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Chromosome segmentation is a crucial analyzing task in karyotyping, a technique
used in experiments to discover chromosomal abnormalities. Chromosomes often
touch and occludewith each other in images, forming various chromosome clusters.
The majority of chromosome segmentation methods only work on a single type of
chromosome cluster. Therefore, the pre-task of chromosome segmentation, the
identification of chromosome cluster types, requires more focus. Unfortunately, the
previous method used for this task is limited by the small-scale chromosome cluster
dataset, ChrCluster, and needs the help of large-scale natural image datasets, such as
ImageNet. We realized that semantic differences between chromosomes and natural
objects should not be ignored, and thus developed a novel two-step method called
SupCAM, which could avoid overfitting only using ChrCluster and achieve a better
performance. In the first step, we pre-trained the backbone network on ChrCluster
following the supervised contrastive learning framework. We introduced two
improvements to the model. One is called the category-variant image
composition method, which augments samples by synthesizing valid images and
proper labels. The other introduces angular margin into large-scale instance
contrastive loss, namely self-margin loss, to increase the intraclass consistency
and decrease interclass similarity. In the second step, we fine-tuned the network
and obtained the final classification model. We validated the effectiveness of
modules through massive ablation studies. Finally, SupCAM achieved an accuracy
of 94.99% with the ChrCluster dataset, which outperformed the method used
previously for this task. In summary, SupCAM significantly supports the
chromosome cluster type identification task to achieve better automatic
chromosome segmentation.
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1 Introduction

Karyotyping is an essential cytogenetic experiment technique that aims to find numerical
and structural abnormalities of chromosomes. Normally, human tissue cells have 23 pairs of
chromosomes, including autosomes and sex chromosomes. These chromosomes are stained
using Giemsa staining techniques and then photographed using advanced microscope cameras
to generate metaphase images. The karyotyping analysis usually requires the segmentation of
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chromosome instances from metaphase images. Owing to the
inefficiency and high cost of manual analysis, researchers have
presented many automatic algorithms to ease the burden.

Most existing studies focus on the chromosome segmentation task
but ignore its pre-task, chromosome cluster types identification. As
non-rigid chromosomes float in an oil droplet when photographed, it
is usual that touching and severely overlapping chromosomes occur in
metaphase images, namely chromosome clusters. However, using
classical geometric connectivity techniques, it is easy to obtain
individual instances or clusters from a metaphase image. Most
existing chromosome segmentation studies only dive into a specific
type of chromosome cluster. To segment touching clusters, Arora
(2019) and Yilmaz et al. (2018) present algorithms that make full use
of the geometric characteristics between touching areas. To segment
overlapping chromosome clusters, Hu et al. (2017) tries to design a
new customized neural network for better performance. To segment
touching-overlapping clusters, Minaee et al. (2014) dives into the
geometric features of this type of cluster and proposes a geometric-
based method. Alternatively, Lin et al. (2020) chooses to improve the
state-of-the-art deep-learning model to tackle this issue. Nevertheless,
if we can automatically identify the type of chromosome cluster first
and then input it to the above segmentation methods, we can
automatically segment chromosomes directly frommetaphase images.

In 2021, Lin et al. (2021) proposed the chromosome cluster type
identification task. In this work, 6,592 chromosome clusters were
obtained from the hospital, and they created and made available the
first chromosome cluster dataset (ChrCluster for simplicity). All
samples are manually annotated into four categories: instance,
overlapping, touching, and touching-overlapping, as shown in
Figure 1. Finally, they propose a classification model as the
benchmark of the ChrCluster dataset. To avoid overfitting on the
small-scale ChrCluster dataset, Lin et al. (2021) takes Instagram
weakly supervised learning pretrained weights [Mahajan et al.
(2018)] and the customized ResNeXt [Xie et al. (2017)]
classification model to achieve an accuracy of 94.09%.

However, chromosome cluster images are gray images and only
contain specific domain objects, which results in different
distributions between the ChrCluster dataset and the ImageNet/
Instagram dataset. Therefore, pre-training the model with the
ImageNet or Instagram dataset is not the ideal option. Given this
point, we attempt to pre-train domain-friendly weights only using the
ChrCluster dataset for better downstream task performance.

