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Background: Colorectal cancer (CRC) is the second most common cancer in
China. Autophagy plays an important role in the initiation and development of
CRC. Here, we assessed the prognostic value and potential functions of
autophagy-related genes (ARGs) using integrated analysis using single-cell RNA
sequencing (scRNA-seq) data from the Gene Expression Omnibus (GEO) and RNA
sequencing (RNA-seq) data from The Cancer Genome Atlas (TCGA).

Methods: We analyzed GEO-scRNA-seq data from GEO using various single-cell
technologies, including cell clustering, and identification of differentially
expressed genes (DEGs) in different cell types. Additionally, we performed
gene set variation analysis (GSVA). The differentially expressed ARGs among
different cell types and those between CRC and normal tissues were identified
using TCGA-RNA-seq data, and the hub ARGs were screened. Finally, a prognostic
model based on the hub ARGs was constructed and validated, and patients with
CRC in TCGA datasets were divided into high- and low-risk groups based on their
risk-score, and immune cells infiltration and drug sensitivity analyses between the
two groups were performed.

Results:We obtained single-cell expression profiles of 16,270 cells, and clustered
them into seven types of cells. GSVA revealed that the DEGs among the seven
types of cells were enriched in many signaling pathways associated with cancer
development. We screened 55 differentially expressed ARGs, and identified 11 hub
ARGs. Our prognostic model revealed that the 11 hub ARGs including CTSB,
ITGA6, and S100A8, had a good predictive ability. Moreover, the immune cell
infiltrations in CRC tissues were different between the two groups, and the hub
ARGs were significantly correlated with the enrichment of immune cell infiltration.
The drug sensitivity analysis revealed that the patients in the two risk groups had
difference in their response to anti-cancer drugs.

Conclusion: We developed a novel prognostic 11-hub ARG risk model, and these
hubs may act as potential therapeutic targets for CRC.
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1 Introduction

Colorectal cancer (CRC) is the most common malignant tumor
of the digestive system in worldwide and ranks second in morbidity
and mortality among all cancers in China. According to statistics
from China national cancer center, 122,459 patients are newly
diagnosed with CRC per year, leading approximately
30,000 deaths yearly (Feng et al., 2019). Owning to advances in
treatment and early diagnosis, the outcomes of patients with CRC
have improved in recent decades. However, the prognosis of patients
with advanced CRC remains poor, with a 5-year survival rate of less
than 50%. The most effective method for early diagnosis of CRC is
colonoscopy. However, colonoscopy screening for CRC is not widely
implemented in China, and approximately 50% of patients with
CRC are diagnosed at an advanced staged, leading to a poor
prognosis (GBD, 2019 Colorectal Cancer Collaborators, 2022;
Sung et al., 2021). Moreover, the initiation and development of
CRC are complex, and associated with dysregulated expression of
various genes. For example, the expression of adenomatous polyposis
coli (APC), a tumor suppressor that inhibits the Wnt/β-catenin
signaling pathway is downregulated in many patients with CRC
(Caspi et al., 2021). Therefore, it is necessary to identify biomarkers
for the early diagnosis and targeted treatment of CRC.

Several prognostic biomarkers for CRC have been identified,
including non-coding RNA, protein located in different elements of
cells, methylated loci in the promoter of oncogene or tumor
suppressor genes, and mutated drivers (Chen et al., 2021;
Martelli et al., 2022). These biomarkers are associated with the
altered the phenotypes of CRC cells and play a role in the
development and progression of CRC. For example, high
expression of the hominid-restricted retrogene POU5F1B in
tumor tissues is associated with a poor outcome of patients with
CRC and promoted the cancer growth and metastasis by activating
intracellular signaling events and releasing trans-acting factors
(Simo-Riudalbas et al., 2022). Nowadays, with the deepening of
research, recently report has found autophagy proteins have
prognostic value for CRC (Hu et al., 2022). Autophagy is a vital
physiological process that plays an important role in maintaining
cellular homeostasis through lysosome-dependent cellular
degradation (Chen et al., 2021). It is regulated by several genes
termed autophagy-related genes (ARGs). Autophagy critically has
been reported affecting the carcinogenesis of CRC (Huang et al.,
2018; Gao et al., 2022). For example, Sphk1-driven autophagy
enhanced CRC metastasis (Wu et al., 2021). However, bivalent β-
Carbolines induced autophagy to depressed CRC growth (Zhang
et al., 2021), which means autophagy played a balance role in the
occurrence and death of tumors. Therefore, identifying the hub
ARGs in CRC can deepen our understanding of the genomic
alteration between CRC and normal tissues. Moreover, hub
ARGs may act as prognostic biomarkers and therapeutic targets
for CRC.

Owing to recent progress in single-cell RNA sequencing
(scRNA-seq), CRC cells can be classified into different subtypes
using scRNA-seq and screen the differentially expressed genes
(DEGs) among the different cell types, which can deepen our
understanding of the heterogeneity of intratumoral (within tumor
cells) and intertumoral (within the tumor microenvironment
[TME]) heterogeneity (Casasent et al., 2018; Zheng et al., 2018).

