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Cancerous inhibitor of protein phosphatase 2A (CIP2A), initially reported as a
tumor-associated antigen (known as p90), is highly expressed in most solid and
hematological tumors. The interaction of CIP2A/p90, protein phosphatase 2A
(PP2A), and c-Myc can hinder the function of PP2A toward c-Myc S62 induction,
thus stabilizing c-Myc protein, which represents a potential role of CIP2A/p90 in
tumorigeneses such as cell proliferation, invasion, andmigration, as well as cancer
drug resistance. The signaling pathways and regulation networks of CIP2A/p90 are
complex and not yet fully understood. Many previous studies have also
demonstrated that CIP2A/p90 can be used as a potential therapeutic cancer
target. In addition, the autoantibody against CIP2A/p90 in sera may be used as a
promising biomarker in the diagnosis of certain types of cancer. In this Review, we
focus on recent advances relating to CIP2A/p90 and their implications for future
research.
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1 Introduction

The sera of patients diagnosed with cancer contain antibodies that can react with a
unique group of autologous cellular proteins called tumor-associated antigens (TAAs) (Chen
et al., 2018). The immune system of cancer patients is a sensor of alterations in the structure
and/or function of participants in tumorigenesis pathways and is capable of immune
responses in the form of autoantibodies against these TAAs (Jhunjhunwala et al., 2021).
Circulating autoantibodies have been used as ’probes’ in cancer patients to isolate TAAs,
which have been shown to be cellular factors participating in known tumorigenesis pathways
(Tan, 2001; Tan and Zhang, 2008; Zhang et al., 2022). The constitution of TAAs do not
include all cellular antigens identified by autoantibodies in cancer sera as some
autoantibodies may exist in conditions that pre-date malignancy. Thus, many
approaches aimed at identifying and characterizing authentic TAAs have been identified
by anti-TAA autoantibodies, which can be used as biomarkers for diagnosis or early
detection only after extensive evaluation with cancer and non-cancer sera (Zhang and
Tan, 2010; Li et al., 2021).

CIP2A was initially identified as a TAA and was named p90 due to its molecular weight
of 90 kDa (Soo Hoo et al., 2002). Autoantibodies against p90 were found in 21% of sera from
a group of patients with liver cancer. Sera with anti-p90 localized to the cytoplasm were
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detected by indirect immunofluorescent staining in fetal mouse liver
but not in adult liver (Zhang et al., 2002). Full-length cDNA
encoding p90 was successfully isolated from a T24 expression
library, including a sequence coding for a 905-amino-acid
protein, predicted to have a molecular mass of 102 kDa. In a
subsequent study, p90 was found to be identical to cancerous
inhibitor of protein phosphatase2A (CIP2A) by a research group
from Finland (Junttila et al., 2007). The function of CIP2A/p90 is
related to its binding with c-Myc and inhibiting dephosphorylation
of S62 caused by PP2A (Farrington et al., 2020).

Many studies have focused on the function of CIP2A/p90 since
the protein was identified by our study group. This review focuses on
recent advances, which have primarily been associated with the
determination of CIP2A/p90 function or its potential as a biomarker
for the early detection of various types of cancer.

2 The function of CIP2A/p90 in cancers

Protein kinase phosphorylation and protein phosphatase (PP)
dephosphorylation are considered the most common mechanisms
involved in intracellular protein regulation and signal transduction.
Their imbalance is associated with cystic fibrosis, Alzheimer’s
disease (AD), and other diseases, such as cancer (Ruvolo, 2019;
Shentu et al., 2019; Mercier et al., 2020; Khan M M et al., 2021;
Vainonen et al., 2021). According to the dephosphorylated amino
acid residues, PP has been categorized into two families, the protein
tyrosine phosphatase family and the serine threonine phosphatase
family. PP2A is a widely conserved serine threonine phosphatase
and has been defined as a kind of tumor suppressor protein (Chen
et al., 2013; Perrotti and Neviani, 2013). PP2A is a trimeric
holoenzyme, with a scaffold A subunit, a catalytic C subunit, and
several different regulatory B subunits. The B subunits determine the
subcellular localization and substrate specificity of the PP2A
holoenzyme (Ruvolo, 2016). Although PP2A has multiple
substrates, its anti-cancer function is mostly related to the
dephosphorylation and stabilization of c-Myc (Pippa and Odero,
2020). Recent studies had shown that PP2A is widely involved in the
regulation of cellular physiological and pathological processes, such
as energy metabolism, cell cycle, DNA replication, proliferation,
apoptosis, and inflammatory responses (Sangodkar et al., 2016;
Baskaran and Velmurugan, 2018; Kauko and Westermarck, 2018;
Remmerie and Janssens, 2019; Khan R et al., 2021). C-Myc is
overexpressed in most cancers as a transcription factor with
oncogenic capability that mediates cell proliferation, apoptosis,
differentiation, adhesion, migration, metabolism, and DNA
replication (Sun and Gao, 2017; Duffy et al., 2021; Dhanasekaran
et al., 2022; Grieb and Eischen, 2022). As mentioned earlier, CIP2A,
encoded by the KIAA1524 gene located on human chromosome
3q13.13, is a major endogenous PP2A-inhibiting protein. The
interaction among CIP2A/p90, PP2A, and c-Myc can hinder the
function of PP2A toward c-Myc S62 induction and therefore
stabilize c-Myc protein, which represents a potential role of
CIP2A/p90 in the promotion of cancer (Pippa and Odero, 2020;
Scarpa et al., 2021).

CIP2A/p90 plays an important role in the proliferation,
apoptosis, invasion, migration, epithelial–mesenchymal transition
(EMT), cell cycle, and drug resistance of different tumor cells.

CIP2A/p90 was overexpressed in 65%–90% of tissues in almost
all human cancers, and this has been associated with poor survival
(Tarek et al., 2021). The molecular mechanism of CIP2A/p90 in
cancer has mostly been associated with the interaction among
CIP2A/p90, PP2A, and c-Myc (Table 1). On the other hand,
several studies have indicated that the silencing of CIP2A/p90 by
small interfering RNAs (siRNA) inhibited the growth of xenografted
tumors of various kinds of cancer cells (Table 1).

