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Robust Principal Component Analysis (RPCA) offers a powerful tool for recovering
a low-rank matrix from highly corrupted data, with growing applications in
computational biology. Biological processes commonly form intrinsic
hierarchical structures, such as tree structures of cell development trajectories
and tumor evolutionary history. The rapid development of single-cell sequencing
(SCS) technology calls for the recovery of embedded tree structures from noisy
and heterogeneous SCS data. In this study, we propose RobustTree, a unified
framework to reconstruct the inherent topological structure underlying high-
dimensional data with noise. By extending RPCA to handle tree structure
optimization, RobustTree leverages data denoising, clustering, and tree
structure reconstruction. It solves the tree optimization problem with an
adaptive parameter selection scheme that we proposed. In addition to
recovering real datasets, RobustTree can reconstruct continuous topological
structure and discrete-state topological structure of underlying SCS data. We
apply RobustTree onmultiple synthetic and real datasets and demonstrate its high
accuracy and robustness when analyzing high-noise SCS data with embedded
complex structures. The code is available at https://github.com/ucasdp/
RobustTree.
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1 Introduction

Cell fate decisions and tumorigenesis are complex biological processes that experience
many state transitions, such as cell differentiation and somatic cell evolution. The rapid
development of single-cell sequencing (SCS) technology makes it possible to unveil the
dynamics of such biological processes. However, the limited genetic content of a single cell
and the stochastic nature of sequencing techniques can result in high rates of gene dropout
and various sequencing errors, leading to noisy SCS data (Gawad et al., 2016; Chen et al.,
2022; Wen et al., 2022). It poses additional challenges to reconstruct the potential
hierarchical topological structure or dynamics of cells from such noisy high-dimensional
SCS data.
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In recent years, recovering intrinsic structure from high-
dimensional data has become a central topic in the data science
and machine learning community. Pioneering works generally seek
to perform data dimensionality reduction or associate data with
certain structured objects (Mao et al., 2016). For example, principal
curve (Hastie and Stuetzle, 1989) and its successors (Tibshirani, 1992;
Bishop et al., 1998; Kégl et al., 2000; Smola et al., 2001; Sandilya and
Kulkarni, 2002; Olivas et al., 2009), fits/maps an infinitely
differentiable curve with a finite length to pass through the middle
of data.However, thesemethods cannot handle self-intersection data.
To address this gap, principal graph method uses a collection of
piecewise smooth curves to approximate the data structureswith self-
intersection (Kégl and Krzyzak, 2002). Topological data analysis,
which performs graph representation of high-dimensional datasets,
provides another way to handle self-intersection structure (Carlsson,
2009). Ge et al. (2011) develops an efficient topological data analysis
algorithm,which uses Reeb graphs (Dey andWang, 2011) to extract a
one-dimensional skeleton from unorganized data. Another tool,
Mapper (Singh et al., 2007), builds simplicial complexes to preserve
certain topological structures from the original dataset, and has been
applied on single-cell data to reconstruct the dynamical structures of
cell states (Rizvi et al., 2017). In addition,Mao et al. (2016) proposes a
principal graph and structure learning framework based on reversed
graph embedding (RGE) to capture the local information of the
underlying graph structure. RGE is subsequently equipped by
Monocle2 (Qiu et al., 2017) for single-cell trajectory inference.

The high noise in SCS data, which is brought by either
technological or/and experimental issues, could possibly affect
downstream clustering or distort the reconstruction of intrinsic
structures. A number of computational methods have been
proposed to retrieve lost and corrupted information from SCS
data (Chen Z. et al., 2020; Patruno et al., 2021). Among them,
methods based on matrix decomposition are computationally more
efficient, especially extensions of robust principle component
analysis (RPCA) algorithms. RPCA is an efficient low-rank
matrix decomposition method for recovering low-dimensional
subspace from corrupted data (Lin et al., 2010; Candes et al.,
2011; Hsu et al., 2011; Vidal et al., 2016), which has been applied
to denoise either DNA or RNA profiles of SCS data (Chen C. et al.,
2020; Chen Z. et al., 2020; Su et al., 2022). Since the assayed cells
often come from a few states in cell development or clones in tumor,
and cells of same state or clone have similar or identical expression
or genomic profile. In addition, noise in observed SCS data generally
introduced by technologies can be random and sparse (Chen Z.
et al., 2020; Su et al., 2022). Therefore, SCS data well suits the low-
rank plus sparse matrices assumptions of RPCA.

In this study, we propose a unified framework, termed
RobustTree, to reconstruct the inherent topological structure
underlying high-dimensional data with high noise. The
framework involves a matrix decomposition process that recovers
the latent data points in a low-rank space. And these data points are
used directly to reconstruct a tree to represent the inherent single-
cell evolutionary trajectory. We also introduce a discriminative and
compact feature representation for clustering problems with an
assumption that the cluster centers should be close to each other
when connected on the learned tree structure, otherwise they should
be distant (Mao et al., 2015). More specifically, the optimization
objective function of the framework consists of the following three

basic components, including 1) denoising using robust principal
component analysis (RPCA) and extended RPCA method; 2)
performing data clustering with a soft assignment strategy; 3)
reconstructing the minimum spanning tree (MST) among cluster
centers as the potential topological structure. RobustTree leverages
data denoising, clustering, and tree structure reconstruction and
solves the tree optimization problem with an adaptive parameter
selection scheme. Based on adaptive trade-off parameters,
RobustTree not only can reconstruct continuous topological
structure, e.g., cell development trajectory based on single-cell
RNA sequencing gene expression data, but also display discrete-
state topological structure, e.g., tumor evolution history based on
single-cell DNA sequencing genetic variant data, including single-
cell single nucleotide variation (scSNV) data and single-cell copy
number alteration (scCNA) data. By using multiple simulated and
real datasets, we demonstrate that RobustTree is accurate and robust
on high-noise data with complex structures.