Self-supervised contrastive learning [Wu et al. (2018); van den
Oord et al. (2018); Hénaff (2020); Chen T. et al. (2020a); He et al.
(2020); Chen X. et al. (2020b)] is an unsupervised learning mechanism

that aims to pre-train representative features (output of specific
weights) that can be transferred to downstream tasks by fine-
tuning. They achieve contrastive learning through a Siamese
network structure. Large-scale instance contrastive loss, such as
InfoNCE, is used to attract the positive pairs and repulse the
negative pairs. Specifically, they regard the different augmentation
views of the same instance as positive pairs and views from different
instances as negative pairs. Finally, pre-trained weights are transferred
to downstream tasks, such as classification, detection, and
segmentation. Supervised contrastive learning methods [Khosla
et al. (2020); Cui et al. (2021); Kang et al. (2021)] are further
proposed to achieve better performance on the downstream
classification task. They add label information into self-supervised
contrastive learning. With the help of label information, not only
embeddings from the different views of the same instance should be
gathered together but also embeddings of instances from the same
class should be pulled close, which will result in many positives for
each embedding as opposed to a single positive in self-supervised
contrastive learning. Given this way, we can utilize the supervised
contrastive learning framework to pre-train domain-friendly features
that can capture more similarity among intraclass. However, both
contrastive learning methods train the model using instance
contrastive loss like the SupCon loss [Khosla et al. (2020)], which
means that they are non-parametric and do not have a final FC layer as
a classifier. As a result, fine-tuning at the downstream chromosome
cluster identification task is essential.

For both self-supervised and supervised contrastive learning,
category-invariant data augmentation approaches are essential.
SimCLR [Chen T. et al. (2020a)] has systematically proved the
importance of category-invariant data augmentation
(RandomResizedCrop, RandomColorJittering, and GaussianBlur) for
self-supervised contrastive learning. However, stronger category-
variant augmentation techniques [Zhang et al. (2018); Yun et al.
(2019)] are ignored due to the lack of label information. Supervised
contrastive learning methods have added label information, but the
instance contrastive loss they use is not yet able to adapt to continuous
labels generated by previous category-variant augmentation methods.
Therefore, we introduce a category-variant image composition
method with discrete targets for our proposed supervised
contrastive learning method, which can further enrich the visual
schemas of the ChrCluster dataset and achieve better performance.

In addition, large-scale instance contrastive loss is important for
supervised contrastive learning. It is obvious that the inner product of
normalized embeddings in both InfoNCE [Chen T. et al. (2020a)] and
SupCon [Khosla et al. (2020)] is equal to the cosine similarity operation.

FIGURE 1
Examples of different types of chromosome clusters include (A) instance, (B) touching, (C) overlapping, and (D) touching-overlapping.
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The angular between two embeddings is the only variable in the loss. Thus,
adding an angular margin can achieve better intraclass compactness and
interclass discrimination. For example, previous angular margin-based
losses [Liu et al. (2016); Liu et al. (2017); Wang et al. (2018a); Wang et al.
(2018b); Deng et al. (2019)] encourage sharper feature distribution and
better discriminating performance by adding various angular margins
between instance features and class weights. Among them, the Additive
AngularMargin loss [Deng et al. (2019)] performs best. Given this way, we
can design a new large-scale instance contrastive loss using additive angular
margin to enhance the semantic discrimination capability of pre-trained
features.