In addition, scRNA-seq can detect circulating tumor cells and can be
used for assessing the risks of metastasis in clinical settings
(Beshnova et al., 2020). However, there are only a few reports on
the application of scRNA-seq to determine and validate the
prognostic signature of ARGs in CRC, and previous preliminarily
studies validating the prognostic value of ARGs in CRC were
performed using bulk transcriptomic profiles (Huang et al., 2018;
Gao et al., 2022).

This study aimed to identify prognostic AGRs biomarkers
among subpopulations of CRC tissue using single-cell profiling.
We downloaded scRNA-seq data of CRC from the Gene Expression
Omnibus (GEO) and obtained RNA-sequencing (RNA-seq) data
together with clinical information from The Cancer Genome Atlas
(TCGA). Additionally, we screened hub ARGs and constructed a
prognostic model based on their expression levels and clinical
factors. Finally, we validated the predictive value of ARGs for
patients with CRC to investigate their possible role in
individualized treatments.

2 Methods

The workflow of data processing and analysis is outlined in
Figure 1.

2.1 Acquisition of cell samples and CRC
population cohorts

The scRNA-seq dataset GSE132257 (five CRC tissues and five
normal tissues, platform: GPL16791) was downloaded from GEO
(https://www.ncbi.nlm.nih.gov/geo/) (Lee H. O. et al., 2020). The
RNA-seq data (level 3: raw counts) of colon adenocarcinoma
(COAD) and rectum adenocarcinoma (READ) were downloaded
from TCGA portal (https://portal.gdc.cancer.gov/) using the R
package TCGAbiolinks (v 2.22.4) (Colaprico et al., 2016) and
then merged into the expression matrix. Next, Raw counts were
converted to fragments per kilobase per million (FPKM) using the R
package DESeq2 based on gene lengths. A total of 417 CRC samples
with survival information were used for prognostic analysis.

2.2 Quality control and processing of single-
cell data from CRC tissues

The R package Seurat (v4.0.5) was used for quality control (Satija
et al., 2015). A Seurat object was created for the expression matrix
GSE132257. The proportion of mitochondria genes reflect the
homeostasis of cells, and a higher proportion of mitochondrial
genes than other genes in cells indicates that the cells are in a
state of stress. Therefore, we restricted the proportion of
mitochondria genes to less than 20%. Similarly, we excluded the
cells with genes numbers less than 200 or more than 3,000, which
represented low-quality cells or non-single cells respectively. Finally,
there were 16,270 cells were obtained after quality control.

Cells were then normalized for sequencing depth using the
NormalizeData function, and the standardized method was
default “LogNormalize”; the top 2,000 variable genes were
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detected using the variance-stabilizing transformation (vst) method
in the “FindVariableFeatures” function. Next, principal component
analysis (PCA) was used for identifying significant principal
components (PC), and p-value distributions were visualized using
the “Elbowplot” function. We selected 32 PCs for t-distributed
stochastic neighbor Embedding (tSNE) analysis, and k-nearest
neighbors based on Euclidean distance were constructed in PCA
spaces, where the clusters were then identified using the Louvain
algorithm. Finally, the cells were divided into 15 clusters with a
resolution of 0.2. In addition, the “RunTSNE” function was used for
dimensional reduction, to visualize and explore the dataset.

We used “BlueprintEncodeData” as a reference dataset in the R
package SingleR (Aran et al., 2019) to annotate the clusters and cell
categories, and identified seven cell types, which were T-cells, B-cells,
epithelial cells, myeloid cells, fibroblasts, mast cells and endothelial
cells. To screen the DEGs among the seven cell types, we performed
Wilcoxon rank-sum test using the “FindAllMarkers” function.

2.3 Single-cell trajectories reconstruction
and analysis

Cell trajectories were inferred using the default parameters of the
R package Monocle (Qiu et al., 2017). First, the gene expression
matrices from Seurat were exported to Monocle and cell datasets
were constructed. Next, we defined variable genes using the
“dispersionTable” function and then sorted the cells using the
“setOrderingFilte” function. Finally, the “DDRTree” method was
used for dimensional reduction andthe position of cells along the
trajectory of cell states was determined using the “orderCells”
function. A cell differentiation time tract was formed based on
cluster characteristics and marker gene analysis.

2.4 Gene set variation analysis (GSVA)

The R package “GSVA” is a non-parametric and unsupervised
method for estimating the variation in gene set enrichment in gene
expression data (Hanzelmann et al., 2013). ScRNA-seq data of CRC
tissues were used as input for the GSVA algorithm. We downloaded
c2.cp.kegg.v7.5.1.symbols.gmt and
c7.immunesigdb.v7.5.1.symbols.gmt respectively from the
Molecular Signatures Database (MSigDB, https://www.gsea-
msigdb.org/gsea/msigdb/) (Liberzon et al., 2015) as reference
gene sets. The enrichment score (ES) of each pathway in the
gene sets was then calculated. The differential ES of pathways
among different cell clusters was determined using the R package
“limma” (v 3.50.0) (Ritchie et al., 2015), and the top three pathways
(selected based on the t-value) of each cell cluster were used for
plotting heatmaps. Statistical significance was set at p < 0.05.