2 Materials and methods

LetXM×N ∈ X represent an observednoisy SCSdatamatrixwhere
the rows represent data points, such as cells, and columns represent
features, such as genes or mutations. We consider recovering a latent
low-rank matrix AM×N corresponding to each XM×N. In the recovered
low-dimensional space, the same, or similar, data points are aggregated
intoK clusters, andwe reconstruct a tree-like structure T at the cluster
level to represent the true topology of the data.

In the following, we introduce three components of the
proposed framework, including 1) RPCA and extended RPCA
algorithms (Section 2.1), which are used to recover low-rank
subspace from data matrix with corrupted and/or missing
entries, 2) data clustering (Section 2.2) and 3) the minimum
spanning tree (MST) optimization problem (Section 2.3).
Finally, we describe our RobustTree framework, which is a low-
rank matrix recovery framework coupled with tree structure
optimization (Section 2.4).

2.1 RPCA and extended RPCA

2.1.1 RPCA
The celebrated dimensionality reduction method, PCA (Vidal

et al., 2005), which assumes that noise follows a Gaussian
distribution, is unrobust to in-sample outliers. As a
consequence, the robust PCA (RPCA) (Lin et al., 2010; Candes
et al., 2011; Hsu et al., 2011; Vidal et al., 2016) emerges to recover
the potential low-rank matrix from data with sharp and sparse
noise.

Assume that the observed data matrix XM×N is generated by the
sum of two matrices X = A0 + E0, where A0 is a low-rank matrix, and
E0 represents the intra-sample outliers affected by random sparse
noise, then the RPCA problem can be formulated as:

min
A,E

rank A( ) + λ‖E‖0, s.t. A + E � X, (1)

where ‖ ·‖0 denotes 0-norm of the matrix (i.e., the number of non-
zero entries in the matrix), and λ is a trade-off parameter. However,
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solving Problem Eq. 1 is generally NP-hard (Vidal et al., 2005; Chen
Z. et al., 2020). Therefore, in order to reduce the above computation
burden, Problem Eq. 1 can be convexly relaxed as

min
A,E

‖A‖* + λ‖E‖1, s.t. A + E � X, (2)

where ‖ ·‖* and ‖·‖1 represent the nuclear norm and the ℓ1 norm of
the matrix, respectively. We refer to Problem Eq. 2 as a relaxed
version of RPCA, which can be efficiently solved by augmented
Lagrange multipliers (ALM) (Lin et al., 2010).

2.1.2 Extended RPCA
In practice, dropout/missing events can occur frequently in the

observed matrix, except for corrupted entries. In order to model the
missing entries, we first define a linear mapping
PΦ(·): RM×N → RM×N, which maps the missing entries to 0 and
keeps the observed entries, i.e., [PΦ(X)]i,j � Xi,j if (i, j) ∈ Φ, and
[PΦ(X)]i,j � 0 otherwise. Then, RPCA problem can be extended to
the following version (Wright et al., 2013; Shang et al., 2014; Vidal
et al., 2016; Chen Z. et al., 2020):

min
A,E

‖A‖* + λ‖E‖1, s.t. PΦ A + E( ) � PΦ X( ), (3)

which aims to decompose X into a low-rank matrix A and sparse
component E based only on the observed data PΦ(X). The
optimization Problem Eq. 3 is shown to be equivalent to solving
the following constrained optimization problem (Shang et al., 2014):

min
A,E

‖A‖* + λ‖PΦ E( )‖1 s.t. A + E � X, (4)

which can also be solved by the ALM algorithm (Shang et al., 2014;
Chen Z. et al., 2020). It is worth noting that when Φ is the index set
of all entries in X, Problem Eq. 4 can be transformed into Problem
Eq. 2; that is, Problem Eq. 2 can be regarded as a special case of
Problem Eq. 4. Thus, we can solve these problems in a unified form
provided by Problem Eq. 4.

2.2 Data clustering

The second component of our proposed framework is clustering
of the recovered low-rank matrix. Since RPCA-based recovery of
low-rank matrices may not fully guarantee an error-free state, we
cannot obtain cluster centers by simply merging rows with the same
features in the low-rank matrix A (Chen Z. et al., 2020). Assume
there exist K clusters in the data points. Then we denote Ck as the kth
cluster centroid of A (k ∈ {1, . . ., K}). We minimize the following
quantization error (Smola et al., 2001) to get the optimal cluster
centroids:

∑M
i�1

min
k�1,...,K

‖Ai − Ck‖22. (5)

When K <M, we introduce an indicator matrix Δ ∈ [0,1]M×K, where
the (i, k)th element δi,k = 1 indicates that data point Ai is assigned to
the kth cluster, and δi,k = 0 otherwise. Then, we get the equivalent
optimization objective as follows:

∑M
i�1
∑K
k�1

δi,k‖Ai − Ck‖22, (6)

where ∑K
k�1δi,k � 1 and δi,k ∈ {0, 1} for ∀i ∈ {1, . . ., M}. This is the

same optimization objective as K-means clustering. However, when
K is relatively large, K-means with minimization of optimization
Problem Eq. 6 might generate empty clusters. To avoid this, we
introduce a right stochastic matrix R, where∑K

k�1ri,k � 1,∀i � 1, . . . ,M. When the obtained R is an integer
solution, this variant is equivalent to the above representation
with the indicator matrix Δ. Subsequently, we follow (Mao et al.,
2016) and employ the following soft assignment strategy by adding
negative entropy regularization, as:

∑M
i�1
∑K
k�1

ri,k ‖Ai − Ck‖22 + σ logri,k( ), (7)

where σ > 0 is a regularization parameter. When R ∈ [0,1]M×K is a left
stochastic matrix with each column summing to one, optimization
Problem Eq. 7 is equivalent to mean shift clustering, and when R ∈
[0,1]M×K is a right stochastic matrix with each row summing to one,
optimization Problem Eq. 7 is equivalent to the Gaussian mixture
model with uniform weights (Mao et al., 2016).

2.3 Minimum spanning tree (MST)

MST is a common graphical representation applied in the
reconstruction of dynamic biological processes, such as cell
developmental trajectory reconstruction and tumor evolutionary
history recovery (Gawad et al., 2014; Yuan et al., 2015; Ross and
Markowetz, 2016; Qiu et al., 2017; Chen et al., 2019; Chen Z. et al.,
2020). MST characterizes lineage tracing path between different cell
states or tumor clones and can explicitly reflect the process of cell
development or the progression of subclones (Chen Z. et al., 2020).

We follow the MST optimization scheme proposed by Mao et al.
(2015). Let G � (V, E) denote a connected undirected graph with
weightW, where V � {1, . . . , K} is a set of vertices, E is a set of edges
and the entrywi,j inW represents the weight associated with the edge
(Vi, Vj) ∈ E,∀i, j ∈ V. Then we define a tree T � (V, ET ) on the
graph G that connects all vertices with minimum total weight, where
ET contains the edge set of tree T . In order to represent and learn a
tree, we consider {bi,j} as binary variables; that is,

bi,j � 1 if Vi, Vj( ) ∈ ET ;
0 otherwise.
{

Let B = [bi,j] ∈ {0,1}K×K; Then the integer linear programming
formulation of MST can be represented as follows (Mao et al., 2015):

min
B∈B
∑
i,j

bi,jwi,j,

s.t.B � B ∈ 0, 1{ }K×K{ } ⋂ B′,

B′� B � BT{ } ⋂ 1
2
∑
i,j

bi,j � |V| − 1
⎧⎨⎩ ⎫⎬⎭

⋂
1
2

∑
Vi∈S,Vj∈S

bi,j � |S| − 1
⎧⎪⎨⎪⎩

⎫⎪⎬⎪⎭,∀S ⊆ V . (8)

Worth noting that there are three constraints applied to set B′,
including 1) connection symmetry as an undirected graph; 2)
restriction of spanning trees containing |V| − 1 edges; and 3)
acyclic and connectivity of a spanning tree. Instead of solving
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such an integer programming problem directly, which is very
difficult, we can relax the problem as

min
B∈B
∑
i,j

bi,jwi,j, (9)

where bi,j ≥ 0, the set of linear constraints is given by B �
{B≥ 0} ⋂ B′ (Mao et al., 2015). Then Problem Eq. 9 can be
solved by Kruskal’s algorithm (Kruskal, 1956; Cormen et al., 2022).

2.4 Low-rank matrix recovery coupled with
tree structure optimization

Based on the three building blocks described in Sections 2.1,
Sections 2.2, and Sections 2.3, we are ready to formulate our unified
framework to learn the latent topological structure hidden
underneath noisy SCS data. We use the alternating direction
multiplier method (ADMM) to solve the proposed optimization
objective function by simultaneously recovering real data points and
learning a tree-like structure with guaranteed convergence.

2.4.1 RobustTree framework
Given observed input SCS data XM×N, our goal is to reveal the

underlying tree structure that generates X. Since the observed data
may be corrupted by noise, it is not appropriate to recover the
underlying topology directly from the observation matrix. Instead,
to unveil the underlying structure, we assume that a latent low-rank
matrix AM×N can be recovered from XM×N, and we focus on learning
a tree structure T � (V, ET ) on the cluster level of A. Let CK×N

indicate the cluster centers of data points in A, and BK×K represent
the adjacency matrix of vertices V in graph T ; then, the optimization
problem with respect to variables {A, E, C, B, R} is formulated as:

min
A,E,B,C,R

‖A‖* + λ‖PΦ E( )‖1 + θ

2
∑
k,k′

bk,k′‖Ck − Ck′‖2F

+ γ ∑K
k�1
∑m
i�1

ri,k‖Ai − Ck‖2 + σΩ R( )⎡⎣ ⎤⎦
s.t.A + E � X, B ∈ B,∑K

k�1
ri,k � 1, ri,k ≥ 0,∀i,∀k,

(10)

where λ, θ, γ and σ are trade-off parameters, ri,k indicates the (i, k)th
entry in matrix R ∈ RM×K, Ω(R) � ∑M

i�1∑K
k�1ri,k logri,k represents

negative entropy regularization, and the definition of B is detailed in
optimization Problem Eq. 8.