As shown in Table 1, silencing CIP2A/p90 with siRNA can
further reduce the expression of c-Myc to inhibit cell proliferation
and induce cell apoptosis (Yang et al., 2016; Zheng et al., 2016). In
addition, siRNA inhibition of CIP2A transcription can make
colorectal cancer cells sensitive to radiation and reduce their
survival rate in vitro (Birkman et al., 2018). CIP2A/p90 can
promote p27Kip1 phosphorylation at Ser10 by via inhibiting
Akt-associated PP2A activity, which seems to relocalize
p27Kip1 to the cytoplasm. On the other hand, CIP2A/p90 can
also recruit c-Myc to mediate the transcriptional inhibition of
p27Kip1 and induce cell cycle arrest at the G2/M phase (Liu H
et al., 2017). In addition, in cells expressing human papillomavirus
16 oncoprotein E6, it can promote the transformation of the G1/S
cell cycle through B-Myb (Tian et al., 2018). Furthermore, several
studies have shown that CIP2A/P90 regulates
STAT3 phosphorylation and IL-17 expression in Th17 cells by
regulating the intensity of interaction between AGK and STAT3
(Chen et al., 2013; Khan et al., 2020a; Khan et al., 2020b). However,
only a few studies on the molecular mechanism of the CIP2A/
p90 regulating function are mentioned aboved. CIP2A/p90 also has
a PP2A-independent function, which can directly interact with
Polo-like kinase1 (PLK1) but not with mitosis gene A-related
kinase 2 (NEK2), H-Ras, etc., to regulate cellular function.
CIP2A/p90 can interact with PLK1 and enhance the stability and
activity of PLK1, thereby promoting mitosis in human cancer cells
(Kim et al., 2013). The depletion of CIP2A/p90 may also prolong cell
division time. CIP2A/p90 interacts with NEK2 during the G2/M
phase, and can facilitate centrosome separation and mitotic spindle
dynamics in cell cycle progression (Jeong et al., 2014). CIP2A/p90, in
association with the oncogeneH-Ras and through the recruitment of
the MEK/ERK signaling pathway and c-Myc dephosphorylation by
PP2A, is required for EMT in the progression of cancer (Wu et al.,
2015). Patients with both HOXB13 T and CIP2A T alleles have a
higher risk of prostate cancer and invasive disease, earlier
biochemical recurrence, and lower disease-specific life expectancy.
HOXB13 protein binding to the CIP2A gene can functionally
promote CIP2A transcription (Sipeky et al., 2018). Studies have
confirmed that CIP2A is an essential gene in BRCA1 and
BRCA2 mutant cells, finding that the CIP2A-TOPBP1 axis can
protect chromosome stability, which is a synthetic lethal target for
BRCA mutant cancer (Adam et al., 2021).

3 The signaling pathways and
regulation network of CIP2A/p90

The regulation network of CIP2A/p90 was established through
direct interactions of CIP2A/p90 or indirectly through interactions
of CIP2A/PP2A with either multiple key cellular proteins/
transcription factors or with oncogenic signaling pathways.
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TABLE 1 siRNA downregulates CIP2A on tumor cells and potential molecular mechanisms.

Type of cancer Cell lines Proliferation Apoptosis Invasion Migration EMT Cell
cycle

Drug resistance Potential molecular
mechanisms

References

Head and neck squamous
cell cancer (HNSCC)

UT-SCC-7 ↓a —b — — — — — c-Myc ↓ Junttila et al. (2007)

UT-SCC-9

CAL27, FaDu ↓ ↑d — — — — — Axin2 ↓, MMP7 ↓, c-Myc ↓ Kleszcz et al. (2019)

Nasopharyngeal
carcinoma (NPC)

CNE-2, SUNE-1 ↓ — — — — — — c-Myc ↓ Liu et al. (2014a)

Neuroblastoma SK-N-AS, SK-N-BE,
SH-EP, WAC2

— — — ↓ — — — — Williams et al. (2019)

Oral cancer NCI-60 ↓ — ↓ ↓ — — — c-Myc ↓ Jung et al. (2013)

SCC-25 ↓ — — — — — — — Cantini et al. (2013)

Non-small-cell lung cancer
(NSCLC)

H1299 ↓ — ═c — — — — AKT-mTOR signaling pathway Dong et al. (2011); Lei et al.
(2014)

L78 ↓ — — — — — — — Ma et al. (2011)

SPCA1 ↓ — — — — — ↓(Cisplatin) AKT signaling pathway Ma et al. (2011); Wei et al.
(2014)

A549 ↓ — ═ — — — ↓(Cisplatin) AKT signaling pathway Dong et al. (2011); Ma et al.
(2011); Wei et al. (2014)

Breast cancer MDA-MB-231 ↓ — ↓ — — ↓ — PP2A/c-Myc/p27Kip1 signaling
pathway

Xing et al. (2016); Liu et al.
(2017b)

BT549

MCF-7/ADR ↓ ↑ — — — — — — Zhu and Wei (2021)

Esophageal squamous cell
cancer

EC109 ↓ ↑ — — — ═ — c-Myc ↓ Qu et al. (2012)

Gastric cancer MKN-28 ↓ — — — — — — c-Myc ↓ Khanna et al. (2009)

KATOIII

SGC7901/DDP ↓ ↑ — — — — ↓(Cisplatin) — Ji et al. (2018)

Hepatocellular
carcinoma (HCC)

Hep3B ↓ ↑ — — — ↓ — CDK2↓, CDK4↓ Yang et al. (2018)

HepG2 Cyclin D1↓

SMMC-7721

BEL-7402

MHCC97H ↓ — ↓ ↓ — — — — Li et al. (2022)

(Continued on following page)

Fro
n
tie

rs
in

G
e
n
e
tics

fro
n
tie

rsin
.o
rg

0
3

C
h
e
n
e
t
al.

10
.3
3
8
9
/fg

e
n
e
.2
0
2
3
.1110

6
5
6

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1110656


TABLE 1 (Continued) siRNA downregulates CIP2A on tumor cells and potential molecular mechanisms.

