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Objective: Epithelial-mesenchymal transition (EMT) is linked to an unfavorable
prognosis in oral squamous cell carcinoma (OSCC). Here, we aimed to develop an
EMT gene signature for OSCC prognosis.

Methods: In TCGA dataset, prognosis-related EMT genes with p < 0.05 were screened in
OSCC. An EMT gene signature was then conducted with LASSOmethod. The efficacy of this
signature in predicting prognosis was externally verified in theGSE41613 dataset. Correlations
between this signature and stromal/immune scores and immune cell infiltration were
assessed by ESTIMATE and CIBERSORT algorithms. GSEA was applied for exploring
significant signaling pathways activated in high- and low-risk phenotypes. Expression of
each gene was validated in 40 paired OSCC and normal tissues via RT-qPCR.

Results: A prognostic 9-EMT gene signature was constructed in OSCC. High risk score
predicted poorer clinical outcomes than low risk score. ROCs confirmed the well
performance on predicting 1-, 3- and 5-year survival. Multivariate cox analysis revealed
that this signature was independently predictive of OSCC prognosis. The well predictive
efficacy was validated in the GSE41613 dataset. Furthermore, this signature was distinctly
related to stromal/immune scores and immune cell infiltration in OSCC. Distinct pathways
were activated in two subgroups. After validation, AREG, COL5A3, DKK1, GAS1, GPX7 and
PLOD2 were distinctly upregulated and SFRP1 was downregulated in OSCC than normal

tissues.

Conclusion: Our data identified and verified a robust EMT gene signature in OSCC,
which provided a novel clinical tool for predicting prognosis and several targets against
OSCC therapy.
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Introduction

Oral squamous cell carcinoma (OSCC) represents the predominant
type of head and neck squamous cell carcinoma (Park et al., 2019).
Surgery, radiotherapy, as well as chemotherapy are themain therapeutic
strategies of OSCC (Zhao et al., 2020). The 5-year survival rate is only
50% because of regional invasion as well as lymph node/distant
metastases (Liu et al., 2020). Conventional prognostic factors, e.g.,
stage, are far from optimal (Omori et al., 2020). Although many
researches have proposed prognostic markers for OSCC, most of
them only focused on several well-studied markers (Almangush
et al., 2017). Furthermore, these researches have been carried out in
small cohorts, which is difficult to utilize these molecular markers for
predicting OSCC prognosis in daily clinical practice (Ju et al., 2020).

Epithelial-mesenchymal transition (EMT) is a dynamic process in
which epithelial cells acquire mesenchymal features (Ling et al., 2021),
leading to the upregulation of migratory and invasive capacities of tumor
cells (Qiao et al., 2020). OSCC primarily contains epithelial dysplasia, loss
of epithelial differentiation as well as acquisition of mesenchymal
phenotype (Bai et al., 2020). It has been confirmed that EMT process
is in relation to OSCC invasiveness and metastasis (Peng et al., 2020).
However, it remains vacant concerning the EMT gene signatures and
their prognostic value in OSCC. Because of the easy accessibility of gene
expression profiles from public databases, exploration of the prognostic
gene signatures has been given wide attention (Wu et al., 2019). Based
upon the critical role of EMT process in OSCC progression, it is of
significance to establish an EMT gene signature for OSCC prognosis.
Thus, our research set out to further understand the underlying clinical
utility of EMTgenes as prognosticmarkers and to build up individualized
clinical outcome evaluation for OSCC.

Materials and methods

Data collection

Normalized transcriptome data and clinical information of OSCC
were retrieved from the Cancer Genome Atlas (TCGA) database via the
UCSC Xena (https://tcga.xenahubs.net) on 11 March 2020. Moreover,
the GSE41613 dataset was downloaded from the Gene Expression
Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) database
(Lohavanichbutr et al., 2013). The specific clinical information was
listed in Supplementary Table S1. Before surgery, all patients did not
receive radiotherapy or chemotherapy. Primary tumor site of all patients
was the same. The “HALLMARK_EPITHELIAL_MESENCHYMAL_
TRANSITION” gene set containing 200 genes (Supplementary Table S2)
was obtained from theMolecular SignaturesDatabase (https://www.gsea-
msigdb.org/gsea/msigdb/index.jsp).

