB1 rs748231262 G/A 0.00389 - - - - - S, P, R, C ClinVar: Familial hypercholesterolemia
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Risk variants were found in four genes (CELSR2, CREB3L3, GCKR,
and LCAT) with a regulatory or signaling role in lipid metabolism. No
previous research was found associating the presence of the risk variants
found in CELSR2 and CREB3L3 with alterations in the lipid profile or
risk of suffering from dyslipidemia. Moreover, alternate allele
frequencies of the variants rs1203365203 and rs779860332 were
extremely low in ALL (0.001%–0.02%) and CR-WGS (0.4%,
Table 5). Allele C in rs202022169, on the other hand, presented a
statistical difference in the allele frequency with ALL, reaching up to
1.9% in CR-WGS compared to 0.007% in ALL and 0.4% in AMR.
However, variant rs146175795 in GCKR is presented in ClinVar with
conflicting interpretations of pathogenicity, including one associated
with hypertriglyceridemia in two heterozygous individuals (Rees et al.,
2012). LCAT rs4986970 was reported as benign in ClinVar and it was
associated with a reduction in HDL cholesterol (Haase et al., 2012), it
presented a frequency of 0.7 in CR-WGS.

Five putative risk variants (0.3–3.5% frequency in CR-WGS) were
found in CD36, LDLR, LIPE, PPARA, and SCARB1 genes, involved in
lipid and lipoprotein sensing. Variant rs148698650 detected in LDLR
has been linked to alterations in lipid profile according to ClinVar,
rs1800206 in PPARA has been associated with lipid-altered phenotypes
in three studies (Vohl et al., 2000; Tai et al., 2002; Robitaille et al., 2004),
and rs748231262 in SCARB1 has one report in an Argentinian study of
familial hypercholesterolemia (Corral et al., 2018). The other two
variants have frequencies below 0.4% in CR-WGS and are absent
from ALL, AFR, EUR, AMR, and EAS.

Finally, LPL variant rs118204057 has multiple reports associated
with hyperlipidemia and hyperlipoproteinemia pathology and protein

function (Monsalve et al., 1990; Hata et al., 1992; Henderson et al.,
1992; Mailly et al., 1997; Gilbert et al., 2001; Soto et al., 2015; Ashraf
et al., 2017; Caddeo et al., 2018).Moreover, population frequencies are
low (ALL 0.019%, 0.14% AMR, 0.58% CR-WGS), and it was detected
in one individual with severe hyperlipidemia from Costa Rica
(González-Cordero, 2018). This variant deserves further study in
Costa Rica and Latin American countries.

4.5 Variants previously reported in the Latin
American region

We detected in CR-WGS the ABCA1 variant rs9282541 that was
considered a private variant in Native Americans and their
descendants (Villarreal-Molina et al., 2012; Du et al., 2020). Its
allelic frequency resembles that observed in Latin Americans
reported in 1KGP. Villarreal-Molina et al. (2012) reported in
Mexican subjects that this variant was associated with lower
levels of total cholesterol and HDL cholesterol in plasma.
Additionally, they observed that the variant’s effect depends on
the sex of the subject, probably interacting with other factors.

Two variants reported in the study by Andaleon et al. (2019),
which focused on identifying variants associated with changes in the
lipid profile of Latin Americans living in the United States, were
found in the Costa Rican cohort analyzed. The intron variant
rs4245791 in ABCG8 is not annotated in ClinVar. However,
several publications provide evidence of its relationship with total
cholesterol (Ma et al., 2010); higher cholestanol-to-cholesterol levels

TABLE 6 Variants previously reported in genes involved in lipid metabolism from Costa Rica and Latin America. CR-WGS: Costa Rican genomes evaluated in this
study, ALL: all Subjects from 1KGP phase 3, EAS: East Asia, EUR: Europe, AFR: Africa, AMR: Latin America. * Significantly different allelic frequency (p < 0.05)
compared to CR-WGS. ** Found in one individual.

Gene dbSNP
rsID

Alleles
(REF/ALT)

Frequency of alternative allele Phenotypic association with Latin
American populations

CR-
WGS

1KGP Phase 3

ALL EUR EAS AFR AMR

ABCA1 rs9282541 G/A 0.05252 0.00599* - - 0.00075* 0.04178 Allele A found mostly in Native Americans and their
descendants. Negative correlation between the early
development of coronary disease and HDL-C levels
(Villareal-Molina et al. 2012).

ABCG8 rs4245791 C/T 0.74806 0.84105* 0.68986 0.99603* 0.89334* 0.80259 A GWAS shows an association between the C allele
with levels of LDL in Latin Americans (Andaleon,
Mogil & Wheeler 2019).

CELSR2 rs12740374 G/T 0.21511 0.19548 0.21272 0.04265* 0.24735 0.20461 A GWAS shows an association between the T allele
with levels of LDL and cholesterol in Latin Americans
(Andaleon, Mogil & Wheeler 2019).

LPL rs1231383321 C/A 0.00194** - - - - - Allele A found in Costa Ricans with severe
hyperlipidemia (González Cordero 2018).

LPL rs118204057 G/A 0.00583 0.00019 - - - 0.00144 Allele A found in Costa Ricans with severe
hyperlipidemia (González Cordero 2018).