2.5 Differential expression of ARGs

First, we analyzed the differential expression of ARGs among the
seven cell types. We obtained 489 ARGs from the human autophagy
database (HADb, http://www.autophagy.lu/index.html) and
Human Autophagy Moderator Database (HAMdb, http://hamdb.
scbdd.com/home/download/) (Deng et al., 2018). We identified the
intersection between the 489 ARGs and the DEGs of the seven cell
types to determine the differentially expressed ARGs.

Next, we screened the DEGs between CRC tissues and normal
tissues based on TCGA-RNA-seq data. The R package DESeq2
(v1.34.0) (Love et al., 2014) was used to identify DEGs, using the
threshold parametric p < 0.05 and |logFC| > 1. Finally, the
differential expression ARGs between CRC tissues and normal

FIGURE 1
Flow chart of analyses performed in this study.
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tissues were selected, and clustering heatmaps and volcano plots
were plotted using the ggplot2 package.

2.6 Cell culture

The human normal colon epithelial cells (NCM460D) and CRC
cell (SW480) were purchased from the Chinese Academy of Sciences
(Shanghai, China). The NCM460D cells were cultured in Dulbecco’s
Modified Eagle Medium medium (Gibco) with 10% fetal bovine
serum (FBS) and 1% streptomycin/penicillin. The SW480 cells were
cultured in L15 base medium with 10% FPS and 1% streptomycin/
penicillin. All the cell lines were cultured in an incubator with 37°C
and 5% CO2.

2.7 qRT-PCR

According to the manufacturer’s instructions, TRIzol reagent
(Invitrogen) was applied to extract total RNA from the cells. Next,
PrimeScript RT Master Mix Kit (TaKaRa) was applied to reverse
transcribe RNA to cDNA. qRT-PCR was performed using an ABI
StepOnePlus Real-time PCR system (Applied Biosystems) with
SYBR Green Real-time PCR Master Mix (Vazyme). The house-
keeping gene, GAPDH was used to normalize the mRNA. The
primers were designed in Supplementary Table S1.

2.8 siRNA knockdown and transfection

The cells were spread on six-well plates. Next, cell transfection
was performed with LipofectamineTM 2000 (Invitrogen). After 6 h,
complete medium was added to the cells. RiboBio (Guangzhou,
China) synthesized the small interfering RNA (siRNA) sequences
required for this study.

2.9 Western blot

RIPA lysis buffer (Thermo Fisher) was applied to extract
proteins from cells. Western blot assay was performed with
reference to previous report (He et al., 2021). The antibodies
used were: PDK4 (1:7000; Proteintech, 12949-1-AP), GAPDH (1:
15000; Proteintech, 60004-1-Ig), Goat Anti-Mouse IgG H&L(HRP)
(1:1000; Beyotime, A0216), Goat Anti-Rabbit IgG H&L(HRP) (1:
1000; Beyotime, A208). Western blots were detected by ECL
luminescence kit (Thermo Fisher) and visualized by
chemiluminescence apparatus. ImageJ software was used for
quantification.

2.10 Cell proliferation assay

SW480 was seeded into 96-well plates at a density of 1 × 103

cells/well. At different time points, 10 μL CCK-8 solution was added.
After 2 h, the OD values were measured at 450 nm using a
microplate reader.

2.11 Transwell assay

For migration assays, 1×105/mL SW480 were seeded in the
upper chamber of a 24-well plate containing 0.4 mL of serum-
free medium. 0.6 mL of culture medium containing 10% FBS was
added to the lower chamber. After 24 h, cells were sequentially fixed
with methanol for 15 min and stained with 0.1% crystal violet for
30 min. For invasion assays, the upper chamber was coated with
Matrigel and then seeded with SW480. Medium containing 10% FBS
was added to the lower chamber. Cell migration and invasion were
observed under a microscope.

2.12 Correlation and enrichment analyses of
the differentially expressed ARGs among
different cell types

The correlation coefficient of differentially expressed ARGs
among different cell types was obtained using the R package
corrr, and the network graph was plotted based on correlations
using the “network plot” function. The Kyoto Encyclopedia of Genes
and Genomes (KEGG) is a large database containing genomic,
biological processes, diseases, and drug information (Kanehisa
et al., 2017). We analyzed the KEGG pathway enrichment of
differentially expressed ARGs using the R package
“clusterProfiler” (v4.2.0) (Yu et al., 2012), and visualized it using
a lollipop diagram. Statistical significance was set at p < 0.05.