2.4.2 RobustTree framework optimization
algorithm

We solve optimization Problem Eq. 10 by alternating direction
multiplier method (ADMM). We divide variables into two disjoint
groups as {A, E, C} and {B, R}, and then solve each subproblem
iteratively until convergence is achieved. We show details of the two
following subproblems below.

• Fix {B, R} and update {A, C, E}

When fixing {B, R}, Problem Eq. 10 can be simplified into the
following subproblem:

min
A,E,C

‖A‖* + λ‖PΦ E( )‖1 + θ

2
∑
k,k′

bk,k′‖Ck − Ck′‖2F + γ∑K
k�1
∑m
i�1

ri,k‖Ai − Ck‖2

s.t.A + E � X.

(11)
The corresponding augmented Lagrange function is:

L A,C, E( ) � ‖A‖* + λ‖PΦ E( )‖1 + <Λ, X − A − E> + μ

2
‖X − A − E‖2F

+θ
2
∑
k,k′

bk,k′‖Ck − Ck′‖2F + γ∑
i

∑
k

ri,k ‖Ai − Ck‖2( ).
(12)

Optimization Problem Eq. 12 can be transformed into the following
form after some matrix manipulations:

L A,C, E( )�
+ θtrace CTLC( ) + γ trace ATA( ) − 2trace RTACT( ) + trace CTΓC( )[ ]
where L � diag B1K( ) − B, Γ � diag 1TR( ).

(13)

Updating C.
Let the partial derivative of L(A,C, E) with respect to C be zero,

i.e., zL(A,C, E)/zC � θLC − γRTA + γΓC � 0; then, we can obtain
an analytical solution of C given by

CA � θ

γ
L + Γ( )−1

RTA.

Substituting CA into L(A,C, E), we have

L A, CA, E( ) � ‖A‖* + λ‖PΦ E( )‖1 + <Λ, X − A − E> + μ

2
‖X − A − E‖2F

+γ trace ATA( ) − trace ATR
θ

γ
L + Γ( )−1

RTA( )[ ].
(14)

Updating E.
By retaining items related only to E in Problem Eq. 14, we have

L′ E( ) � λ‖PΦ E( )‖1 + <Λ, X − A − E> + μ

2
‖X − A − E‖2F. (15)

Solution E of Problem Eq. 15 can be written as (Shang et al., 2014;
Chen Z. et al., 2020):

Ek+1[ ]Φ � Sλμ−1
k

X − Ak + μ−1k Λk( )[ ]
Φ

Ek+1[ ]ΦC � X − Ak + Λk[ ]ΦC.
(16)

Updating A.
After removing items unrelated to A in Problem Eq. 14, we have

L′ A( ) � ‖A‖* + <Λ, X − A − E> + μ

2
‖X − A − E‖2F

+γ trace ATA( ) − trace ATR
θ

γ
L + Γ( )−1

RTA( )[ ]. (17)

Then Problem Eq. 17 is equivalent to

L′ A( ) � ‖A‖* + <Λ, X − A − Ek+1 > + μ

2
‖X − A − Ek+1‖2F

+γ ‖A‖2F − ‖STA‖2F[ ], (18)

where S � R(θγ L + Γ)−1/2. We apply a proximity gradient algorithm
to solve Problem Eq. 18. Let

g A( ) � ‖A‖*,

Frontiers in Genetics frontiersin.org04

Chen et al. 10.3389/fgene.2023.1110899

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1110899


f A( ) � −<Λ, A> + μ

2
‖X − A − E‖2F + γ ‖A‖2F − ‖STA‖2F( ),

then L′(A) � g(A) + f(A). Obviously, g(A): Rm×n → (−∞,+∞)
is a convex function, and f(A): Rm×n → (−∞,+∞) is a smooth
convex function. Thus, minAL′(A) can be solved by a proximity
gradient algorithm. Assume that the gradient of f(A) is Lipschitz
continuous and that its constant is Lf, i.e.,

‖∇f X( ) − ∇f Y( )‖≤ Lf‖X − Y‖,∀X,Y ∈ Rm×n.

Owing to

∇f A( ) � −Λ + μ A − X − E( )( ) + 2γA − 2γSSTA
� −Λ + μ A − X − E( )( ) + 2γ I − SST( )A,

we have

‖∇f X( ) − ∇f Y( )‖ � ‖μ X − Y( ) + 2γ I − SST( ) X − Y( )‖
� ‖ μ + 2γ( )I − 2γSST[ ] X − Y( )‖
≤ ‖X − Y‖ ‖ μ + 2γ( )I − 2γSST‖.

Then, we can set Lf = ‖(μ + 2γ)I − 2γSST‖. Considering the quadratic
approximation function of L′(A) at a given point Ak:

L′ A,Ak( ) � f Ak( ) + <∇f Ak( ), A − Ak > + Lf

2
‖A − Ak‖2F + g A( ),

(19)
since formula (19) is a strong convex function, a primal solution
exists for L′(A,Ak), i.e.,
argmin

A
L′ A,Ak( ) � argmin

A
f Ak( ) + <∇f Ak( ), A − Ak > + Lf

2
‖A − Ak‖2F + g A( )

� argmin
A

g A( ) + Lf

2
‖A − Ak − 1

Lf
∇f Ak( )( )‖2F

� prox
g/Lf Ak − 1

Lf
∇f Ak( )( ).