Type of cancer Cell lines Proliferation Apoptosis Invasion Migration EMT Cell
cycle

Drug resistance Potential molecular
mechanisms

References

SNU387

Colon cancer Caco-2 ↓ — — — — — — ERK ↓ Chen J.S et al. (2015)

HCT116 ↓ — — — — — — c-Myc ↓ Wiegering et al. (2013)

HT29 ↓ — — — — — ↓(5-fluorouracil,
oxaliplatin, SN38)

— Teng et al. (2012)

HCT116 SW480 ↓ — — — — ↓ — — Denk et al. (2021)

LS174t

Pancreatic cancer SW1990 ↓ — — — — — ↓(Gemcitabine) BCL2 ↓, AKT ↓ Xu et al. (2016)

Clear cell renal cancer 786-O — — ↓ — ↓ — — — Tang et al. (2015)

A498 ═ — ↓ ↓ — — — c-Myc ↓ Ren et al. (2011)

KRC/Y

Caki-1 ↓ — — — — — — AKT signaling pathway Gao et al. (2020)

Prostate cancer LNCaP ↓ — — — — — — — Khanna et al. (2015)

PC-3 — — — — — ↓ — CIP2A interacts with Sgol1 Pallai et al. (2015)

C4-2 ↓ — — — — — ↓(Cabazitaxel) — Huang et al. (2015)

Bladder cancer T24 ↓ ↑ ↓ ↓ ↓ — — — Xue et al. (2013); Pang et al.
(2016)

Cervical cancer HeLa ↓ — — — ↓ — ↓(Doxorubicin,
cisplatin, and paclitaxel)

c-Myc ↓, Pgp ↓, MEK/ERK
signaling pathway (CIP2A interacts
with H-Ras)

Liu W et al. (2011); Wu et al.
(2015); Liu J et al. (2016)

Endometrioid
adenocarcinoma (EAC)

SiHa ↓ — — — — — — c-Myc ↓ Liu J et al. (2011)

Caski

Ishikawa ↓ ↑ ↓ ↓ — ↓ — c-Myc ↓, Cyclin D1↓ Yu et al. (2018)

An3ca ↓ — ↓ ↓ — ↓ — c-Myc ↓, Cyclin D1↓ Yu et al. (2018)

Ovarian cancer SKOV3DDP ↓ — — — — — ↓(Cisplatin) AKT signaling pathway Zhang et al. (2015)

A2780, SKOV3 ↓ — — — — ↓ ↓(Paclitaxel) Cyclin D1 ↓, c-Myc ↓, p-Rb ↓, Bcl-2
↓, p-AKT ↓

Fang et al. (2012)

Astrocytoma A172 ↓ ↑ — — — — — c-Myc ↓, pAKT ↓, BCL2 ↓ Yi et al. (2013)

U87

(Continued on following page)
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TABLE 1 (Continued) siRNA downregulates CIP2A on tumor cells and potential molecular mechanisms.

Type of cancer Cell lines Proliferation Apoptosis Invasion Migration EMT Cell
cycle

Drug resistance Potential molecular
mechanisms

References

Melanoma FEMX1, WM1366,
WM983b, WM9

↓ ↑ — — — — — PI3K/AKT signaling pathway Flørenes et al. (2015)

A375 — — ↓ ↓ — — — — Shi et al. (2014)

Osteosarcoma MG-63 ↓ — ↓ — — — — c-Myc ↓, pAKT ↓ Zhai et al. (2014)

Glioblastoma U251MG, WK1 ↓ — — — — — — — Khanna et al. (2020)

Colorectal cancer DLD1, HT29 ↓ ↑ — — — — — c-Myc ↓ Chen et al. (2020)

Multiple myeloma (MM) RPMI-8226, NCI-
H929

↓ ↑ — — — — — c-Myc ↓, PI3K/AKT/mTOR
signaling pathway

Yang et al. (2016); Zheng
et al. (2016)

Acute myeloid
leukemia (AML)

HEL ↓ — — — — — — c-Myc ↓ Barragán et al. (2015)

HL60 ↓ — — — — — — — Wang et al. (2011)

Chronic myelocytic
leukemia (CML)

K562 ↓ ↑ — — — — — c-Myc ↓ Wang H. W et al. (2014)

aInhibition or downregulation.
bUnknown.
cNo significant effect.
dPromotion or upregulation.
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Figure 1 shows the signaling pathways and regulation mechanisms
mainly associated with CIP2A/p90.

3.1 The PI3K–AKT–mTOR pathway

Phosphatidylinositol 3-kinase (PI3K) is a heterodimer consisting of
a regulatory subunit (p85) and a catalytic subunit (p110). Activated
PI3K can convert phosphatidylinositol 4,5-bisphosphate (PIP2) to
PIP3, which is a second messenger through 3-phosphoinositide-
dependent kinase1 (PDK1), indirectly activates AKT. The activated
AKT acts on a variety of substrates, such as mTOR and glycogen
synthase kinase-3β (GSK-3β), to regulate cell growth, proliferation, and
other functions (Vogelstein et al., 2013). IL-10 phosphorylates cAMP
response element-binding protein (CREB) through the PI3K/AKT
signaling pathway, thereby regulating CIP2A/p90 gene expression
(Sung et al., 2013). Based on our previous study, it was found that
CIP2A/p90 can regulate AKT phosphorylation at S473 under growth
factor stimulation. Our research also showed that CIP2A/p90 might
promote cell proliferation through the AKT–mTOR signaling pathway
(Lei et al., 2014). In addition, a new study further confirmed that the
overexpression of CIP2A was a key contributory event of AKT
phosphorylation in the correlation analysis of p-AKT and CIP2A in
220 clinical samples, and emphasized that the CIP2A-AKT axis is a
promising therapeutic target for breast cancer (Luque et al., 2022).