LPL rs268 A/G 0.03307 0.00519* 0.01391 - 0.00075* 0.01152 Allele A found in Costa Ricans with severe
hyperlipidemia (González Cordero 2018).

LPL rs316 C/A 0.19455 0.15255 0.12027 0.11210* 0.23676 0.14553 Allele A found in Costa Ricans with severe
hyperlipidemia (González Cordero 2018).

LPL rs328 C/G 0.07198 0.09245 0.13021 0.12202 0.06127 0.06340 Allele G is associated in Costa Ricans with a lower risk
for myocardial infarction (Yang et al. 2004).
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-an estimate of cholesterol absorption- (Silbernagel et al., 2013), and
increased plasma phytosterol concentrations, relatively elevated
LDL-C; and increased coronary artery disease risk (Calandra
et al., 2011). According to research, the variant rs12740374 in
CELSR2 influences LDL cholesterol levels in Hispanics (Samani
et al., 2007; Consortium et al., 2009; Musunuru et al., 2010).

Although the research by Andaleon et al. (2019) detected genetic
variants with a quantitative impact on plasma lipid levels for Latin
Americans, it is essential to mention that the people included in that
study reside in the United States. This means they were exposed to
different lifestyles and environmental conditions than their country
of origin. Only the environment can affect the variation of plasma
total cholesterol levels up to 21% and 29% in plasma triglyceride
levels; approximately 6% of the variation is attributed to the
interaction between environment and genetics (Elder et al., 2009).

We detected in CR-WGS four of the 15 variants described by
González Cordero (2018) in LPL (Table 6). According to a meta-
analysis, the G allele in the rs268 variant is associated with lower
plasma HDL cholesterol levels (Boes et al., 2009). This variant has a
frequency of 3.3% in CR-WGS, significantly higher compared to
ALL and AFR but not to AMR (1.1%) and EUR (1.3%). Variant
rs316 is intronic, and according to Pirim et al. (2014), it is possibly
located next to a regulatory site. The A allele in this variant has been
repeatedly associated with an increase in HDL cholesterol (Schuster
et al., 2011; Pirim et al., 2014, 2015), but it is benign in ClinVar. The
missense variant rs1231383321 was detected in one individual in
CR-WGS, and it is also reported in American gnomAD-exomes and
genomes with a frequency of 0.023% and 0.051%, respectively. The
rs118204057 variant was discussed previously.

On the other hand, we identified the LPL variant rs328 (S447*) in
CR-WGS, this was previously associated in a publication of the Costa
Rica Heart Study with a reduction in the risk of myocardial infarction
in Costa Ricans (Yang et al., 2004). The G allele suppresses the
encoding of the last two amino acids of LPL, increasing its lipase
activity. Notably, this is associated with low levels of plasma
triglycerides and increases in HDL cholesterol in healthy subjects.
However, in subjects with obesity, this allele instead is associated with
elevated levels of plasma triglycerides (Palacio-Rojas et al., 2017).

Overall, this study presents the reanalysis of Costa Ricans’ genomic
data to estimate dyslipidemia variants’ baseline frequencies. The finding
that these genomes’ ancestry accurately resembles those of Central
Valley and some Latin American populations is relevant, considering
the low amount of genomic data in these populations to derive
conclusions about the genetic burden in the general population.

The study identified 2,600 variants in 69 genes involved in lipid
metabolism in the genomes of people from the Central Valley of Costa
Rica. Among these, 33 variants have the potential to affect the
functioning of these genes, some have been directly linked to the
development of hyperlipidemia, and some could affect the
performance of proteins involved in lipid metabolism according to
bioinformatic analysis. However, some have not been directly associated
with developing such conditions in the literature. On the other hand, we
found seven variants with pharmacogenomic relevance, several of
which can modulate the subject’s response to the application of
statin-type drugs, therapies commonly used to treat cases of severe
hyperlipidemia. Our analysis of the number of variants per individual
for the 40 variants of interest suggests an important genetic burden for
dyslipidemia in our sample; however, we could not determine the

relationship of these variants with dyslipidemia phenotypes due to the
lack of metadata associated with the datasets analyzed.

In the future, it is essential to develop studies that capture
environmental, genotypic, and phenotypic data from Costa Ricans
living in Costa Rica to understand more clearly the dynamics that
participate in the incidence of dyslipidemia. These efforts can be
focused on the 23 genes and 40 variants identified in this study, which
can be analyzed with traditional genotyping methodologies (i.e., PCR,
RFLP, Sanger sequencing) reducing costs. Alternatively, genetic
analysis using genome sequencing, exome sequencing, or a panel
of genes involved in lipid metabolism, such as the LipidSeq panel
described by Johansen et al. (2014), could help to identify variants in
affected individuals. In an Argentinian study, this strategy has already
been used (Corral et al., 2018), where they sequenced only genes
linked to lipid metabolism. Additionally, copy number variants
should be studied as they have been involved in certain
dyslipidemia disorders (Iacocca and Hegele, 2018). Moreover, the
abundant clinical information hosted in the Costa Rican Social
Security System (Caja Costarricense del Seguro Social - C.C.S.S.)
could strengthen this type of genomic study. Eventually, functional
validation of the variants detected in patients should be performed to
provide conclusive evidence of the association with dyslipidemia.
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