2.13 Construction and assessment of
prognostic model

The fragments per kilobase of transcript permillionmapped reads
(FPKM) values of 417 CRC samples with survival information were
used construct a prognostic model. First, we performed a survival
analysis for the differentially expressed ARGs among the seven cell
types, determined the ARGs that were significantly associated with the
overall survival (OS) of patients with CRC (p < 0.05), and then
selected the important genes according to the Boruta feature. Next, we
divided the samples from TCGA database into two groups at ratios of
7:3, one of which was the training set for the prognostic model and the
other was the validation set for the prognostic model. We constructed
a prognostic model according to a multivariate Cox regression
analysis and calculated the prognostic risk score of each patient
using the following formula:

riskScore � ∑
i

Coefficient genei( ) *Expression genei( )

Based on the median of risk score, 417 patients were assigned to
the high- or low-risk groups. Kaplan–Meier survival curves were
then calculated to compare the OS between the high- and low-risk
groups. In addition, to evaluate the predictive accuracy and
sensitivity of our prognostic model, time-dependent receiver
operating characteristics (ROC) curves of the 1-, 3- and 5- year
were constructed. Next, we compared the difference in risk score
according to age, sex, and TNM stage using the t-test. Statistical
significance was set at p < 0.05.
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FIGURE 2
Identification of 15 cell clusters based on scRNA-seq. (A) Quality control of scRNA-seq for 10 samples from the GSE132257 dataset. A total of16,
270 cells were included for analysis. (B) Scatter plot displaying the hypervariable genes in cells. The top five genes are indicated. (C) Elbow plot of the
optimal number of principal components (PC) for further analysis. (D)Distribution of cells in the principal component analysis (PCA). (E)Cluster analysis of
scRNA-seq. (F) Annotation the cell subpopulations using singleR package. (G) Distribution of the cells between colorectal cancer (CRC) and normal
tissues. (I, J) Single-cell trajectories reconstruction reveals five distinct Monocle stages, and pseudotime plot is colored based on pseudo-time (H) and
Monocle stages (I). (J) Proportions of different types of cells in the five Monocle stages.
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2.14 Immune infiltration analysis

The absolute abundance of immune- and non-immune-stromal
cell populations was estimated according to RNA-seq of CRC tissues
from TCGA using the CIBERSORT method (Chen et al., 2018) to
assess the proportion of 22 types of immune cell subsets: memory
B cells, naive B cells, activated dendritic cells, resting dendritic cells,
Eosinophils, M0 macrophages, M1 macrophages, M2 macrophages,
activated mast cells, resting mast cells, monocytes, neutrophils,
activated NK cells, resting NK cells, plasma cells, activated
memory CD4+ T cells, resting memory CD4+ T cells, naive CD4+

T cells, CD8+ T cells, follicular helper T cells, gamma delta T cells
and regulatory T cells (Tregs). For every sample, the total immune
score of immune cell subsets was 1, and the immune cell abundance
between the high- and low-risk groups was compared using the
t-test (p < 0.05).

2.15 Prediction of drug sensitivity

The R package pRRophetic (v0.5) (Geeleher et al., 2014) was
used to predict drug sensitivity. The half-maximum inhibitory
concentration (IC50) of each patient was assessed by rigid
regression according to the cancer genome project (CGP)
database, and the prediction accuracy was estimated by 10-fold
cross-validation. The difference in drug sensitivity between the high-
risk and low-risk groups was determined by the t-test. Statistical
significance was set at p < 0.001.

2.16 Statistical analyses

Data were expressed as the mean +standard deviation (SD).
Statistical analyses were performed using the R software

FIGURE 3
Gene set variation analysis (GSVA) of the significantly enriched signaling pathways (Top 3) among the seven types cells using (A)
c2.cp.kegg.v7.5.1.symbols.gmt and (B) c7.immunesigdb.v7.5.1.symbols.gmt as reference gene sets.
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(https://www.r-project.org/, v4.1) and GraphPad Prism 8.0.
Comparison of continuous variables between the two groups was
performed by independent Student’s t-test, multiple groups (≥3) was
One-way ANOVA with Tukey’s post hoc test, and non-normally
distributed data were analyzed using the Mann-Whitney U test or
Wilcoxon signed-rank test. The Chi-squared test or a Fisher’s exact
test was used to compare the categorical variables. Correlation analysis
was performed by calculating Pearson correlation coefficients.
Statistical significance was set at p < 0.05 or p < 0.01.

3 Results

3.1 Cellular heterogeneity and
reconstruction of cell trajectory

Based on quality control and normalization of scRNA-seq
data, we obtained 16,270 cells after filtering (Figure 2A). We
selected 2,000 high-variability genes for subsequent analysis,
and marked the top five genes in Figure 2B. Next, we used PCA
method to screen significantly correlated genes, and 32 PCs were
then selected for further analysis (Figure 2C), and the cell

distributions in PCA were visualized using “Dimplot” function
(Figure 2D). We assigned the 16,270 cells into 15 independent
clusters using the visualization of tSNE dimension reduction
(Figure 2E) and annotated the clusters using the R package
SingleR. As shown in Figure 2F, cluster 0, 1, and 10 were
annotated as T cells (7,334 cells, 45.08%); clusters 2, 4, and
7 were annotated as B cells (9,518 cells, 40.97%); clusters 3, 6,
and 9 were annotated as epithelial cells (2,690 cells, 16.53%);
cluster 5 was annotated as myeloid cells (1,041 cells, 6.40%);
cluster 8, 12, and 14 were annotated as fibroblasts (706 cells,
4.34%); cluster 11 was annotated as mast cells (207 cells,
1.27%); and cluster 13 was annotated as endothelial cells
(113 cells, 0.69%). Similarly, we visualized the distribution of
the seven cell types in CRC and normal tissues using tSNE
(Figure 2G). Finally, we performed pseudotime analysis for
scRNA-seq data and mapped the cells to the pseudotime
trajectory. We colored the trajectorial map based on
peseudotime (Figure 2H) and stage (Figure 2I), and then
displayed the proportion of different cell types in the five stages
of the cell trajectory. As shown in Figure 2J, T cells, B cells and
epithelial cells were mainly distributed in stage 1, 4, and 5,
respectively.