Let Gk � Ak − 1
Lf
∇f(Ak) � Ak − 1

Lf
(−Λ + μ(Ak − (X − Ek+1))

+2γ(I − SST)Ak) and perform the singular value decomposition
on Gk with Gk � UkΣVT

k , Σ � diag{σi}1≤ i≤ r. Then, ∀1/Lf > 0,
proxg/Lf(Gk)�UkΣg/LfV

T
k ,Σg/Lf� diag({σ i − 1

Lf
}+), {·}+ � max {0, ·}.

Thus, the iterative form of the proximity gradient algorithm at the
current point Ak is as follows:

Ak+1 � prox
g/Lf Gk( ).

Then, we obtain pseudocode for the subproblems of solving A, E, C
with fixed B, R, as shown in Algorithm 1.

fixing {B, R}

while not converged do

[E]Φ � [Sλμ−1(X − A + μ−1Λ)]Φ
[E]ΦC � [X − A + Λ]ΦC

while not converged do

L � diag(B1K) − B, Γ � diag(1TR)
S � R(θγ L + Γ) −1/2

Lf � ‖(μ + 2γ)I − 2γSST‖
G � A − 1

Lf
(−Λ + μ(A − (X − E)) +2γ(I − SST)A)

A � proxg/L f(G),
where proxg/Lf(G) � UΣg/LfV

T, Σg/Lf � diag({σ i − 1
Lf
}+),

{·}+ � max {0, ·}
C � (θγ L + Γ)−1RTA

Algorithm 1. The Algorithm of solution for A, E, C with fixed B, R

• Fix {A, C, E} and update {B, R}

Given {A, C, E}, Problem Eq. 10 with respect to B and R is a
jointly convex optimization problem, which can be solved
independently.

Updating R.
When fixing {A, E, C}, the optimization function related to R can

be written as follows:

L′ ri, α( ) �∑
k

ri,k ‖Ai − Ck‖2 + σ log ri,k( )( ) + α ∑
k

ri,k − 1⎛⎝ ⎞⎠. (20)

The KKT condition is ‖Ai − Ck‖2 + σ(1 + log (ri,k)) + α = 0 and∑kri,k = 1, ri,k ≥ 0, ∀k ∈ {1, . . ., K}. Then we have the analytic solution
of R given by ri,k = exp (‖Ai − Ck‖2/σ − (1 + α/σ)). Owing to∑kri,k = 1,
we can get exp(1 + α/σ) � ∑K

k�1exp(−‖Ai − Ck‖2/σ). Then we can
rewrite ri,k as

ri,k � exp −‖Ai − Ck‖2/σ( )∑K
k�1exp −‖Ai − Ck‖2/σ( ). (21)

Updating B.
The term associated with B in optimization function (10) is to

find the minimum spanning tree among cluster centers in C, which
can be solved via Kruskal’s algorithm (Kruskal, 1956; Cormen et al.,
2022). Then we can sort out the pseudocode for the subproblem of
solving B, R with fixed A, C, E as shown in Algorithm 2.

fixing {A, C, E}

dk,k′ = ‖Ck − Ck′‖2, ∀k, ∀k′
Obtain B by solving optimization Problem Eq. 9 via

Kruskal’s algorithm

Compute R with each element as ri,k � exp(−‖Ai−Ck‖2/σ)∑K

k�1 exp(−‖Ai−Ck‖2/σ)

Algorithm 2. The Algorithm of solution for B, R with fixed A, C, E
Finally, combining the two subproblems above, we formulate the

complete pseudocode of exact RobustTree algorithm in Algorithm 3.
Fortunately, as it turns out, in the kth iteration of B and R, we do not
have to solve the subproblem (Ak+1* , Ek+1* , Ck+1* ) � L(A,
C, E, Bk, Rk) exactly, corresponding to line 8-17 of Algorithm 3.
Rather, when solving this subproblem, updating Ak, Ck and Ek once
is sufficient for them to converge to the optimal solution of
RobustTree problem. This leads to an inexact RobustTree
algorithm (see Algorithm 4).

Input: X, λ, θ, γ, and σ

Output: A, C, E, B, R

Initialize A by ZF(X), K, C

While not converged do

dk,k′ = ‖Ck − Ck′‖2, ∀k, ∀k′
Obtain B by solving Problem Eq. 9 via Kruskal’s

algorithm

Compute R with each element as ri,k � exp(−‖Ai−Ck‖2/σ)∑K

k�1 exp(−‖Ai−Ck‖2/σ)
While not converged do

[E]Φ � [S λμ−1(X − A + μ −1Λ)]Φ
[E]ΦC � [X − A + Λ]ΦC

While not converged do

L � diag(B1K) − B, Γ � diag(1TR)
S � R(θγ L + Γ)−1/2
Lf � ‖(μ + 2γ)I − 2γSST‖
G � A − 1

Lf
(−Λ + μ(A − (X − E)) + 2γ(I − SST)A)
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A � proxg/Lf(G),
where proxg/Lf(G) � UΣg/LfV

T, Σg/Lf � diag({σ i − 1
Lf
}+),

{·}+ � max {0, ·}
C � (θγ L + Γ)−1RTA

Algorithm 3. The exact RobustTree algorithm

Input: X, λ, θ, γ, and σ

Output: A, C, E, B, R

Initialize A by ZF(X), K, C

while not converged do

dk,k′ = ‖Ck − Ck′‖2, ∀k, ∀k′
Obtain B by solving Eq. 9 via Kruskal’s algorithm

Compute R with each element as ri,k � exp(−‖Ai−Ck‖2/σ)∑K

k�1 exp(−‖Ai−Ck‖2/σ)[E]Φ � [Sλμ−1(X − A + μ−1Λ)]Φ
[E]ΦC � [X − A + Λ]ΦC

L � diag(B1K) − B, Γ � diag(1TR)
S � R(θγ L + Γ)−1/2
Lf � ‖(μ + 2γ)I − 2γSST‖
G � A − 1