Data preprocessing

In the TCGA dataset, 328 OSCC patients with complete clinical
information were regarded as the discovery set. In the

GSE41613 dataset, raw microarray data of 97 patients that possessed
complete survival information were pre-corrected, transformed by
log2 and normalized, followed by gene annotation. This dataset was
utilized as the validation set.

Establishment of an EMT gene model

Prognosis-related EMT genes were firstly screened in OSCC.
Univariate cox analyses were employed to screen EMT genes with
p < 0.05 in the TCGA dataset. By applying glmnet package, an
optimal prognostic model was built with least absolute shrinkage
and selection operator (LASSO) Cox regression analysis based on
the prognosis-related EMT genes (Friedman et al., 2010). The
optimal value of penalty parameter λ was determined via ten-fold
cross-validation. The risk score of OSCC samples was computed
according to regression coefficient as well as expression value of each
gene in this model. The formula of the risk score was as follows: risk
score = ∑n

i�1(LASSO coefficient of gene i*expression ofgene i).
OSCC patients in discovery and validation datasets were
separated into high- and low-risk subgroups according to the
median value of risk score, respectively. High-risk subgroup was
defined as patients who had risk scores greater than the median
while low-risk subgroup was defined as patients who had risks scores
less than the median. To compare the difference in overall survival
(OS) time between two subgroups, Kaplan–Meier curves were
depicted by survival package and difference was determined with
log-rank tests. Time-dependent receiver operating characteristic
(ROC) curves of 1-year, 3-year and 5-year OS time were
conducted for calculating the area under the curve (AUC) values
to assess the predictive efficiency of the gene signature and other
clinical features (age, gender, grade and stage) by applying
survivalROC package (Heagerty and Zheng, 2005). Furthermore,
univariate cox analyses were presented for evaluating the
relationships of OSCC prognosis with the gene signature and
clinical features. To validate whether the gene signature could be
independently predictive of patients’ prognosis, multivariate cox
analyses were performed based on prognosis-related factors with p <
0.05. Hazard ratio (HR) as well as 95% confidence interval (CI) was
computed. Factors with HR > 1 were risk factors and those with
HR < 1 were protective factors.

Independence of the EMT gene signature
from other clinical features

For determining whether the gene signature was independent
of other clinical features, age, gender, grade, and stage were
separated into high- and low-risk subgroups in the discovery
dataset. OSCC subjects were stratified into
age >65 and <65 subgroups, female and male subgroups,
grade I-II/III-IV subgroups, stage I-II/III-IV subgroups.
Kaplan-Meier OS analysis was carried out in each subgroup
and difference was evaluated by log-rank test.
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Assessment of stromal score, immune score,
and tumor purity

Estimation of STromal and Immune cells in MAlignant Tumor
tissues using Expression data (ESTIMATE) package (https://sourceforge.
net/projects/estimateproject) (Yoshihara et al., 2013) was employed for
inferring stromal score, immune score, and tumor purity in each OSCC
sample from the TCGA dataset based on gene expression profiles.

Characterization of immune cell
compositions in OSCC tissues

By applying CIBERSORT package (https://cibersort.stanford.
edu/) (Newman et al., 2015), the infiltration levels of different
immune cells were inferred in OSCC tissue specimens from the
TCGA dataset according to gene expression profiling. Only
specimens with p < 0.05 could be retained for further analyses.
LM22 leukocyte gene signature matrix was used as the reference,
which contained 547 genes that distinguished 22 human
hematopoietic cells as follows: 7 kinds of T cell types, naïve and
memory B cells, plasma cells, NK cells as well as myeloid subsets.

Pathway enrichment analysis

Gene Set Enrichment Analysis (GSEA) software was utilized for
exploring the activated signaling pathways through comparing high-
and low-risk subgroups from the TCGA dataset (Subramanian et al.,
2005). The KEGG gene set (c2. cp.kegg.v7.1. symbols) was used as
reference. 1,000 gene-set permutations were carried out. The terms
with normalized enrichment score |NES| > 1.5 and FDR <0.05 were
chosen as distinct pathways activated in high- or low-risk
phenotypes, which were used for multiple GSEA gene sets.