FIGURE 4
Expression heatmap of 55 autophagy-related genes (ARGs) among the seven cell types. Blue-red intensities represent the expression levels of ARGs
from low (blue) to high (red).
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3.2 Pathway enrichment analysis across
different cell types

We obtained the enrichment score of each pathway for each
cell type and identified the pathways with significant differences
in enrichment score. The top three pathways of the seven cell
types are visualized as heatmaps in Figure 3. Several KEGG
pathways involved in the initiation and development of cancer
were enriched in some cell types (Figure 3A). For example, focal
adhesion, tight junction, and ECM receptor interaction, which
were enriched in endothelial cells, are associate with the
migration and invasion of tumor cells, whereas protein export
and N-glycan biosynthesis, which were enriched in B cells, are
related to the substance metabolism. Figure 3B shows the
pathways associated with the cell state within the immune
system; many pathways related to the immune response were
enriched in the seven cell types.

3.3 Differential expression of ARGs

To identify differentially expressed ARGs, we considered the
intersection of DEGs among the seven cell types and ARGs, which
revealed 55 differentially expressed ARGs. The expression levels of
the 55 ARGs in the seven cell types are displayed in a heatmap. As
shown in Figure 4, CXCR4, FOS, and HSPA8 were highly expressed
in B cells; KRT18 was highly in epithelial cells; SOD2, RAC1, CTSB,
and CTSD were overexpressed in myeloid cells.

Next, we compared the expression levels of 55 ARGs between
CRC tissues and adjacent normal tissues based on the TCGA-RNA-
seq data. Eight ARGs were significantly upregulated in CRC tissues,
whereas four ARGs were significantly downregulated compared to
adjacent normal tissues (Figures 5A, B, and Supplementary Table
S2). To verify the biological function of these ARGs in colon cells, we
chose the 8 ARGs were selected for validation. The results showed
that PDK4, TNFSF10, CCDN1, and BID was highly expressed, and

FIGURE 5
Differential, correlation, and signal pathway enrichment analysis of the 55 autophagy-related genes (ARGs) (A) Heatmap of the differential
expression levels of11 ARGs expression levels between colorectal cancer (CRC) and normal adjacent tissues. (B) Volcanic plot of the differential
expression ARGs between CRC and normal adjacent tissues. (C)Correlation network diagram of the 55 ARGs. The red color represents a positive
correlation and blue color represents a negative correlation. (D) Top 10 enriched metabolic pathway of the 55 ARGs.
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MYC was lowly expressed in SW480 compared with NCM460
(Supplementary Figure S1A). Subsequently, we selected the
PDK4 with the greatest difference in expression for functional
validation, using siRNA to transfuse SW480 cells and

downregulate PDK4 expression. siRNA NC was transfected into
SW480 cells (Supplementary Figures S1B, C). CCK-8 demonstrated
that downregulation of PDK4 hindered proliferation of SW480 cells
(Supplementary Figure S1D). Transwell assay revealed that

FIGURE 6
Construction of a prognostic model based on the 55 autophagy-related genes (ARGs). (A) Screening of the 11 hub ARGs associated with prognosis
based on the Boruta feature. Risk score, survival status, and expression heatmap in the (B) training cohort and (C) validating cohort.
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downregulation of PDK4 inhibited the migration and invasion of
SW480 cells (Supplementary Figure S1E).

The correlation analysis of 55 ARGs revealed that there were
significant positive correlations among the expression levels of
CCL2, DLC1, CXCL12, CTSL, DCN, KRT18, NUPR1, and
ITGA6, and a negative correlation among the expression levels of
TBC1D10C, CDKN1A, MYC, and SMYD3 (Figure 5C). In addition,
we performed KEGG pathway enrichment analysis for the 55 ARGs
and validated that there were several pathways associated with
metabolic pathways, such as proteoglycans in cancer, lipid and
atherosclerosis, human cytomegalovirus infection, fluid shear
stress, and atherosclerosis. (Figure 5D, Supplementary Table S3).