Lf
(−Λ + μ(A − (X − E)) + 2γ(I − SST)A)

A � proxg/Lf(G),
where proxg/Lf(G) � UΣg/LfV

T, Σg/Lf � diag({σi − 1
Lf
}+), {·}+ �

max {0, ·}
C � (θγ L + Γ)−1RTA

Algorithm 4. The inexact RobustTree algorithm

2.4.3 Convergence analysis
Since optimization Problem Eq. 10 is non-convex, many local

optimal solutions are possible. We perform theoretical convergence
analysis as shown in Theorem 1.
Theorem 1. Let {Bl, Rl,Al, Cl, El} be the solution of Problem (10) in the
lth iteration, and let Ll � L(Bl, Rl, Al, Cl, El) be the corresponding
objective function value; then we have:

1. {Ll} monotonically decreasing and
2. Sequences {Bl, Rl, Al, Cl, El} and {Ll} converging.

Proof. Let {Bl, Rl, Al, Cl, El} be the solution obtained in the lth
iteration. By Algorithm 3, at the (l + 1)th iteration, we have

L Bl, Rl, Al, El, Cl( )≥L Bl+1, Rl, Al, El, Cl( )≥L Bl+1, Rl+1, Al, El, Cl( )
≥L Bl+1, Rl+1, Al+1, El+1, Cl( )≥L Bl+1, Rl+1, Al+1, El+1, Cl+1( ).

Then, sequence {Ll} is monotonically decreasing. In addition, since
L(B, R, A, C, E) is lower-bounded by −γσMlogK, L* exists such that
{Ll} converges to L* according to the Monotonic Convergence
Theorem. Then, we prove that sequence {Bl, Rl, Al, Cl, El} converges.
Owing to the compactness of feasible sets B and R, the sequence {Bl,
Rl} converges to {B*, R*} as l → ∞. Based on the ADAL algorithm
(Shang et al., 2014), {Al, El} converges to {A*, E*}. Since
C � (θγ L + Γ)−1RTA, {Cl} converges to C* � (θγL* + Γ*)−1R*TA*,
where L* = diag (B*1)—B*, Γ* = diag (1TR*).

2.4.4 Adaptive parameter selection
We denote missing rate as s in the observed input SCS data.

Then we select the hyper-parameters in Problem Eq. 10 as follows:

λ � 1 + 3s##########
max M,N( )√ , θ �

##
M

√
N
##
N

√ , γ � M

N
##
N

√ , σ � var X( )
max M,N( ), (22)

where the selection of λ refers to Chen Z. et al. (2020). And we
choose the other parameters to coordinate the value of each single
item in Problem 10 with a similar magnitude during the
optimization process.

We initialize K as following:

K �
M if M≤ 500;
M

5
if 500<M≤ 1000;

M

50
if M> 1000.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (23)

Each cell i is assigned to cluster k, which has the maximum value
ri,j, ∀j ∈ {1, . . ., K}, i.e., k = argmaxj∈{1,. . .,K}ri,j, and finally remove the
repeated cluster centers to get the final cluster centers. With the
above parameter settings, RobustTree can be applied to the
reconstruction of continuous trajectory and discrete-state
topological structure.

2.5 Evaluations

To evaluate cluster assignment and data recovery performance,
we adopt the following measurements, including 1) adjusted rand
index (ARI) (Rand, 1971; Qiu et al., 2017; Chen et al., 2019); 2) the
error rate of the recovered matrixes to the ground truth (Chen Z.
et al., 2020); 3) the percentage of missing entries imputed correctly
(Miura et al., 2018; Chen Z. et al., 2020) and 4) the false positives and
false negatives (FPs + FNs) ratios of output genotype matrix to input
genotype matrix for scSNV data (Miura et al., 2018; Chen Z. et al.,
2020).

3 Results

3.1 RobustTree reconstructs continuous
trajectories on noisy simulation data with
high accuracy

To demonstrate that RobustTree can preserve the global
structure and handle high-noise data with continuous topology,
we apply RobustTree to 6 simulated datasets with continuous
trajectories. The original data are taken from Mao et al. (2016),
which contain 200 (Spiral), 100 (circle), 300 (Three-cluster), 300
(Tree), 100 (Distorted S-shape), and 200 (Two moons) data points,
respectively. To test the robustness of RobustTree to noise, we add
1 to 4 sharp noise points (points in the red circle in the fourth row of
Figure 1) to each datum.We compare the results of RobustTree with
l1 Graph and Spanning Tree, which are two algorithms performing
principal graph and structure learning based on inverse graph
embedding (Mao et al., 2016), as well as RPCA/RobustClone
(Chen Z. et al., 2020).