Somatic mutation analysis

Mutation Annotation Format (MAF) of OSCC samples was
downloaded from TCGA database. These specimens were equally
separated into high- and low-risk subgroups. The waterfall plots of
two subgroups were depicted for illustrating the different mutation
events using the Maftools package (Mayakonda et al., 2018).

Prognostic values of genes in the prognostic
gene signature

Univariate cox analyses were applied to evaluate the prognostic value
of each gene in the prognosis-related gene signature for OSCC patients
from the TCGA dataset. Moreover, their expression was visualized in
OSCC and normal tissue specimens. Spearman correlation between
genes in this signature was evaluated in OSCC samples. The protein
expression of genes from the prognostic gene signature in OSCC tissues
was assessed through the Human Protein Atlas (https://www.
proteinatlas.org/) (Colwill and Gräslund, 2011).

OSCC tissue specimens

Totally, 40 paired OSCC and adjacent normal frozen tissues
were collected from patients who experienced operation in the Taihe
Hospital, Hubei University of Medicine between January 2020 and
January 2021. All subjects did not receive chemoradiotherapy before
operation. Diagnosis and staging were performed by experienced
pathologists according to the American Joint Committee on Cancer
Staging System. The study protocol gained the approval of the Ethics
Committee of Taihe Hospital, Hubei University of Medicine (KY
2020-024), with written informed consent acquired from each
subject. In addition, the research followed the Declaration of
Helsinki.

Real-time quantitative polymerase chain
reaction (RT-qPCR)

Each gene in this prognostic model was verified in OSCC by RT-
qPCR. Total RNA was isolated from OSCC tissues utilizing TRIzol
reagent (Beyotime, China), which was reverse transcribed into cDNA
utilizing primers and SuperScriptIII reverse transcriptase. RT-qPCR
was carried out through Prime Script RT Reagent Kit and 7500 Real-
Time PCR System (Applied Biosystems, United States). GAPDH served
as the reference control. These amplification procedures included:
denaturation at 95 °C lasting 5 min, 40 cycles of denaturation at
95 °C lasting 15 s, annealing at 55 °C lasting 30 s, and extension at
60 °C lasting 1 min. Table 1 listed the primer sequences of target genes.
The relative expression was determined with 2−ΔΔCT method.

TABLE 1 Primer sequences for RT-qPCR.

Target genes Primer sequences

AREG 5′-GTGGTGCTGTCGCTCTTGATA-3′ (F)

5′-CCCCAGAAAATGGTTCACGCT-3′ (R)

COL5A3 5′-TGACCGGGCATTCAGAATTGG-3′ (F)

5′-CGGGCACCCCTTTCATCAT-3′ (R)

DKK1 5′-CCTTGAACTCGGTTCTCAATTCC-3′ (F)

5′-CAATGGTCTGGTACTTATTCCCG-3′ (R)

GAS1 5′-ATGCCGCACCGTCATTGAG-3′ (F)

5′-TCATCGTAGTAGTCGTCCAGG-3′ (R)

GPX7 5′-CCCACCACTTTAACGTGCTC-3′ (F)

5′-GGCAAAGCTCTCAATCTCCTT-3′ (R)

PLOD2 5′-CATGGACACAGGATAATGGCTG-3′ (F)

5′-AGGGGTTGGTTGCTCAATAAAAA-3′ (R)

SFRP1 5′-ACGTGGGCTACAAGAAGATGG-3′ (F)

5′-CAGCGACACGGGTAGATGG-3′ (R)

GAPDH 5′-CTGGGCTACACTGAGCACC-3′ (F)

5′-AAGTGGTCGTTGAGGGCAATG-3′ (R)
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Immunohistochemistry

From The Human Protein Atlas (https://www.proteinatlas.org/),
immunohistochemistry staining of genes in the EMT gene signature
in OSCC and normal oral tissues from 10 OSCC patients. Staining,
intensity, quantity and location were also obtained. The used antibodies
are as follows: AREG (HPA008720), COL5A3 (HPA048256), GAS1
(HPA066902), PLOD2 (CAB025898) and SFRP1 (CAB008116).

Statistical analysis

Statistical analysis was carried out by R packages (version 3.5.2)
and GraphPad Prism software (version 8.0.1). Comparisons between
two subgroups were presented via Student’s t-test orWilcoxon rank-
sum test. Kaplan-Meier survival curves were conducted, and survival
difference was analyzed through log-rank test. The predictive
efficacy was estimated with ROC curves. Spearman’s test was
executed for correlation analysis. p < 0.05 was considered significant.