3.4 Construction and evaluation of a
prognostic model for CRC patients

We performed a survival analysis for the 417 patients with
survival information obtained from TCGA and screened 27 ARGs
that are significantly related to the OS of the patients with CRC
(Supplementary Table S4). Next, we identified 11 important ARGs
based on the Boruta feature, which were CTSB, CTSD, ITGA6,
NAMPT, NFKB1, SERRINA1, CTSL, S100A8, TBC1D10C, TNF
and XBP1 (Figure 6A), and then calculated the regression
coefficients of these 11 ARGs according to the multivariate Cox
regression model (Table 1). Finally, we calculated the risk score for
each patient based on the regression coefficients and expression
levels of the 11 ARGs. The 417 patients were divided into high- and
low-risk groups according to the median risk score (training cohort:
144 patients in the high-risk group, 144 patients in the low-risk
group; validation cohort: 51 patients in the high-risk group,
78 patients in the low-risk group). The risk score distributions
and survival states of the patients in the high-risk and low-risks
group are shown in Figures 6B, C, respectively, the mortality risk
increased and the survival time decreased with the increase in the
risk score.

To evaluate the accuracy of the prognostic model, we performed
survival analysis for patients in the training cohort and validation
cohorts. We found that patients in the high-risk group had a poor
prognosis, and there were significant differences in OS between the
two groups (p < 0.05, Figures 7A, C). Time-depended ROC analysis
revealed that the area under the curve (AUC) of 1-, 3-, and 5-year
survival rates was more than 0.6 (Figures 7B, D), indicating that the
risk score was a risk factor for patients with CRC. The risk score was
not significantly affected by age and sex (Figures 8A, B), but was
affected by the pathological stage. As shown in Figures 8C–F, the
patients in the advanced stage had significantly higher risk scores
(p < 0.05).

3.5 Immune infiltration associated with
different risk groups and ARGs expression
levels

As patients in the high-risk group had a poorer prognosis than
those in the low-risk group, we speculated that there would be a
significant difference in immune cell infiltration between the two
groups. Therefore, we calculated the enriched proportion of
different immune cells in the CRC tissue samples from TCGA
using the CIBERSORT algorithm. As shown in Figure 9A, there
were significant differences in enrichment of memory B cells,
eosinophils, M0 macrophages, M1 macrophages, resting memory
CD4+ T cells, CD8+ T cells, and regulatory T cells (Tregs) between
the high- and low-risk group (p < 0.05).

In addition, the expression levels of the11 hub ARGs
significantly correlated with immune cell infiltration in CRC
tissues. For example, the expression level of S100A8 showed a
significant negative correlation with the enrichment of memory
B cells (Figure 9B), resting memory CD4+ T cells (Figure 9D), and
Tregs (Figure 9E), but a positive correlation with the enrichment of
M1 macrophages (Figure 9C). The expression level of TBC1D10C
was significantly positively correlated with the enrichment of
M1 macrophages (Figure 9G) and CD8+ T cells (Figure 9I), but
significantly negatively correlated with the enrichment of
M0 macrophages (Figure 9F) and resting memory CD4+ T cells
(Figure 9H). The expression level of NFKB1 was significantly
negatively correlated with the enrichment of Tregs (Figure 9J).
Similarly, the expression levels of CTSB, CTSD, ITGA6, NAMPT,
SERPINA1, TNF, XBP1, and CTSL was significantly correlated with
the enrichments of various immune cells (Supplementary Figures
S2-S3).

3.6 Prediction of drug sensitivity

To investigate whether the groups had different response to
chemotherapies, we performed a drug sensitivity analysis between
the two risk groups. Statistical differences in drug sensitivity between
the high- and low-risk groups were noted (Figures 10A–O). For
example, the IC50 values of AMG.706, elesclomol, GNF.2, imatinib,
NSC.87877, PHA.665752, salubrinal, CGP.082996, shikonin,
SL.0101.1, CMK, and tipifarnib were significantly lower in the
high-risk group than in the low-risk group, whereas the IC50

TABLE 1 Multivariate Cox regression analysis of 11 hug autophagy-related
genes.

Gene Coefficient

CTSB −0.503

CTSD 0.463

ITGA6 0.022

NAMPT −0.00183

NFKB1 −0.21

SERPINA1 −0.149

CTSL 0.168

S100A8 0.173

TBC1D10C 0.039

TNF −0.434

XBP1 −0.039
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values of BAY.61.3606 and BMS.708163 were significantly higher in
the high-risk group than in the low-risk group.

4 Discussion

CRC has become an important public health issue owing to its high
morbidity and mortality rates in the recent decades. Previous studies
havemainly focused on screening the biomarkers for CRC based on the
differentially expressed genes between tumor and normal tissues
(Vayrynen et al., 2021; Xiao et al., 2022). However, tumor tissues
contain various cell populations, and the differentially expressed genes
between tumor and normal tissues cannot reflect the differences among
the cell populations. ScRNA-seq analysis can identify cell
subpopulations and is suitable for investigating the heterogeneity of
cell populations (Deng et al., 2022). Moreover, scRNA-seq can help to
identify hub genes associated with the tumor initiation and
development of cancer, which might have potential value in

precision therapy for patients with CRC (Mei et al., 2021). In our
study, we analyzed the scRNA-seq data based on the GEO dataset
GSE132257 and obtained 16,270 cells with superior quality to
investigate the different genomic features between CRC and normal
tissues at the single-cell level. Based on theDEGs among single cells and
tissue samples, integrated with clinical information, we identified the
11 pivotal ARGs. Next, we constructed and validated a prognostic
model based on the risk score associated with Cox regression
coefficients and expression levels of the ARGs; the risk score of the
patients with advanced tumors was significantly higher.We divided the
patients into high- and low-risk groups, and found that there were
significant differences in immune cell infiltration and drug sensitivities
between the two groups. In addition, our findings revealed that the
scRNA-seq method combined with large cohort population validation
is an effective method to understand the genetic features with potential
clinical value in personalized treatments for patients with CRC.