Although l1 Graph and Spanning Tree show better
effectiveness and stability than the Polygonal Line method
(Kégl et al., 2000), SCMS (Ozertem and Erdogmus, 2011), and
Mapper (Singh et al., 2007) algorithms in the results of Figure 5 in
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Mao et al. (2016), they are unstable to sharp noise. As shown in
Figure 1, l1 Graph and Spanning Tree will generate redundant
bifurcations or edges to connect noise points with parameters
tuned for the original dataset by Mao et al. (2016), highlighting
the obviously ineffective identification or removal of noise. When
we directly apply RPCA, which is the first step in RobustClone
algorithm, to this synthetic dataset, it tends to optimize the
continuous topological structure into a straight line. This is
probably due to the fact that the original two dimensional
data matrices do not have the relatively low-rank property
required by the RPCA method.

In contrast, since RobustTree optimizes denoising, clustering
and tree reconstruction in a unified framework, it shows stronger
robustness than other methods. As shown in Figure 1, RobustTree
effectively extracts the sharp noise into E, clusters the recovered
latent low-rank matrix, and reconstructs the intrinsic continuous
trajectory with multiple types of data, including structures with
linear or simple bifurcations.

3.2 RobustTree reconstructs continuous
multi-branch trajectory effectively

We perform RobustTree on simulated PHATE data to
demonstrate its ability to handle data with continuous multi-
branch development structures. The original data contain
1440 single cells and 60 genes (Moon et al., 2019), which imply
an embedded continuous tree structure with 10 uniform branches to
model a system where development along a given branch
corresponds to increased expression of several genes (Figure 2A)
(Chen et al., 2019; Moon et al., 2019).

RobustTree identifies 20 clusters and accurately
reconstructs continuous trajectory with multi-branch on
PHATE data, which contains three bifurcating events and
one trifurcating event (Figure 2B). Figure 2C displays the
distribution of clusters over branches. Clusters identified by
RobustTree are almost exactly divided into a certain branch,
except for clusters 2, 5, 10, and 18, which are located at
branching points. The ARI between the branches identified
by RobustTree and truth branch assignment is 0.6765. Since
clusters at branching point contain cells from different
branches, when excluding these clusters in ARI computation,
we can achieve 0.9383.

We compare the RobustTree to Monocle2 (Qiu et al., 2017), a
method that resolves complex single-cell trajectories using RGE, on
this dataset. Monocle2 identifies 7 cell states, denoted as S1–S7,
(Figures 2D, E, F), where real branches 1, 2 and 3, real branches 7,
8 and real branches 9, 10, are merged into S1, S3, and S7, respectively,
leading to 6 main Monocle2 branches (Figures 2D, E, F). The ARI
between the cell states identified by Monocle2 and the truth branch
assignment is 0.4427.

3.3 RobustTree recovers discrete cell
evolutionary history accurately on
simulation data

Tumor evolution has been a subject with longstanding
discussion (Nowell, 1976; Chen Z. et al., 2020). In tumors,
cells form subpopulations (subclones) with nearly or
completely identical genetic compositions, usually making the
number of subclones much smaller than the number of cells or

FIGURE 1
Results of 4 algorithms on 6 synthetic datasets with continuous topological structure. The red circle points in the fourth row are the artificially added
noise points.
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the number of mutational sites. In practice, the observed single-
cell data are often incorporated with random noise caused by
technical errors, including sequencing errors and dropout events.
Accordingly, an important topic in tumor single-cell data
analysis involves recovering subclonal genotypes and
reconstructing the evolutionary history of subclones from
corrupted data. In this study, we can also perform RobustTree
on tumor single-cell DNA sequencing data to study the above
problems.

We first apply RobustTree to simulated scSNV data, which
contain 1000 cells and 300 mutation sites, along with a sequencing
error rate of 30% and a dropout rate of 20% (Chen Z. et al., 2020)
(Figure 3A). There are 5 subclones along the real cell evolution tree,
containing 193, 235, 93, 241, and 238 cells, respectively
(Supplementary Figure S1). We use RobustTree to recover real
cell genotypes and reconstruct the subclone evolutionary tree,
and compare the performance of RobustTree to a state-of-the-art
method, SCG, on the dataset.

RobustTree shows more accuracy than SCG on this
simulation dataset. Specifically, for subclone identification,
RobustTree identifies 5 subclone assignments on the tree,
where the subclone assignment is exactly the same as the
true subclone assignment (Figure 3C), that is, the ARI
between the subclones identified by RobustTree and the true
clone assignment is 1. However, SCG identifies 4 clusters,
containing 278, 93, 391, and 238 cells, respectively. The ARI
between the SCG clusters and the real clone assignment is

0.7245. For genotype recovery, RobustTree recovers the true
genotype matrix with 100% accuracy (Figure 3B) with error rate
and FPs + FNs(output/input) as 0, missing imputed correctly
rate as 1. And the recovered tree structure (Figure 3D) exactly
coincides with the real evolutionary history (Supplementary
Figure S1). In contrast, the FPs + FNs(output/input) and
missing imputed correctly rate are 0.2484, and 0.9603,
respectively, leading to the total error rate of 3.77% in SCG
results.

3.4 RobustTree recovers scSNV genotype
and infers subclonal tree on high-grade
serous ovarian cancer data

We apply RobustTree on the single-cell high-grade serous
ovarian cancer (abbreviated as HGSOC) data (McPherson et al.,
2016; Roth et al., 2016; Chen Z. et al., 2020), which contain 420 cells
and 43 selected SNV sites with a missing rate of 10.7% (Figure 4A).
RobustTree efficiently recovers the real genotype by imputing the
missing data and correcting the noisy entries (Figure 4B) and
identifies 7 subclones on the reconstructed MST, which contain
40, 87, 0, 92, 18, 95, and 88 cells, respectively (Figure 4C). Since
subclone1 does not contain any mutations, it is assigned as the root
subclone (Figure 4C).