Results

Establishment of an EMT gene signature for
predicting OSCC prognosis

To screen prognosis-related EMT genes in OSCC, univariate cox
regression analysis was employed in the TCGA dataset. As a result,
11 genes including ANPEP, AREG, COL5A3, DKK1, FMOD, GAS1,
GPX7, PLOD2, SFRP1, TNFRSF11B, VEGFA were significantly
associated with OSCC patients’ prognosis (Table 2). These prognostic
genes were further assessed by LASSO analysis. Totally, 9 genes were
screened for establishing the LASSO model (Figure 1A). The regression
coefficient of each gene was calculated, as shown in Figure 1B. The risk
score of each patient was then determined, as follows: AREG expression *
0.0471791751815675 + COL5A3 expression * (−0.0543433112313582) +
DKK1 expression * 0.0619741505236927 + GAS1 expression *
(−0.118881742831249) + GPX7 expression * (−0.142215922759831) +

PLOD2 expression * 0.259497264609766 + SFRP1 expression *
(−0.0579599175758466) + TNFRSF11B expression *
(−0.197512366515929) + VEGFA expression * (0.053308700735239).
We separated all patients in the discovery dataset into two subgroups
according to the median value of risk score (Figure 1C). Survival status
was further compared in the two subgroups. There were more patients
with dead status for high-risk in comparison to low-risk subgroups
(Figure 1D). Heat map depicted the different expressions of the genes
(SFRP1, TNFRSF11B, PLOD2, GPX7, COL5A3, GAS1, VEGFA, AREG
and DKK1) in this prognostic model between high- and low-risk
subgroups (Figure 1E). Our further analysis demonstrated that high-
risk patients exhibited worse survival time in comparison to low-risk
subjects (p=6.615e-05; Figure 1F). These data indicated that the risk score
could be employed for predicting OSCC patients’ clinical outcomes. We
further assessed the predictive efficacy of the risk score for OSCC
prognosis by ROCs. The AUCs under 1-year, 3-year and 5-year OS
were separately 0.669, 0.715 and 0.622, confirming the well predictive
performance for clinical outcomes (Figure 1G). Also, we compared the
predictive value of the risk score with other clinical features. Our data
demonstrated that the risk score displayed the highest AUC value (0.715)
for OS time among age (AUC = 0.575), gender (AUC = 0.487), grade
(AUC = 0.557) and stage (AUC = 0.625; Figure 1H), indicating that this
signature wasmore advantageous in comparison to other clinical features
regarding prediction of survival time.

External verification of prognostic potential
of this EMT gene signature in OSCC

The GSE41613 cohort was employed to externally validate the
predictive efficacy of this EMT gene signature in OSCC patients’
prognosis. With the same formula, we calculated the risk scores of
OSCC patients. Consistently, we separated OSCC subjects into two
subgroups according to the median value of risk score (Figure 2A). Low-
risk patients exhibited more optimistic survival status than high-risk
individuals (Figure 2B). The expression of the genes in this model was
visualized in each OSCC sample (Figure 2C). The survival difference
between subgroups was further validated in the GSE41613 dataset. As

TABLE 2 Prognosis-related EMT genes in OSCC by univariate cox regression analysis.

Genes HR HR.95L HR.95H P

ANPEP 0.822134 0.681012 0.992499 0.041518

AREG 1.154353 1.03309 1.289849 0.011249

COL5A3 0.835201 0.710865 0.981286 0.028548

DKK1 1.161784 1.048932 1.286777 0.004024

FMOD 0.826339 0.715891 0.953827 0.009168

GAS1 0.782505 0.659839 0.927975 0.004814

GPX7 0.818143 0.693531 0.965146 0.017277

PLOD2 1.193821 1.007232 1.414976 0.041046

SFRP1 0.883559 0.799458 0.976508 0.015276

TNFRSF11B 0.638404 0.462455 0.881295 0.00637

VEGFA 1.221469 1.006439 1.482442 0.042874

Abbreviations: HR, hazard ratio; HR.95L, 95% lower confidence interval; HR.95H, 95% upper confidence interval.
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expected, high-risk patients displayed shorter OS time than low-risk
patients (p= 7.869e-04; Figure 2D). ROCswere conducted for evaluation
of the predictive efficacy of the risk score. In Figure 2E, AUCs under 1-,
3- and 5-year OS were separately 0.800, 0.778 and 0.729, confirming that
this risk score could predict OS time of OSCC patients. Univariate
analysis revealed that age, stage, risk score displayed distinct associations
to OSCC patients’ prognosis in the TCGA dataset (Figure 2F). As
confirmed by multivariate analysis, age, stage as well as risk score were
independently related to prognosis (Figure 2G).