To sum up, inspired by the supervised contrastive learning method
SupCon [Khosla et al. (2020)], we propose the two-step SupCAM
approach to identify the various chromosome cluster types. In the first
pretraining step, considering that the MoCo [He et al. (2020)] style
network can save more storage space by the memory queue, we take
MoCo as feature extractor to encode images. To learn category-related
features, we take SupCon loss to maximize the consistency across all views
of all samples in the same class rather than only that of the various views of
the same sample. Additionally, we provide a category-variant image
composition method to augment chromosome cluster images, which
combines two randomly chosen images and assigns a new discrete
label in accordance with the rule to create a new valid sample. We also
import an angular margin into different embeddings of the instance
contrastive loss to bring embeddings from the same class closer
together. Owing to the poor synchronization between the query and
the old keys, a straightforward extension that simply adds angular margins
to all positive pairs may fall short of achieving model convergency.
Therefore, we only import an angular margin between the different
views of the same sample, known as self-margin loss, which is the first
attempt to enforce more compact embeddings using large-scale instance
contrastive loss with angular margin. In the second step, we fine-tune the
final classification model based on the pre-trained backbone from the first
step. We prove the effectiveness of our methods by fine-tuning multiple

classical classification networks, such as ResNet and its variants. Overall,
our main contributions in this paper can be summarized as follows:

• We solve chromosome cluster identification through a two-step
method, named SupCAM, that pre-trains the backbone in a
supervised contrastive learning manner and fine-tunes
classification models. In this way, SupCAM obtains more
representative features to avoid overfitting and domain-
friendly pre-trained weights as a better alternative to
ImageNet pre-trained weights.

• We propose a category-variant image composition method that
will reassign the category according to the overlapping area of
the chromosome clusters.

• We import angular margin into instance contrastive-based loss,
named self-margin loss. The self-margin loss will enforce higher
intraclass compactness and interclass discrepancy of the model.

• We prove the efficiency of our contributions through the public
chromosome cluster types dataset, ChrCluster. We also achieve
94.99% accuracy, which is higher than the 94.09% accuracy
proposed by Lin et al. (2021).

2 Methods

We will go into more depth about the suggested method in this
section. In the section entitled ‘Two-Step Framework’ 2.1, we fully
detail the SupCAM pre-training and fine-tuning steps and emphasize
the significance of the new loss function and novel data augmentation
method. The details of the new category-variant image composition
approach, including the composing algorithm and principles of label
assigning, will thereafter be covered in the section entitled ‘Category-
Variant Image Composition’ 2.2. In the section entitled ‘Self-margin
loss’ 2.3, we will deduce new self-margin loss through merging label
information and angular margin step by step.

FIGURE 2
The framework of SupCAM. The pretraining step shown is based on MoCo [He et al. (2020)] structure but imports two modifications, namely category-
variant image composition and self-margin loss. The fine-tuning step will initialize the backbone using weights pre-trained in the first step and finally reports
identification results.
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2.1 Two-step framework

In this study, we present a two-step method called SupCAM that
consists of the pre-training and fine-tuning steps, as shown in
Figure 2, to tackle the chromosome cluster types classification
problem. We pre-trained our backbone using the supervised
contrastive learning framework in the first stage. In the second
step, we extracted representative features through a pre-trained

backbone and fine-tuned a few traditional classification models
for final identification.

2.1.1 Pre-training step
In the pre-training step, we took the MoCo as the basic

architecture in this work, but it is free to be replaced with other
self-supervised contrastive learning models. As shown in Figure 2,
SupCAM owns query encoder fq, and key encoder fk. fq was trained in

FIGURE 3
Illustration of image shift. (A) Common composing image without image shift. (B) Invalid composing image because we do not limit image shift ranges.
(C) The image shift range determined by the maximum outer enclosing box of two bounding boxes. (D) Valid composing result, as we sample image shifts
under a reasonable range.

FIGURE 4
Examples of composed images with different number N of overlapping pixels. (A) N = 3; (B) N = 30; (C) N = 84; (D) N = 150.
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an end-to-end manner but fk was implemented as a momentum-based
moving average of fq. We also inherited the dynamically updated
queue but ignored the projection head used in the MoCo.