3.2 The RAS–MEK–ERK pathway

Ras, which is stimulated by extracellular signals, recruits Raf to
bind and activate it on the cell membrane. The activated Raf
(MAPKKK) can reactivate MAPKK, which in turn activates

extracellular protein kinases (ERKs) (also known as MAPK), and
finally, the activated ERK can further activate a number of
transcription factors, such as Elk-1, Ets1, ATF, NF-κB, and
c-Myc, to trigger a variety of biological effects (De et al., 2014).
Ets1, as the transcription factor, can mediate high CIP2A/
p90 expression in human cancers through increased activity of
the EGFR-MEK1/2-ERK pathway (Khanna et al., 2011). The
binding of Ets1 and Elk1 together to the proximal CIP2A/
p90 promoter is absolutely required for CIP2A/p90 expression in
liver, endometrial, and cervical carcinoma cells (Pallai et al., 2012).
Additionally, 17β-estradiol (E2) activates EGFR, thus stimulating
the MEK1/2 and PI3K pathways and further increasing the
expression of CIP2A/p90 through the MEK1/2-induced
transcription factor Ets1 to enhance the proliferation of cancer
cells (Choi et al., 2014).

3.3 The MKK4/MKK7-JNK-c-Jun pathway

JNK belongs to the mitogen-activated protein family
(MAPK), which responds to certain stimuli, such as cytokines,
UV radiation, heat, and osmotic shock. The activated JNK leads
to cell migration, proliferation, and invasion in cancers.
According to our research, we found that the overexpression
of CIP2A/p90 is associated with increased JNK pathway through
the phosphorylation of MKK4/MKK7-JNK-c-Jun signaling.
However, the exact mechanism by which CIP2A/
p90 modulates the JNK phosphorylation pathway is still
unknown (Peng et al., 2015). Knockdown of CIP2A decreases
JNK phosphorylation and the phosphorylation of downstream
transcriptional factors ATF2 and c-Jun, the transcriptional
activity of which is also decreased. Furthermore, the
expression level of CIP2A also affects the phosphorylation of
the upstream kinase of JNK, MKK4/MKK7 (Peng et al., 2015).

3.4 The P53-p21-E2F1-CIP2A/p90 pathway

The overexpression of E2F1 leads to activated cell cycle and
uncontrolled cellular proliferation in the majority of human
cancers. Owing to the inactivation of p53 or p21, the
overexpression of E2F1 promotes the expression of
oncoprotein CIP2A/p90, which in turn increases stabilizing
serine 364 phosphorylation of E2F1. The p53-p21-Rb pathway
can negatively regulate the activity of E2F1 transcription (Lucas
et al., 2015). Furthermore, research has shown that the positive
feedback loop of E2F1-CIP2A/p90 is very important to the
sensitivity of senescence and growth arrest induction in breast
and cervical cancer cells (Laine et al., 2013; Wang et al., 2017).
The CIP2A-AKT-mTOR pathway controls cell growth,
apoptosis, and autophagy. Polyphyllin I (PPI) and polyphyllin
VII (PPVII) are natural components extracted from Paris
polyphylla that have anticancer properties. Examination of the
mechanism revealed that PPI and PPVII significantly upregulate
p53, induce caspase-dependent apoptosis, and suppress the
CIP2A-AKT-mTOR pathway. The activation of autophagy is
mediated through PPI and PPVII, which induce the inhibition
of mTOR (Feng F. et al., 2019).

FIGURE 1
The signaling pathways and regulation networks of CIP2A/p90.
Several signaling pathways, including the PI3K–AKT–mTOR pathway,
the RAS–MEK–ERK pathway, the Wnt–β-catenin pathway, the MKK4/
MKK7-JNK-c-Jun pathway, the p53-p21-E2F1-CIP2A/
p90 pathway, and the phosphorylation and degradation of c-Myc,
non-coding RNAs, and other regulation factors, such as Oct4, AFT2,
CHK1, andHDAC1, are included in this figure. Bidirectional blue arrows
indicate interactions between two entities; unidirectional blue arrows
indicate a positive influence of an entity on another; red lines indicate
a negative influence of one entity on another.
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3.5 Non-coding RNA

MicroRNA, with a length of 18–25 nucleotides, is a type of
small single non-coding RNA that regulates gene post-
transcriptional expression through binding with complementary
sequences, which can degrade the target mRNA or inhibit its
translation (Jung et al., 2013). miR-218 can bind to the 3’-UTR
region of CIP2A/p90 in cutaneous melanoma cells to regulate the
gene expression of CIP2A/p90. The upregulation of miR-218
inhibits the expression of CIP2A/p90 and meanwhile suppresses
the functions of melanoma cells, such as migration, proliferation,
invasion, and cell cycle (Lu et al., 2015). The study examined the
effect of miR-218 on the expression of CIP2A in clear cell renal cell
carcinoma (ccRCC). The results showed that the expression level
of miR-218 in ccRCC was lower than that in adjacent non-tumor
kidney tissues. The downregulation of CIP2A or the
overexpression of miR-218 in ccRCC cells can inhibit cell
proliferation and migration (Wei et al., 2019). miR-383-5p
directly targets CIP2A/p90 to inhibit cell proliferation by
G1 cell cycle phase arrest and promotes apoptosis in lung
adenocarcinoma (Zhao et al., 2017). CIP2A/p90 is also targeted
by miR-375, which stimulates the expression of p21 due to the
promotion of its major transcriptional activator, p53, and
consequently restrains the action of CIP2A/p90 and c-Myc in
cell proliferation. These findings suggest that microRNA can act as
a tumor suppressor of oncogenic elements, such as CIP2A/p90
(Jung et al., 2014). In addition, miR-548b-3p regulates
proliferation, apoptosis, and mitochondrial function by
targeting CIP2A in HCC (Lin and Wang, 2018). There is an
automatic regulation feedback loop between CIP2A and miR-
301a. Additionally, the feedback of miR-301a promotes the
expression of CIP2A through ERK/CREB signal (Yin et al.,
2019). A specificity protein 1 (SP1)-induced long non-coding
RNA, DPPA2 upstream binding RNA (DUBR), upregulates
CIP2A expression through E2F1-mediated transcription
regulation, which also plays a role in upregulating CIP2A at the
mRNA level by binding miR-520d-5p as a competing endogenous
RNA (Liu et al., 2022). The knockdown of LINC00665 can also
significantly decrease the cell proliferation, migration, and
invasion of HCC, while overexpression of the short peptides of
LINC00665 (CIP2A-BP) can markedly increase cell proliferation,
invasion, and migration (Li et al., 2022).