Subgroup analysis identifies the sensitivity of
the EMT gene signature to predict OSCC
prognosis

The predictive potency of this EMT prognostic model was
further evaluated among different subgroups from the discovery
cohort. Kaplan-Meier OS analysis showed that high-risk patients
were predicted to have worse clinical outcomes compared with low-
risk patients in age >65 (p = 0.012; Figure 3A), age <65 (p = 0.001;

FIGURE 1
Establishment of an EMT gene signature for predicting OSCC patients’ clinical outcomes in the TCGA-discovery dataset. (A) Distribution of partial
likelihood deviances corresponding to lambda values. (B) Determination of regression coefficients of genes in the LASSO model. (C) Distribution of risk
scores and determination of high-/low-risk subgroups. Vertical dotted line indicates the median value of risk score. (D) Distribution of survival status of
high- and low-risk patients. Red dot indicates dead while blue dot is indicative of alive. (E) Heat map for expression pattern of these genes in this
model in high- (red) and low-risk (blue) subgroups. Red indicates upregulation and blue indicates downregulation. (F) OS analysis for high-/low-risk
patients. The difference between subgroups was compared with log-rank test. (G) ROCs under 1-year, 3-year and 5-year OS for the risk score. (H)
Comparison of the AUCs among the risk score and other clinical features.
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Figure 3B), female (p = 0.064; Figure 3C), male (p < 0.001;
Figure 3D), grade I-II (p = 0.001; Figure 3E), grade III-IV (p =
0.010; Figure 3F), stage I-II (p = 0.112; Figure 3G) as well as stage III-
IV (p = 0.002; Figure 3H) subgroups.

Association between the EMT gene
signature and immune microenvironment in
OSCC

ESTIMATE algorithm was employed to assess stromal score,
immune score, and tumor purity of OSCC samples from the
TCGA dataset. Our data showed that higher stromal (p < 0.001)
and immune scores (p < 0.001) were found in high-risk samples
than low-risk samples (Figure 4A). Also, there was lower tumor
purity in high-risk samples compared with low-risk samples (p <
0.001). The infiltration levels of 22 kinds of immune cells of
OSCC specimens were determined by applying CIBERSORT

algorithm. There were lowered infiltration levels of naïve B cells
(p < 0.001), T follicular helper cells (p < 0.01), Tregs (p < 0.001),
T gamma delta cells (p < 0.05) and resting mast cells (p < 0.001)
in high-risk specimens compared with low-risk specimens
(Figure 4B). Meanwhile, higher infiltration levels of
CD4 memory activated T cells (p < 0.05), resting NK cells
(p < 0.05), activated dendritic cells (p < 0.05), activated mast
cells (p < 0.001) and eosinophils (p < 0.01) were examined in
high-risk compared with low-risk subgroups.

Assessment of the EMT gene signature-
related signaling pathways and somatic
mutation in OSCC

GSEA was applied to explore signaling pathways associated with
the EMT gene signature. As a result, basal transcription factors (NES =
2.04, NOM p = 0.002 and FDR = 0.008), base excision repair (NES =