To gain multiple views of the sampled images during training, we
first used category-invariant and category-variant augmentation
approaches. Specifically, we randomly sampled primary image Ip
and candidate image Ic. The primary images were augmented by

the category-invariant augmentation methods as usual, resulting in
two views with the same class, denoted as xq and xk. The Ic was first
augmented using a category-variant image composition method,
which combines with the Ip to create a new image, called generated
image Ig. A new class label was assigned according to the look-up table.
Then, the same category-invariant augmentation modules were
applied on the Ig, leading to the xg. We will further describe the
details of the category-variant image composition method in the
category-variant image composition Section 2.2. Afterward, as
shown in Figure 2, through the query encoder fq and key encoder
fk, augmented samples were mapped to a tuple of representation
vectors:

q, k+, kg{ } � fq xq( ), fk xk( ), fk xg( ){ } (1)

where key encoder fk encodes both xk and xg to embeddings k+ and
kg. (q, k+) is the intrinsic positive pair as it comes from the same
image, but kg is positive or negative depending on whether Ig has the
same class label with Ip. Besides, k+ and kg are used to update the
memory queue in a first input first output (FIFO) manner. Benefiting
from the slowly progressing key encoder and progressively replaced
queue, representations in the queue can remain as consistent as
possible with the latest q, which helps the contrastive model
converge.

Inspired by the excellent performance of angular margin loss [Liu
et al. (2017); Wang H. et al. (2018b); Deng et al. (2019)], we present
self-margin loss in this study for better discriminative power of the
pre-trained backbone. Specifically, our final loss consisted of the
SupCon loss and self-margin loss. For each query q, a set of
encoded keys {k0, k1, k2, . . . } and k+ and kg were used to compute
SupCon loss. Meanwhile, as k+ was not only the newest key compared
with other keys in the memory queue but also had the same class as q,
we only applied an additional angular margin between q and k+. In this
way, we achieved better performance while keeping the training

FIGURE 5
Detail of yg in themiddle-Table. The left signs in each cell represent
assigned labels when the number of pixel intersections of warped Ip and
Ic is below or equal to the pixel intersection threshold P∩, and the right
side signs represent assigned labels when pixel intersections are
larger than the threshold. Furthermore, mark ’T’, ’O’, ’TO’, and ’-’
represent touching, overlapping, touching-overlapping, and uncertainty
tags, respectively.

FIGURE 6
Examples of various loss functions. (A) InfoNCE loss, which pulls query q and current key kp together and regards each old embedding in the memory
queue as negative key kn, which should be pushed away. (B) SupCon loss, in which not only the current key but old keys that have the same class as the query
should be pulled close. The example of angular margin loss in (C) shows how hard margin constrains parametric weights and makes the same class
embeddings more compact. (D) Depiction of our self-margin loss, which only enforces the angular margin between the query and the current key and
ignores other positive keys in the memory queue.
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process stable. In Section 2.3, the analysis of the self-margin loss will be
shown in detail.

2.1.2 Fine-tuning step
All results shown in the section entitled ‘Experimental results and

discussion’ 3 are from the fine-tuned classification model. As shown in
Figure 2, in the fine-tuning step, we reused the pre-trained backbone
network and attached a fully connected layer, a four-classes linear
classifier, on top of it as our chromosome cluster types identification
model. After loading the pre-trainedweights of the backbone network and
randomly initializing the fully connected layer, we trained the model on
the training set for several epochs. In the end, we evaluated the SupCAM
model on the test set for themodule’s effectiveness and final performance.
The details of the classification model and training process will be
described in the section entitled ‘Implementation Details’ 3.3.

2.2 Category-variant image composition

In this section, we will introduce a category-variant image
composition algorithm as a strong data augmentation policy in
SupCAM. Traditional category-invariant data augmentation
methods dominate self-supervised and supervised contrastive
learning methods. However, stronger category-variant data
augmentation methods, such as Mixup [Zhang et al. (2018)] and
CutMix [Yun et al. (2019)], are ignored because they do not satisfy the
discrete targets requirements of large-scale instance contrastive loss.
Thus, we propose a category-variant image composition algorithm to
synthesize new chromosome cluster samples with discrete labels for
enriching visual schemas.