In the present study, we demonstrated that the cells in the CRC
tissues presented significant heterogeneity. We identified, using PCA

FIGURE 7
Evaluation of the prognostic model. Kaplan–Meier (K–M) survival analysis between high-risk and low-risk groups in the (A) training cohort and (C)
validating cohort. Time-dependent receiver operating characteristic (ROC) analysis of 1-, 3-, and 5-year overall survival rates based on risk score of
patients with CRC in the (B) training cohort and (D) validating cohort.
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linear dimensionality reduction and tSNE, 15 cell clusters in CRC
tissues and annotated them as T cells, B cells, epithelial cells, myeloid
cells, fibroblasts, mast cells, and endothelial cells. The proportion of the
different cell types in tumor tissues is altered during the development of
the tumor, especially in the tumor microenvironment (TME). In CRC,
immune cell infiltration in the TME is decreased and reflects a poor
prognosis for patients with CRC (Khaliq et al., 2022). Consistent with
these theories of tumor development, our trajectories reconstruction
and analysis revealed that the proportions of immune cells decreased
with the stages of cell differentiation and maturation.

In addition, KEGG pathway enrichment analysis of the DEGs
revealed that many differentially enriched pathways in the seven cell
types, most of which were associate with cell metabolism and immune
responses, such as primary immunodeficiency, N-glycan biosynthesis,
linoleic acid metabolism, and arachidonic acid metabolism. Similarly,
using c7.immunesigdb.v7.5.1.symbols.gmt as a reference gene set, we
identified many signaling pathways involved in the cellular immune
response. Moreover, many studies have shown that autophagy is
closely related to tumor formation and development. Autophagy is
attenuated in various tumors, and increased autophagy activity can
effectively suppress tumor formation in animal models. However,
autophagy can also promote tumor procession and metastasis
following tumor development (Thorburn et al., 2014; Yuan et al.,
2019). In addition, the interleukin (IL)-17 signaling pathway plays a
tumorigenic role in CRC and is associated with the activation of
nuclear factor κ-light-chain-enhancer of activated B (NF-κB) cells and

mitogen-activated protein kinases (MAPKs), which upregulate the
survival pathways required for the growth and development of tumor
cells (Wang et al., 2014). Consistent with these findings, in our study,
the KEGG pathway enrichment analysis demonstrated that the
differentially expressed ARGs were enriched in various pathways
associated with tumor initiation and development, such as
proteoglycans in cancer, IL-17 signaling pathway, and apoptosis.

The prognosis of patients with CRC is roughly predicted based on
their general profile, pathological type, and pathological stage.
However, owing to the development of RNA-seq technology, the
prognosis of patients with CRC can be more accurately predicted by
integrating gene expression features and clinical information.
Therefore, in the present study, we demonstrated the potential
prognostic value of ARGs based on RNA-seq and clinical data
from TCGA and constructed a prognostic model, which exhibited
excellent performance in predicting the prognosis of patients with
CRC.We identified 11 hub ARGs that have been previously shown to
be closely related to the carcinogenesis of CRC. For example, CTSD,
which is highly expressed in CRC tissues, is closely associated with a
poor prognosis by promoting β-catenin pathway (Ding et al., 2022).
Moreover, NAMPT is overexpressed in CRC tissues and is associated
with a poor prognosis by stabilizing the protein components of
Smad2, Smad3, and Smad4 in the TGF-β signaling pathway,
thereby increasing the activity of the TGF-β signaling (Lv et al.,
2021). S100A8 promotes CRC metastasis by increasing epithelial-
mesenchymal transition and promoting the TGF-β signaling pathway

FIGURE 8
Correlations between risk score and clinical feature. The clinical features included (A) age (>65 years vs. < 65 years old), (B) sex (male vs. female), (C)
T stage (T1&T2 vs. T3&T4), (D) M stage (M0 vs. M1), (E) N stage (N0 vs. N1&N2), and (F) pathological stage (stage Ⅰ& stage Ⅱ vs. stage Ⅲ & stage Ⅳ).
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FIGURE 9
Immune infiltration analysis of the high-risk and low-risk groups and correlations between autophagy-related genes (ARGs) expression levels and
immune cell infiltrations. (A)Differences in immune cell infiltrations between the high-risk and low-risk groups. *p <0.05; **p < 0.01; ***p <0.001; ****p <
0.0001. (C) S100A8 expression level positively correlated with macrophage M1 cell infiltration, but negatively correlated with (B) B cells memory cell
infiltration, (D) T cells CD4 memory resting cell infiltration, and (E) T cells regulatory (Tregs) cell infiltration. TBC1D10C expression level is positively
correlated with (G)Macrophages M1 and (I) T cells CD8 cell infiltration8, but negatively correlated with (F)Macrophages M0 and (H) T cells CD4memory
resting cell infiltration. (J) NFKB1 expression level negatively correlated with Treg cell infiltration.
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(Li et al., 2021). Therefore, these reports indicate that the 11 hubARGs
identified in this study might help reveal the molecular mechanism
associated with the initiation and development of CRC.