FIGURE 2
External verification of prognostic value of the EMT gene model in OSCC. (A) Distribution of risk scores and identification of high-/low-risk
subgroups in the GSE41613 dataset. Vertical dotted line represents the median value of risk score. (B) Distribution of survival status in high-/low-risk
patients. Red dot represents dead while blue dot represents alive. (C) Heat map for expression pattern of genes in this model in high- (red) and low-risk
(blue) subgroups. Red indicates upregulation and blue indicates downregulation. (D)OS analysis for high-/low-risk patients. p-value was calculated
with log-rank test. (E) ROCs under 1-year, 3-year and 5-year OS based on the risk score. (F,G) Univariate and multivariate analyses of the relationships of
OSCC prognosis with risk score and other clinical features.
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1.82, NOM p = 0.006 and FDR = 0.047), cell cycle (NES = 1.96, NOM
p = 0.006 and FDR = 0.017), nucleotide excision repair (NES = 2.08,
NOM p = 0.002 and FDR = 0.006) and spliceosome (NES = 2.13, NOM
p < 0.001 and FDR = 0.004) were distinctly upregulated in high-risk
OSCC samples (Figure 5A). Moreover, calcium signaling pathway
(NES = −2.21, NOM p < 0.001 and FDR <0.001), cytokine-cytokine
receptor interaction (NES = −1.99, NOM p = 0.002 and FDR = 0.008),
ECM receptor interaction (NES = −1.98, NOM p = 0.006 and FDR =
0.009), MAPK signaling pathway (NES = −1.94, NOM p < 0.001 and
FDR = 0.011) and VEGF signaling pathway (NES = −2.18, NOM p <
0.001 and FDR <0.001) were activated in low-risk samples (Figure 5B).
The somatic mutation was further assessed in high- and low-risk OSCC
samples. Our data showed the first 20 mutated genes across OSCC
samples. We found that higher frequent genetic mutations occurred in

high-risk subgroup (Figure 5C) than low-risk subgroup (Figure 5D),
especially TP53, FAT1, and CDKN2A.

Genes in the EMT gene signature are
associated with OSCC prognosis

Prognostic value of each gene in this EMT gene model was
evaluated for OSCC samples from the TCGA dataset. Our
univariate cox regression analysis demonstrated that high
expression of AREG (p < 0.001, HR = 1.85, 95%CI: 1.31-2.61;
Figure 6A), DKK1 (p < 0.001, HR = 2.05, 95%CI: 1.47-2.87;
Figure 6B), PLOD2 (p = 0.01, HR = 1.58, 95%CI: 1.13-2.22;
Figure 6C) and VEGFA (p = 0.019, HR = 1.51, 95%CI: 1.03-2.21;

FIGURE 3
Assessment of the sensitivity of the EMTgene signature to predict OSCCprognosis by subgroup analysis. Kaplan-MeierOS analysis of high- and low-
risk patients in (A) age >65, (B) age <65, (C) female, (D)male, (E) grade I-II, (F) grade III-IV, (G) stage I-II as well as (H) stage III-IV subgroups. p values were
determined by log-rank test.
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Figure 6D) was indicative of poorer prognosis of OSCC patients than
their low expression. Furthermore, high expression of COL5A3 (p =
0.036, HR = 0.66, 95%CI: 0.46-0.94; Figure 6E), GAS1 (p = 0.006,
HR = 0.61, 95%CI: 0.44-0.86; Figure 6F), GPX7 (p = 0.004, HR = 0.58,
95%CI: 0.41-0.82; Figure 6G), SFRP1 (p = 0.002, HR = 0.58, 95%CI:
0.42-0.82; Figure 6H) and TNFRSF11B (p < 0.001, HR = 0.55, 95%CI:
0.39-0.77; Figure 6I) displayed significant associations with prolonged
survival time compared with their low expression. The prognostic
implications of above genes were also confirmed in the
GSE41613 cohort (Figures 7A–I).

Abnormal expression of genes in the EMT
gene signature for OSCC

The expression of genes in the EMT gene signature was
compared between OSCC and normal tissues. Our data
showed that AREG (Figure 8A), COL5A3 (Figure 8B), DKK1
(Figure 8C), GAS1 (Figure 8D), GPX7 (Figure 8E) and PLOD2
(Figure 8F) were significantly upregulated in OSCC than normal
tissues (all p < 0.05). Furthermore, lower SFRP1 expression was
found in OSCC compared to normal specimens (p < 0.05;

FIGURE 4
Association between the EMT gene signature and immunemicroenvironment in OSCC. (A)Distributions of stromal score, immune score, and tumor
purity in high- and low-risk subgroups. (B) Assessment of the infiltration levels of immune cells in high- and low-risk subgroups. p values were assessed by
Wilcoxon rank-sum test. Ns: not significant; *p < 0.05; **p < 0.01; ***p < 0.001.
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Figure 8G). Our correlation analyses demonstrated that
COL5A3 exhibited significant correlations to GAS1, GPX7,
PLOD2, SFRP1 and TNFRSF11B in OSCC samples
(Figure 8H). GAS1 exhibited significant correlations to GPX7,
PLOD2, SFRP1 and TNFRSF11B. GPX7 was distinctly associated
with PLOD2 and TNFRSF11B. These data indicated that there
were distinct correlations between the genes in the EMT gene
signature.