2.2.1 Algorithm
Let (Ip, yp) and (Ic, yc) denote primary and candidate samples,

respectively, where {Ip, Ic} ∈ RW×H×C. The goal of category-variant
image composition is to generate a new training sample (Ig, yg) by
combining primary and candidate samples. We defined the
composing process as:

TABLE 1 Comparison with previous methods. All experiments were conducted following the division principle in Lin et al. (2021). ResNeXt101: ResNeXt101 32 × 8d; †:
ResNeXt101-32 × 8d attached with a customized header network invented by Lin et al. (2021); ImageNet: 1.28 million images with 1,000-class ImageNet dataset;
Instagram: 940 million public images with a ~ 1500 hashtags dataset proposed by Mahajan et al. (2018).

Methods Backbone Pre-train dataset Accuracy Precision Sensitivity Specificity F1

Lin et al. (2021) ResNet101 ImageNet(1.28 M) 91.89 90.65 87.92 97.30 88.32

DenseNet121 ImageNet(1.28 M) 87.65 85.59 81.68 95.88 82.23

ResNeXt101 ImageNet(1.28 M) 92.27 90.79 89.10 97.42 89.36

ResNeXt101† Instagram(940 M) 94.09 93.08 92.79 98.03 92.84

SupCAM ResNet101 ChrCluster(6.5K) 94.24 92.54 92.00 97.74 91.37

DenseNet121 ChrCluster(6.5K) 94.69 92.92 92.89 97.94 92.11

ResNeXt101 ChrCluster(6.5K) 94.99 93.25 92.81 98.12 92.26

The bold values represent that they are the best performance in this metric.

FIGURE 7
The first line of each cell is the confusion matrix of SupCAM with
ResNeXt101 backbone on the test set. Besides, on the second line of
each cell, we show differences between Lin et al. (2021) and ourmethod,
in which red and green represent increment or decrement of
percentage, respectively.

FIGURE 8
Overlapping clusters are misclassified as the instance class by
SupCAM. (A) shows amisclassified example where the bottom of the left
chromosome occludes the other one. (B) is another misclassified
example where the bottom of the right chromosome occludes the
bottom of the left one.
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Ig � λW Tp, Ip( ) ⊕ 1 − λ( )W Tc, Ic( )
yg � L yp, yc( ) (2)

whereW represents affine function, Tp, Tc are the transformation matrix
of primary and candidate images, and λ is the combination ratio. Besides,
⊕ is complex combination operation and L means look-up table
operation, which will be described in the look-up table Section 2.2.2

Input: primary sample (Ip, yp), candidate sample (Ic, yc),

upper limit of sampling number N, pixel intersection P∩
Output: generated sample (Ig, yg)

1: Initialize yg is uncertainty and sampling

count n = 0

2: W, H = Size(Ip)

3: Binary mask of Ip and Ic:

Mp � I Ip≠0[ ]Ip;Mc � I Ic≠0[ ]Ic

4: Bounding box of chromosome cluster in Mp and Mc:

Bi∈ p,c{ } � min
x

Mi,max
x

Mi,min
y

Mi,max
y

Mi( )
5: Shift range of image Ip and Ic:

Rix |i∈ p,c{ } � min W,WBp +WBc( ) −WBi[ ]/2
Riy |i∈ p,c{ } � min H,HBp +HBc( ) −HBi[ ]/2

6: while yg is uncertainty and n < N do

7: Shift bias are uniformly sampled according to:

Six |i∈ p,c{ } � U −Rix , Rix( )
Siy |i∈ p,c{ } � U −Riy , Riy( )

8: Warp the images using transformation matrix Tp and Tc:

Ti∈{p,c} � 1 0 Six
0 1 Siy

[ ], Îi∈{p,c} � W(Ti, Ii).