3.6 Other regulation factors

The Wnt-β-catenin pathway: after the activation of Wnt, β-
catenin is stabilized and bound to the T-cell factor (Tcf)/lymphoid
enhancer factor (Lef) family transcription factors, thus leading to a
transcriptional activation of target genes (Huang et al., 2019).
Aberrant activation of the Wnt/β-catenin pathway is a common
event in many types of cancers (Zhang and Wang, 2020). The
upregulation of CIP2A/p90 might indirectly lead to reduced β-
catenin levels via PP2A inactivation, reinforcing the polo-like
kinases (Plk1)-dependent β-catenin inhibition (Li et al., 2015).
Additionally, CIP2A/p90 enhances the stabilization of β-catenin
to promote fibronectin-induced cancer cell proliferation (Gao et al.,
2017).

Phosphorylation and degradation of c-Myc: ERK can
phosphorylate c-Myc Ser62 to stabilize it. Then, GSK-3β further
phosphorylates c-Myc Thr58, followed by prolyl isomerase (PIN-1),
which can transform c-Myc (including both Ser62 and
Thr58 phosphorylation sites) from a cis-structure to a trans-
structure (Posternak and Cole, 2016). PP2A can catalyze the
trans-structure of c-Myc Ser62 dephosphorylation to form the
trans-structure of c-Myc (including the Thr58 phosphorylation
site), which may be further ubiquitinated and degraded by
protein ligase complex (containing FWB7) (Dang, 2012). CIP2A/
p90 interacts directly with c-Myc and inhibits PP2A activity toward
c-Myc Ser 62, thereby preventing c-Myc proteolytic degradation
(Junttila et al., 2007).

Other regulation factors also exist. The expression of CIP2A/p90 in
various tumor cells is regulated by other regulation factors with a certain
complexity and cell specificity. Moreover, most of them are
transcription factors. Octamer-binding transcription factor 4 (Oct4)
positively regulates the expression of CIP2A/p90 both in embryonic
stem cells and testicular cancer cell lines. The co-expression of Oct4 and
CIP2A/p90 is also associated with the increased radio-resistance and
aggressiveness in HNSCC cell lines (Ventelä et al., 2015). In addition,
the study found that CIP2A can directly interact with TopBP1 and
coordinate DNAdamage-inducedmitotic checkpoint and proliferation,
thus driving the initiation and progression of basal breast cancer (Laine
et al., 2021). In mouse embryonic fibroblasts, the transcription factor
ATF2 binds to the AP-1 site in the promoter region of the CIP2A/
p90 gene and initiates gene transcription (Mathiasen et al., 2012).
Activated transcription factor 6 (ATF6) is one of the three major stress
transduction factors of the endoplasmic reticulum and has been proven
to promote chemotherapy resistance by changing the survival of cancer
cells. Recent studies have shown that endoplasmic reticulum stress-
related ATF6 upregulates CIP2A/p90, which helps to improve the
prognosis of colon cancer (Liu X et al., 2018). The activity of checkpoint
kinase 1 (CHK1) promotes the transcription of CIP2A/p90, thereby
inhibiting the activity of PP2A, the tumor suppressor. In addition, the
phosphorylation of CHK1 can upregulate the expression of the CIP2A/
p90 gene through phosphorylation of serine 345 of CHK1 via DNA
damage response kinases (DNA-PK) in human gastric cancer, ovarian
cancer, colon cancer, and neuroblastoma (Khanna et al., 2013; Khanna
et al., 2020). Histone deacetylase 1 (HDAC1) regulates CIP2A/p90 gene
expression in colorectal cancer cells. The inhibition of HDAC1 by (S)-
2 downregulated the transcription of CIP2A/p90 and unleashed PP2A
activity, thereby inducing growth arrest and apoptosis in colorectal
cancer cells (Balliu et al., 2016).

4 CIP2A/p90 expression and its clinical
role in tumors

Compared with normal or para-cancerous tissues, CIP2A/p90
(protein or mRNA) is overexpressed or amplified at a high
frequency in the vast majority of solid and hematological tumors
(Tang et al., 2018). Recent studies have shown that the aberrant
expression level of CIP2A/p90 is either significantly correlated with
tumor stages or serves as a prognostic marker for overall survival (OS)
and disease-free survival (DFS) (Table 2). According to numerous
studies, the high expression of CIP2A/p90 in some cancers, such as
cutaneous melanoma, breast cancer, colon cancer, cervical cancer,
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TABLE 2 Expression of CIP2A in various tumor tissues and its clinical significance.

Type of cancer Positive rate Relationship with survival rate Relationship with prognosis References

NPC 90.7% (254/280) +a + Liu et al. (2014b)

Tongue cancer 97.3% (71/73) + + Böckelman et al. (2011b)

Oral cancer 100% (133/133) + + Velmurugan et al. (2019)

Oral squamous cell carcinoma 54.3% (19/35) ± ± Alzahrani et al. (2020)

HNSCC 78.6% (11/14) -b - Junttila et al. (2007)

80.8% (42/52) + + Routila et al. (2016)

82.7% (43/52) + - Ventelä et al. (2015)

Thyroid carcinoma 85.3% (81/95) + + Chao et al. (2016)

Lung cancer 84.7% (61/72) - - Peng et al. (2015)

NSCLC 72.2% (65/90) + + Dong et al. (2011)

76.3% (74/97) + + Xu et al. (2012)

88.3% (184/209) + + Cha et al. (2017)

Breast cancer 39.4% (13/33) + - Côme et al. (2009)

35% (448/1280) + + Yu G et al. (2013)

46% (565/1228) - + Laine et al. (2013)

100% (46/46) - - Liu C. Y et al. (2014)

Esophageal squamous cell cancer 90% (36/40) - ×c Qu et al. (2012)

Esophageal adenocarcinoma 97.3% (110/113) × + Rantanen et al. (2013)

Gastric cancer 65% (145/223) + + Khanna et al. (2009)

67.6% (25/37) + + Chen F. F et al. (2015)