Validation of gene expression in this EMT
gene model

This study further confirmed gene expression in the EMT
gene signature between 40 paired OSCC and normal specimens
by RT-qPCR. Consistently, our data confirmed that AREG
(Figure 9A), COL5A3 (Figure 9B), DKK1 (Figure 9C), GAS1
(Figure 9D), GPX7 (Figure 9E) and PLOD2 (Figure 9F) were
distinctly highly expressed in OSCC compared with normal
tissues (all p < 0.0001). Also, SFRP1 exhibited lower expression
in OSCC than normal specimens (p < 0.0001; Figure 9G).
Abnormal expression of AREG, COL5A3, GAS1, PLOD2 and

SFRP1 was also confirmed in OSCC tissues by
immunohistochemistry (Figure 9H). We also evaluated the
difference in genes from the EMT gene signature across
distinct pathological stages, as shown in Figures 10A–G.
Among them, COL5A3, PLOD2 and SFRP1 were
differentially expressed among pathological stages,
indicative of their potential relationships with disease
progression.

Discussion

OSCC represents a progressive malignancy with high
heterogeneity (Panarese et al., 2019). Hence, it is of urgency to
acquire robust prognostic markers for improving prognosis
evaluation and individualized therapy (Zhu et al., 2020). As
previous studies, several prognostic signatures have been
established for OSCC. For instance, Cao et al. established a 3-
mRNA signature (CLEC3B, C6 and CLCN1) in OSCC prognosis
(Cao et al., 2019). Hou and colleagues developed an autophagy gene
model for speculation of clinical outcomes of OSCC (Hou et al.,
2020). Wu and colleagues established an independent

FIGURE 5
Assessment of the EMT gene signature-related signaling pathways and somatic mutation in OSCC. (A) Signaling pathways activated in high-risk
subgroup by GSEA. (B) Signaling pathways activated in low-risk subgroup. (C) The waterfall plots for the first 20 mutated gene signatures in high-risk
subgroup. (D) The waterfall plots for the first 20 mutated gene signatures in low-risk subgroup.
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transcriptional model according to 5 metabolism pathways
concerning OSCC prognosis (Wu et al., 2020). Huang et al.
constructed a 7-metabolic gene signature for OSCC (Huang
et al., 2021). However, the above gene signatures have not been
validated in multiple datasets. Furthermore, so far, no gene signature
has been applied in clinical practice. Although many molecular
markers and gene signatures have been conducted in OSCC,
systematic analyses of expression profiles of EMT genes have not
been still performed. In this study, we conducted an EMT gene

signature for OSCC prognosis by LASSO method. After external
verification, our model robustly and stably predicted patient
survival.

The tumor microenvironment contains tumor-associated
fibroblasts, immune cells as well as extracellular matrix (Chen
et al., 2021). The relationships between tumor
microenvironment and tumor cells play key roles in
modulating malignant biological behaviors like metastasis
and recurrence as well as clinical outcomes of OSCC

FIGURE 6
Univariate cox regression analysis for the association between each gene in the EMT gene signature and OSCC prognosis in the TCGA cohort. The
survival difference was evaluated between high and low expression of (A) AREG; (B) DKK1 (C) PLOD2; (D) VEGFA (E) COL5A3; (F) GAS1 (G) GPX7; (H)
SFRP1 (I) TNFRSF11B subgroups.
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(Zhou et al., 2020). It has been found that OSCC is highly
related to immune infiltration and immune infiltrates are
reliable prognostic factors for OSCC (Zhou et al., 2020). For
instance, high infiltration of CD103+ T and dendritic cells is
indicative of prolonged survival outcomes of OSCC (Xiao
et al., 2019). Activation of myeloid derived suppressor cells
accelerates the malignant progression of OSCC (Pang et al.,
2020). Activation of T helper cells in sentinel node indicates
unfavorable clinical outcomes in OSCC (Kågedal et al., 2020).
Therefore, the variations of immune cell subpopulations in the