Along the phylogenetic trees reconstructed along
RobustTree, heterozygous mutations first occur at loci 42 and

FIGURE 2
RobustTree reconstructs continuous multi-branch trajectory on PHATE data. (A) The real embedded tree structure of simulated PHATE data. (B)
Tree trajectory reconstructed by RobustTree and visualized by R package igraph. The size of the cluster is proportional to the number of cells it contains,
and the branch length is proportional to the distance between connected clusters. (C) Heatmap shows the percentage of cells in cluster (x-axis)
distributed into real branch (y-axis). (D)Monocle2 reduces dimension on PHATE data. (E) Truth branch assignment on 2D embedding of Monocle2.
(F) Heatmap shows the percentage of cells in Monocle states (x-axis) distributed into real branch (y-axis).
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43 in subclone4. Followed by homozygous mutation at locus
43 and heterozygous mutations at loci 37, 38, 40 and 41, all
descendant subclones inherit these mutations. In addition, based
on the observable ancestor subclone4, subclone2 accumulates
mutations at loci 27-34, on the other branch, mutations mostly
occur at loci 7–21.

We compare RobustTree to SCG (Roth et al., 2016) on this
dataset. SCG identifies 6 clusters, where one main branch in SCG
results, SCG0, contains cells from both subclone2 and
subclone4 on RobustTree, and another main branch consisting
of clusters SCG1, SCG3, SCG2, SCG5 corresponds to the branch
comprised of subclones 5, 6, 7 on RobustTree. The cells of root

FIGURE 3
RobustTree reconstructs the tumor evolutionary tree on simulated single-cell DNA sequencing data. (A) Observed cell genotype matrix. (B)
Recovered cell genotype matrix by RobustTree. (C) Heatmap shows the percentage of cells in each subclone (y-axis) distributed into real subclones
(x-axis). (D) Subclone evolutionary tree reconstructed by RobustTree.

FIGURE 4
RobustTree reconstructs the tumor evolutionary tree on single-cell high-grade serous ovarian cancer data. (A) Observed noisy SNV genotype
matrix. (B) Recovered SNV genotype matrix by RobustTree. (C) Subclone evolutionary tree reconstructed by RobustTree. (D) Heatmap shows the
percentage of cells in each subclone (y-axis) distributed into SCG subclones (x-axis).
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cluster SCG4 dominate subclones1 of RobustTree, which can be
interpreted as normal subclone (Figure 4D). However, SCG
recovers some precancerous mutations in the normal cluster.
In general, these precancerous mutations are expected to be
carried in subsequent subclones, but they are completely
absent in all progeny subclones (Figure 3 in Roth et al.
(2016)). In contrast, RobustTree and RobustClone identify
these mutations as false positive issues and recover the
genotype without these mutations (Figure 4B), which seems
more reasonable.

3.5 RobustTree recovers scCNA genotype
on SA501X3F data

RobustTree can also detect copy number heterogeneity and
identify subclones in scCNA data. To demonstrate this, the
RobustTree algorithm was applied to the cell copy number
profile from primary triple-negative breast cancer (TNBC)
xenograft passages, denoted as SA501X3F data (Zahn et al., 2017;
Campbell et al., 2019). The data consist of the copy number states
with 260 single cells and 20,651 genomic bins, as shown in
Figure 5A. By leveraging data denoising, clustering, and tree
structure reconstruction, RobustTree identifies two subclones
(Figure 5B), containing 214 cells (subclone A) and 46 cells
(subclone B), respectively. RobustTree recovers true cell
genotypes (Figure 5B) and subclonal genotypes (Figure 5C),

where the difference between the genotypes of the two subclones
lies in the large fragment variation on the X chromosome, and small
fragment variants on the chromosomes 6, 8, 15, and 18
(Figure 5BC).

This result is completely consistent with the result of
RobustClone, that is, the ARI value between RobustTree and
RobustClone classification is 1. And the cell assignment of
subcloneA is also completely consistent with the major
subclone identified in Zahn et al. (2017); Campbell et al.
(2019). In the results of Zahn et al. (2017), there are two
subclones derived from the subcloneB of RobustTree, which
contain 28 and 18 cells, respectively. Since Zahn et al. (2017)
identifies clones without explicitly correction for noise, there
exists some uncertainty of assignment between these two minor
subclones (Campbell et al., 2019). Therefore, classification
results with two subclones are more robust (Chen Z. et al.,
2020).

4 Conclusion

Computational methods based on SCS data to reconstruct
inherent structure can provide important insight into the
understanding of cell development and tumor progression. In
this study, we propose a unified framework, RobustTree, which
can recover corrupted entries and reconstruct the intrinsic
structure underlying data. By coupling RPCA with tree

FIGURE 5
RobustTree reconstructs the tumor evolutionary tree on SA501X3F data. (A) Observed noisy CNA genotype matrix. (B) Recovered CNA genotype
matrix by RobustTree. (C) Genotypes of subclones recovered by RobustTree.
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structure optimization, RobustTree can leverage data
denoising, clustering and tree structure reconstruction, as
well as solve the tree optimization problem using adaptive
parameter selections. By comparing to some other state-of-
the-art methods, experimental results demonstrate the
effectiveness of RobustTree on various types of datasets with
different topological structures, including continuous cellular
complex development trajectory and discrete cell
evolutionary tree.
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