Autophagy acts as a double-edge sword; it inhibits the tumor
procession at the early stages, but promotes tumor formation and
development during advanced stages. Numerous studies have shown

FIGURE 10
Differences in drug sensitivity between high and low-risk groups. There were significant differences between high-risk and low-risk group in the
sensitivity of (A) AMG.706, (B) elesclomol, (C) GNF.2, (D) BAY.61.3606, (E) Imatinib, (F) NSC.8787, (H) PHA.665752, (I) salubrinal, (J) CGP.082996 (K)
Shikonin, (L) SL.0101.1, (M) CMK, (N) Tipifarnib and (O) X681640.
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that when autophagy is involved in tumor procession, it is associated
with immune cell infiltration in the TME. Chloroquine (CQ) is an
autophagy inhibitor that blocks autophagosome-lysosome fusion. In
Melanoma, CQ decreases the infiltration of lymphocytes and
macrophages in the TME and enhances the anticancer effects of
the MEK inhibitor trametinib (TRA) (Degan et al., 2022; Li et al.,
2022). In present study, we calculated the risk score of patients with
CRC based on the expression levels of ARGs and coefficients of Cox
regression survival analysis and divided the patients into high- and
low-risk groups according to the median of risk score. We found
significant differences in immune cell infiltration between the high-
and low-risk groups. M0 macrophages, M1 macrophages, CD8+

T cells, and Tregs were significantly more enriched in the high-
risk group than in low-risk group; whereas B cells memory,
eosinophils, and resting CD4+ T cells were significantly less
enriched in high-risk group than in low-risk group. Tregs play a
role in immunosuppression in the TME (Kugel et al., 2018), which
might be associated with the poor prognosis of patients with CRC in
the high-risk group. Zhang et al. (2019) reported that memory B cells
played a role in tumor-killing in hepatocellular carcinoma (HCC), and
high infiltration of memory B cells in HCC indicates a good prognosis.
Therefore, our study is consistent with previous studies, memory
B cells, eosinophils, and resting CD4+ T cells are related to the
antitumoral immune response in the TME, which might be
associated with a good prognosis of patients with CRC in the low-
risk group. Moreover, our study revealed that the expression levels of
the 11 hub ARGs were closely related to immune cell infiltration;
S100A8 and TBC1D10C expression levels were positively correlated
with the macrophage M1 immune filtrating level in CRC tissues
whereas NFKB1 expression levels were negatively correlated with the
level of infiltrating Tregs. Collectively, these results indicate that the
11 identified hub ARGs are associated with altered immune cell
infiltration in CRC tissues and have potential value in predicting
the prognosis of patient with CRC.

Drug sensitivity prediction can guide the clinical decision-
making in selecting chemotherapy for different patient clusters.
Therefore, we predicted the response to drugs of patients with CRC
in the high- and low-risk groups and showed that there were
significant differences in drug sensitivity between the two groups.
Patients in the high-risk group were sensitive to several kinds of
anticancer drugs, including elesclomol which is an oxidative stress
inducer that mediates cell apoptosis (Buccarelli et al., 2021); and
imatinib which is a tyrosine kinase inhibitor that is widely used in
the treatment of chronic myeloid leukemia (Cortes et al., 2018).
S100A8 has been demonstrated inducing apoptosis of imatinib-
resistant human eosinophilic leukemia cell lines (Lee J. S. et al.,
2020). Moreover, shikonin promoted CRC cells apoptosis by
endoplasmic reticulum stress (Qi et al., 2022). In our study, the
IC50 value of shikonin was significantly lower in the high-risk group
than in the low-risk group, which indicating shikonin had a good
therapeutic effect on patients in the high-risk group. Therefore, our
drug sensitivity analysis provides a potential predictive tool for
anticancer drug selection and is useful for individualized therapy.

Despite these promising results, this study has some limitations.
First, we studied the prognostic performance of the genes only at the
RNA-level; the protein level requires further investigation. Second,
the candidate genes in this study were restricted to ARGs; however,
there are several interactions among different types of molecules.

Finally, the analysis was based on bioinformatic methods;
supplemental cell or animal experiments are needed to reveal the
potential role of ARGs in the progression of CRC.

In conclusion, our scRNA-seq integrated with validated cohorts
revealed that the 11 hub ARGs had powerful performance in predicting
prognosis, immune response and drug sensitivity in patients with CRC.
This 11-hub ARG model might service as a prognostic model and is
useful for clinical decision-making to select appropriate patients who
might benefit from anticancer drug therapy.
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