9: Generate Ig according to the warped images through

combination operation ⊕:

Ii,jg �
Î
i,j

p , if Î
i,j

p > 0, Î
i,j

c � 0

Î
i,j

c , if Î
i,j

p � 0, Î
i,j

c > 0

0.5Î
i,j

p + 0.5Î
i,j

c , if Î
i,j

p > 0, Î
i,j

c > 0
0 , Others

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
10: Assign label by look-up table: L(yp, yc, NÎ

i,j
p ∩Îi,jc

, P∩)
11: n = n + 1

12: if yg is not uncertainty then

13: return Generated sample (Ig, yg)

14: end if

15: end while

16: return Candidate sample (Ic, yc)

Algorithm 1. Category-Variant Image Composition.
As shown in Algorithm 1, we first extracted the foreground-

background mask of Ip and Ic through indicator function I and
then obtained the bounding box of chromosome cluster area by
min-max operation. The shift range along the x-axis and y-axis of
two images is restricted by the size relation between the images and
bounding boxes. Given the range, we uniformly sampled the shift bias
and utilized them to construct transformation matrix T ∈ R2×3 of

image Ip and Ic. The affine function W will generate transformed
images according to the transformation matrix and origin images. To
generate Ig and avoid unnatural artifacts, we designed a complex
combination operation ⊕, which assigned linear interpolations of
pixels only in the overlapping area. The foreground and
background areas were assigned original pixels. Meanwhile, the
label of Ig was achieved through the look-up table L. However,
because of the uncertainty of yg, we sampled the shift bias multiple
times for meaningful results but also imported an upper limit of
sampling number N (normally 10 in our experiments) to balance the
efficiency and effectiveness. Therefore, if we have sampled more than
N times, candidate sample (Ic, yc) will be directly output. The
uncertainty of yg will be detailed in the look-up table Section 2.2.2.

Here, the importance of image shift should be clarified. Unlike
Mixup, which conducts linear interpolations of all pixels, and CutMix,
which replaces a random image region with a patch from another
image, we need to shift the image to simulate specific properties of
different types of chromosome clusters. As shown in Figure 3A,
chromosome clusters are commonly distributed in the central
region of the image, which means that we combine images directly
without random shift, leading to overlapping instances dominating the
generated samples. Additionally, we should set a limited range for the
shift bias. On the one hand, unlimited shifting may lead to the loss of
characteristic areas, such as overlapping or touching regions. On the
other hand, as shown in the invalid image illustrated in Figure 3B,
most composing results may show as two individual chromosome
clusters, which do not satisfy any definition of chromosome cluster
types proposed by Lin et al. (2021). To determine the range of shift
bias, we simplified the irregular concave polygons of chromosome
clusters to rectangles of bounding boxes. Then, two bounding boxes
could uniquely confirm a maximum outer enclosing box as the border
of shift bias, like Figure 3C. In this way, we are much more likely to be
able to generate chromosome clusters that satisfy the definition, as
shown in Figure 3D.

2.2.2 Look-up table
In this section, we will clarify the process of assigning the correct

class label to each generated sample, namely the look-up table.
Considering the image composition processing and the
chromosome cluster definition, the generated image will not belong
to the instance category in the first place. Besides, according to Lin
et al. (2021), the crucial difference between overlapping and touching
chromosome clusters is whether any connectivity between two
chromosome instances entails pixels intersection. However, as
shown in Figure 4, it is counterintuitive if we consider these results
as overlapping cases but only a few pixel intersections distribute in the
pixel connectivity region. Given this point, before assigning four
chromosome cluster types and an uncertainty tag, we first need to
set a pixel intersection threshold P∩ greater than zero to decide
whether generated image Ig is touching case (N

Î
i,j
p ∩Îi,jc

≤P∩) or
overlapping case (N

Î
i,j
p ∩Îi,jc

>P∩).
The table in Figure 5 shows the guidance for assigning a cluster

type to generated images Ig, and for simplicity, we call itmiddle-Table.
Original categories can pair into 20 possible touching and overlapping
cases. As listed in middle-Table, the left of each cell is the candidate
cluster types of touching cases, and the right is the candidate cluster
types of overlapping cases. Specifically, for touching cases, their class
type depends on whether touching or overlapping clusters exist in
original sample pairs. In other words, only if overlapping clusters exist

Frontiers in Genetics frontiersin.org07

Luo et al. 10.3389/fgene.2023.1109269

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1109269


in original sample pairs can composed touching cases be tagged as a
touching-overlapping type, such as an overlapping-instance pair.
Otherwise, yg should assign the touching type, such as the
instance-instance pair and the touching-instance pair.