Esophagogastric junction
adenocarcinoma

64.6% (42/65) + - Li et al. (2019)

Colorectal cancer 87.9% (661/752) × × Böckelman et al. (2012)

100% (167/167) + + Teng et al. (2012)

89.4% (93/104) + + Wiegering et al. (2013)

80.7% (21/26) + + Chen et al. (2020)

HCC 100% (136/136) + + He et al. (2012)

77.9%d (106/136) + + Huang C. Y et al. (2012)

Pancreatic cancer 56.3% (54/96) + + Wang et al. (2013)

70.8% (51/72) + + Xu et al. (2016)

Cholangiocarcinoma 78.9% (45/57) + + Xu et al. (2013)

Renal cancer 70.1% (75/107) + + Ren et al. (2011)

50.0% (55/110) + + Wang P et al. (2019)

73.7%d (59/80) - + Gao et al. (2020)

Bladder cancer 72.6% (85/117) + + Xue et al. (2013)

78.8% (63/80) - - Pang et al. (2016)

41.9% (18/43) - - Huang P et al. (2012)

Prostate cancer 72.9% (43/59) × × Vaarala et al. (2010)

96.2% (101/105) - × Celikden et al. (2020)

(Continued on following page)
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prostate cancer, and oral cancer, is associated with pathologic high-
grade tumor and the progression of disease (Côme et al., 2009; Vaarala
et al., 2010; Böckelman et al., 2011a; Böckelman et al., 2012; Shi et al.,
2014; Velmurugan et al., 2019). As shown in our previous study,
CIP2A/p90 is rarely expressed in non-cancerous/non-transformed
cells, but is abundantly expressed in typically transformed cells (Soo
Hoo et al., 2002).

As shown in Table 2, some controversial conclusions have been
made in the same type of cancer by different research groups. Out of
two studies (He et al., 2012; Huang C.Y et al., 2012), He et al. concluded
that the high expression of CIP2A/p90 can predict poor outcome in
patients with hepatocellular carcinoma, and therefore, this can be used
as a significant prognostic factor for DFS and OS (He et al., 2012).
Conversely, in the study by Huang et al., the expression of intratumoral

CIP2A/p90 mRNA was not associated with prognosis, whereas non-
cancerous CIP2A/p90 mRNA was shown to be an independent
prognostic factor of OS and recurrence-free survival (RFS) (Huang
L.P et al., 2012). Therefore, more extensive research evaluating both
CIP2A/p90 protein and mRNA expression, with normal controls, is
needed. As with hepatocellular carcinoma, the results from three
investigations evaluating the prognostic value of CIP2A/
p90 expression were contradictory (Böckelman et al., 2012; Teng
et al., 2012; Wiegering et al., 2013). The investigations carried out by
Wiegering et al. (2013) and Teng et al. (2012), examining 104 and
167 colon cancer specimens, respectively, both revealed that CIP2A/
p90 expression is positively associated with prognosis. By contrast,
Böckelman et al. (2012) analyzed 752 specimens and showed there was
no significant association between CIP2A/p90 expression and

TABLE 2 (Continued) Expression of CIP2A in various tumor tissues and its clinical significance.

Type of cancer Positive rate Relationship with survival rate Relationship with prognosis References

Cervical cancer 52.8% (38/72) - - Liu X et al. (2014)

60.8% (31/51) - - Wu et al. (2015)

Ovarian cancer 82.8% (434/524) + + Böckelman et al. (2011a)

65.8% (100/152) - - Fang et al. (2012)

Melanoma 100.0% (65/65) + + Shi et al. (2014)

Multiple myeloma 46.3% (19/41) - + Liu et al. (2017c)

Osteosarcoma 76.5% (39/51) - - Zhai et al. (2014)

AML 57.8%d (67/116) - - Wang et al. (2011)

100%d (203/203) + + Barragán et al. (2015)

CML 75.7%d (56/74) - - Wang J et al. (2014)

aRelated.
bUnknown.
cUnrelated.
dCIP2A mRNA, positive rate (the rest was CIP2A protein positive rate).

TABLE 3 Frequency of anti-CIP2A/p90 and the TAA panel in cancer patients and normal controls.

Cancer TAA panel number Percentage (number) of TAA positivity References

CIP2A/p90 Normal controls Panel Normal controls

Prostate 6 30.8% (41/133) 3.1% (3/96) 92.5% (122/133) 14.8% (14/96) Shi et al. (2005)

Prostate 6 -a - 79% (103/131) 16% (19/121) Xie et al. (2011)

Breast - 19.1% (32/168) 2.3% (2/88) - - Liu et al. (2014a)

Breast 5 - - 38% (147/386) - Sumazaki et al. (2021)

ESCC 4 - - 77.01% (499/648)b Zhang et al. (2016)

78.49% (292/372)c

Gastric cancer 6 8.0% (8/100)b 1.3% (1/79)b 49.0% (49/100)b 7.6% (6/79)b Hoshino et al. (2017)

11.3% (28/248)c 4.1% (3/74)c 52.0% (52/100)c 9.5% (7/74)c

Ovarian cancer 9 16.7% (22/132) 2.0% (3/147) 61.4% (81/132) 15.0% (22/147) Wang X et al. (2019)

aUnknown.
bTest cohort.
cValidation cohort.
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TABLE 4 Antitumor research related to CIP2A downregulation.