tumor microenvironments may affect the prognosis of OSCC.
Here, our data showed that higher immune or stromal scores
were detected in high-than low-risk subgroups. Furthermore,
there were lowered infiltration levels of naïve B cells, T
follicular helper cells, Tregs, T gamma delta cells and
resting mast cells in high-risk than low-risk subgroups.
Also, higher infiltration levels of CD4 memory activated
T cells, resting NK cells, activated dendritic cells,
activated mast cells and eosinophils were examined in high-
compared with low-risk subgroups. Thus, this EMT gene

FIGURE 7
Univariate cox regression analysis for the association between each gene in the EMT gene signature and OSCC prognosis in the GSE41613 cohort.
The survival difference was evaluated between high and low expression of (A) AREG; (B) DKK1 (C) PLOD2; (D) VEGFA (E) COL5A3; (F) GAS1 (G) GPX7; (H)
SFRP1 (I) TNFRSF11B subgroups.
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signature might be distinctly linked to tumor
microenvironment of OSCC.

Our further analysis found that basal transcription factors,
base excision repair, cell cycle, nucleotide excision repair as well
as spliceosome were activated in high-risk OSCC samples.
Consistently, we found that more frequent somatic mutation
occurred in high-risk OSCC samples. Calcium signaling pathway,
cytokine-cytokine receptor interaction, ECM receptor
interaction, MAPK signaling pathway and VEGF signaling
pathway were activated in low-risk samples. Previously,
calcium-dependent and cell cycle pathways may mediate
OSCC progression (Jia et al., 2020). MAPK (Jin et al., 2020)
and VEGF pathways (Lien et al., 2020) enhance OSCC
progression. These data indicated that the genes in this

signature might participate in OSCC pathogenesis by above
pathways.

Among the genes in this prognostic signature, AREG,
COL5A3, DKK1, GAS1, GPX7 and PLOD2 were distinctly
upregulated and SFRP1 was downregulated in OSCC than
normal tissues. High expression of AREG, DKK1, PLOD2 and
VEGFA was indicative of poorer prognosis of OSCC patients
while high expression of COL5A3, GAS1, GPX7, SFRP1 and
TNFRSF11B were significantly associated with prolonged
survival time. Previously, AREG upregulation has been found
in OSCC and it can increase drug resistance against vincristine
(Hsieh et al., 2019). Also, AREG expression can independently
predict OSCC prognosis (Gao et al., 2016). DKK1 is highly
expressed in OSCC and induces proliferation and migration of

FIGURE 8
Abnormal expression of genes in the EMT gene signature for OSCC. Box plots for expression of (A) AREG, (B) COL5A3, (C) DKK1, (D)GAS1, (E)GPX7,
(F) PLOD2 as well as (G) SFRP1 in OSCC and normal tissues. (H) Correlation analysis between the genes in the EMT gene signature. Red demonstrates
positive correlation as well as blue demonstrates negative correlation. *p < 0.05. The bigger the circle, the stronger the correlation.
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OSCC cells (Wang et al., 2018). RT-qPCR confirmed the
abnormal expression of the genes in OSCC. Combining
previous research, the genes in this signature might be

potential therapy targets against OSCC. More experiments will
be presented for validating their biological functions and clinical
implications in OSCC.

FIGURE 9
Validation of expression of genes in the EMT gene signature. RT-qPCR for detecting expressions of (A) AREG, (B) COL5A3, (C) DKK1, (D) GAS1, (E)
GPX7, (F) PLOD2 and (G) SFRP1 in 40 paired OSCC and normal tissue specimens. (H) Immunohistochemistry for expression of AREG, COL5A3, GAS1,
PLOD2 and SFRP1 in OSCC tissues.
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Conclusion

Collectively, based on gene expression profiling, we screened
prognosis-related EMT genes and established a 9-EMT gene
signature. These data showed that this signature could be utilized
to predict clinical outcomes of OSCC subjects, thereby contributing
to individual therapy and shedding a novel insight into EMT
targeted therapy. Nevertheless, the clinical utility of this signature
requires to be verified in a large and prospective OSCC cohort.
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