Compounds Suppressed tumor cells Inhibition of nude mice
xenografts

Reduce
resistance

References

CIP2A siRNA Human tongue squamous cell carcinoma (SCC) cell
line CAL 27

Xenograft model of oral cancer cell CAL27 —a Cantini et al. (2013)

Bladder cancer cell (T24) Xenograft model of bladder cancer cell T24 — Xue et al. (2013)

Lapatinib Breast cancer cell (HCC 1937; MDA-MB-468/MDA-
MB-231)

— — Liu J et al. (2016)

Genistein Breast cancer cell (MCF-7-C3 and T47D) — — Zhao et al. (2016)

Fingolimod Breast cancer cell (MDA-MB-231and BT-474) Xenograft model of breast cancer cell
MDA-MB-231

— Zhao et al. (2016)

Tamoxifen Breast cancer cell (MDA-MB-231, MDA-MB-468,
MDA-MB-453, and SK-BR-3)

Xenograft model of breast cancer cell
MDA-MB-468

— Liu N et al. (2014)

Cucurbitacin B Breast cancer cell (MCF-7/Adr) — Doxorubicin Cai et al. (2016)

Glioblastoma multiform (GBM) cell, (DBTRG-
05MG, U251MG, U118MG, U87MG, and LN229)

Xenograft model of GBM cell U118MG — Qin et al. (2018)

Gastric cancer cell (SGC7901/DDP and SGC7901) — Cisplatin Liu et al. (2017d)

The t (8:21)-bearing AML cell line kasumi-1, acute
promyelocytic leukemia (HL60), acute
myelomonocytic leukemia (U937), chronic
myelogenous leukemia (K562), and Burkitt’s
lymphoma (Raji) and T-cell acute lymphoblastic
leukemia (Molt-4)

Xenotransplantation model of AML cell — Ma et al. (2019)

Human gefitinib-resistant NSCLC cell A549, NCI-
H1299 (H1299), NCI-H1975 (H1975), NCI-H820
(H820), and human normal lung epithelial cell
(16-HBE)

H1975 cell transplantation model Gefitinib Liu et al. (2019)

Bortezomib HNSCC cell (Ca9-22, SAS and SCC-25) — — Lin et al. (2012)

Breast cancer cell (HCC-1937, MDA-MB-231 and
MDA-MB-468)

Xenograft model of breast cancer cell
HCC-1937

— Tseng et al. (2012)

Colon cancer cell (LoVo) Xenograft model of colon cancer cell LoVo — Ding et al. (2014)

HCC cell (Sk-Hep1 and Huh-7) — Radiation Huang L.P et al.
(2012)

Cervical cancer cell (SiHa) (Bortezomib and radiation combination)
xenograft model of cervical cancer cell
SiHa

Radiation Huang P et al. (2012)

Leukemia cell (HL-60 and KG-1) Xenograft model of leukemia cell HL-60 — Liu et al. (2013)

Non-small cell lung cancer cell (HCC4006) — Erlotinib Saafan et al. (2021)

Bortezomib and its
derivative

HCC cell (Huh-7, Hep3B and Sk-Hep1) Xenograft model of HCC cell Huh-7 Anti-death receptor
5 antibodies CS-1008

Chen et al. (2010);
Hou et al. (2013)

Carfilzomib Leukemia cell (HL-60, KG-1, THP-1 and K562) Xenograft model of Leukemia cell HL-60
and K562

— Liu et al. (2017a)

Ellagic acid Lung adenocarcinoma cell HOP62 and H1975
(harboring L858R/T790M EGFR mutation)

Xenograft model of lung cancer cell
HOP62

— Duan et al. (2019)

Polyphyllin I NSCLC cell A549 and DDP-resistant A549/DDP cells — Cisplatin Feng et al. (2019b)

GC cell (SGC7901, SGC7901/DDP and GES-1) Xenograft model of GC cell SGC7901/DDP Cisplatin Zhang et al. (2018)

PC cancer cell (PC3 and DU145) Xenograft model of PC cell DU145 — Liu C.Y et al. (2018)

Erlotinib NSCLC cell (H358) Xenograft model of NSCLC cell H358 — Wang C Y et al.
(2014)

HCC (PLC5 and Hep3B) — — Yu H.C et al. (2013)

(Continued on following page)
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prognosis. This disparity might be due to the different size of each
sample or the different antibodies used for staining CIP2A/p90. In
addition, the high expression of CIP2A/p90 has diagnostic significance
in some cancers, such as papillary thyroid carcinoma, breast cancer, and
chronic myeloid leukemia (Liu C Y et al., 2014; Chao et al., 2016; Xing
et al., 2016; Clark et al., 2021).

5 Autoantibody to CIP2A/p90 as
biomarker in cancers

As described above , CIP2A/p90 was initially isolated and
characterized as a type of TAA (Soo Hoo et al., 2002). The
immune system of certain cancer patients can recognize these

aberrant TAA proteins as foreign antigens, thus producing
antibodies, called autoantibodies in response. Therefore, anti-
TAA autoantibodies might be regarded as biomarkers for the
early detection of certain types of cancer (Tan, 2001; Tan and
Zhang, 2008). According to our previous studies and others, the
frequency of autoantibodies to CIP2A/p90 in sera is significantly
higher than that of normal controls. When we selected a panel of
TAAs, such as CIP2A/p90, the accumulative positive
autoantibodies’ reactions in sera were much higher (Shi et al.,
2005; Xie et al., 2011; Liu et al., 2014a). Some data showed the
selected panel of TAAs had high specificity and sensitivity as
immunodiagnostic biomarkers in both he test cohort and the
validation cohort (Zhang et al., 2016; Hoshino et al., 2017). In
addition, a few of the panel TAAs, including CIP2A/p90, had a high

TABLE 4 (Continued) Antitumor research related to CIP2A downregulation.

Compounds Suppressed tumor cells Inhibition of nude mice
xenografts

Reduce
resistance

References

Erlotinib and its
derivative

HCC (Sk-Hep1) — — Chen et al. (2012)

Erlotinib derivative
TD-19

NSCLC cell (H460) Xenograft model of NSCLC cell H460 — Chao et al. (2014)

Erlotinib derivative
TD52

HCC (PLC5, Huh-7, Hep3B, and Sk-Hep1) Xenograft model of HCC cell PLC5 — Yu et al. (2014)

Triple-negative breast cancer (TNBC) cells (HCC-
1937)

Xenograft model of TNBC cell MDA-
MB-468

— Liu et al. (2017b)

MDA-MB-231 and MDA-MB-468)

Afatinib NSCLC cell (H358 and H441) Xenograft model of NSCLC cell H358 — Chao et al. (2015)

Celastrol NSCLC cell (H1975 and A549) Xenograft model of NSCLC cell H1975 and
A549

— Liu et al. (2014b)

Chondrosarcomas (CS) cell (SW1353 and JJ012) — — Wu et al. (2017)

Ethoxysan-guinarine NSCLC cell (H1975 and A549) — Cisplatin Liu et al. (2014a)

CRC cell (SW620, SW480, HT29 and HCT116) Xenograft model of CRC cells SW620 — Jin et al. (2018)

Temsirolimus Colon cancer cell (HCT-15 and SW480) Temsirolimus and cetuximab combination
xenograft model of colon cancer cell
HCT-15

Cetuximab Wang H.W et al.
(2014)

Euxanthone CRC cell (HT29, HCT116, SW620, LOVO and
SW480)

Xenograft model of CRC cells HT29 — Wang et al. (2018)

Gambogenic acid HCC (Hep G2 and Bel-7402) — — Yu et al. (2016)

Huaier
polysaccharide
(HP-1)

ccRCC cells (A498 and 786-O) Xenograft model of ccRCC cells A498 Sunitinib Fang et al. (2019)

FTY720 Neuroblastoma cell SK-N-AS (CRL-2137), SK-N-BE
(2) (CRL-2271), SH-EP and WAC (2)

Xenograft model of neuroblastoma cells
SH-EP and WAC (2)

— Williams et al. (2019)

Medulloblastoma cell (D341, D384, and D425) Xenograft model of medulloblastoma cells
D341, D384, and D425

— Garner et al. (2018)

2,5-Dimethyl
Celecoxib

Glioblastoma cell (LN229, A172, U251 and U87MG) Xenotransplantation model of
glioblastoma cell LN229 cells in nude mice

— Gao et al. (2021)

Polyphyllins I and VII NSCLC cell (A549 and A549/DDP) — Cisplatin Feng et al. (2019b)

(+)-Cyanidan-3-ol Squamous cell skin cancer (SCSC) cell (A431) DMBA/TPA-induced SCSC and xenograft
model of SCSC cell A431

— Monga et al. (2022)

A431

aUnknown.
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diagnostic performance in the detection of cancers, especially for the
patients at early stage (Zhang et al., 2016; Wang X et al., 2019;
Table 3).

The clinical value of the autoantibody responses to CIP2A/
p90 and other TAAs might be further validated by more studies of
different cancers. The more precise circumscriptions about whether
the expression level of anti-TAA autoantibodies varies with disease
progression or the response to treatment, and when autoantibodies
against these TAAs appear as early predictors of cancers, also needs
further investigation (Liu J et al., 2011).

6 CIP2A/p90 as a potential therapeutic
target in cancers

The overexpression of CIP2A/p90 can upregulate the drug
resistance of tumor cells to chemotherapy (Liu et al., 2022).
Based on the pathophysiology of cancer cells, it can be suggested
that effective therapeutic responses against them require
simultaneous inhibition of kinase signaling pathways and the
reactivation of their inhibitors, such as PP2A (Soofiyani et al.,
2017; Westermarck, 2018). CIP2A/p90 siRNA and some small-
molecule compounds can inhibit some tumor cell proliferation
and corresponding nude mice xenografts. The inhibition was
related to the downregulation of CIP2A/p90, the downstream
molecules of which could increase PP2A activity and attenuate
AKT phosphorylation (Table 4).

According to Table 4, the mechanism by which some small-
molecule compounds downregulate CIP2A/p90 has been elucidated.
Hypoglycemia and metformin impair the metabolic plasticity and
growth of tumors by regulating the PP2A-GSK3b-MCL-1 axis
(Elgendy et al., 2019). Lapatinib, erlotinib derivative TD52, and
afatinib interfered transcription factor Elk1 combined with the
CIP2A/p90 promoter further downregulate the expression of
CIP2A/p90 separately in breast cancer cells, liver cancer cells, and
NSCLC cells (Yu et al., 2014; Chao et al., 2015; Liu C Y et al., 2016; Liu
et al., 2017a). Bortezomib, as a proteasome inhibitor, has an anti-tumor
effect in HCC, HNSCC, leukemia, breast cancer, and colon cancer by
inhibiting the CIP2A-PP2A-AKT signaling pathway (Chen et al., 2010;
Lin et al., 2012; Tseng et al., 2012; Liu et al., 2013; Ding et al., 2014).
Celastrol, bound to CIP2A/p90 in NSCLC cells, promotes the
connection of CIP2A/p90 with the carboxyl terminus of Hsp70-
interacting protein (CHIP) and induces the degradation of CIP2A/
p90 (Liu et al., 2014b). Gambogenic acid induces the degradation of
CIP2A/p90 through the ubiquitin–proteasome pathway in HCC cells
(Yu et al., 2016). Notably, the direct and accurate antagonists of CIP2A/
p90 are still unknown. There are multiple challenges in establishing
direct CIP2A/p90-target drugs as effective clinical anticancer therapies.

7 Conclusion

CIP2A/p90 is overexpressed in most types of cancer and is
positively correlated with the poor prognosis of many patients. The
interaction among CIP2A/p90, PP2A, and c-Myc is an important

mechanism of CIP2A/p90 in promoting cancer. Owing to the nature
of CIP2A/p90, which can play important roles in the proliferation,
apoptosis, invasion, migration, EMT, cell cycle, and drug resistance
of tumor cells, it can be used as a potential diagnostic biomarker, as
well as an antitumor drug target. However, there are still some
important issues to be resolved: (1) the function of CIP2A/p90 in
both cell proliferation and drug resistance suggests that it plays an
important role in cancer stem cells, which have drug resistance and
rapid proliferation. (2) The signaling pathways and regulation
networks of CIP2A/p90 are complex. Genomic or systems-level
analysis with new tools and technologies will reveal how the
signaling pathways and regulators of CIP2A/p90 contribute to
tumorigenesis. (3) The precise molecular structure of CIP2A/
p90 has not yet been resolved. Therefore, the direct antagonists
of CIP2A/p90 still need further investigation and additional
application in clinical therapy. (4) The clinical value of
autoantibody against CIP2A/p90 as biomarker in cancer needs to
be further clinically validated. Overall, there is an urgent need for
large studies that will clearly validate the clinical significance of
CIP2A/p90, the potential benefit of which is huge.
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