As for overlapping cases, most of the uncertainty of label yg happens
in this case that the number of pixel intersections beyond pixel
intersection threshold P∩. Strictly speaking, except for overlapping
cases of instance-instance pair, all overlapping cases should be
assigned the uncertainty tag as we cannot be sure about the number
of touching and overlapping regions, such as in the light-Table described
in the section entitled Category-Variant Image Composition 3.5.3. For
example, given a touching-instance pair, we can assign the touching-
overlapping type or the overlapping type according to the size and
position of overlapping areas between two chromosome clusters.
However, we should emphasize the overlapping-instance pair and the
overlapping-overlapping pair. Although two pairs can be assigned the
touching-overlapping type or the overlapping type, we hypothesize that
when these pairs are overlapping cases, they are unlikely to have touching
areas and should directly mark the overlapping type. Finally, experiment
results in Table 4 support the above hypothesis.

2.3 Self-margin loss

As in the framework shown in Figure 2, we extended the InfoNCE
loss to self-margin loss by gradually merging label information and
additive angular margin.

Given an encoded query q ∈ Rd and a set of encoded samples {k0,
k1, k2, . . . } stored in the memory queue, the InfoNCE loss LIN, as
shown in Figure 6A considered as the following:

LIN � −log eq·kp/τ
eq·kp/τ +∑ki∈KN

eq·ki/τ
(3)

where kp is the only positive key in the memory queue that q matches
and KN represent the remaining negative key set. τ ∈ R+ is a scalar
temperature parameter. In this way, LIN is low if q is more in
agreement with its positive key kp than other negative keys, which
is intuitively like a (KN + 1) classes cross-entropy loss in the form.

Different from only augmented views of the same image should be
considered as positives in InfoNCE loss, SupCon loss LSC as shown in
Figure 6B, imports label information and generalizes to an arbitrary
number of positives as long as they belong to the same class:

LSC � − 1
‖KP‖ ∑

kp∈KP

log
eq·kp/τ

eq·kp/τ +∑ki∈KN
eq·ki/τ

(4)

where KP is a set of positive keys that have the same class label as query q.
The SupCon loss function can be regarded as the average ofmultiple times
of InfoNCE loss value, as each kp can be considered as the only positive
key at some point. The loss encourages the encoder to pull embeddings of
the same class closer, resulting in a more reasonable distribution of
representations for the subsequent supervised learning task.

Now we move on to the additive angular margin loss LAAM proposed
in ArcFace [Wang F. et al. (2018a)]. As illustrated in Figure 6C, a larger
angular margin, which exists between q and negative class weight wn, will
enforce the same class queries q closer and make them easily identifiable.
We suppose we have normalized weightsW ∈ Rd×(‖KN‖+1) of the last fully
connected layer where it can be redefined as one positive class center
wp ∈ Rd that the input matches to and remaining negative class centers
WN ∈ Rd×‖KN‖. Additionally, we normalize its inputs q and ignore the
bias term for simplicity. Then, the LAAM can be reformulated as follows
using our notation:

LAAM � −log ecos θq,wp+m( )/τ

ecos θq,wp+m( )/τ +∑wi∈WN
ecos θq,wi/τ , (5)

where θq,wi � arccos( q·wi

‖q‖‖wi‖) represents the angle betweenwi and query q.
An additional margin penalty m is added on θq,wp � arccos( q·wp

‖q‖‖wp‖) to
enforce higher intraclass compactness and interclass discrimination.

If we set wp = kp,WN = KN, and wi = ki in LAAM, then from Eqs 4, 5
we have self-margin loss LSM:

LSM � − 1
‖KP‖ ∑

kp∈KP

log
e
cos θq,kp+m( )/τ

e
cos θq,kp+m( )/τ +∑ki∈KN

ecos θq,ki/τ (6)

However, LAAM relies on parametric weights from the last fully
connected layer. These weight vectors are the latest and are smoothly
updated by end-to-end backpropagation, which results in enough
synchronization between embeddings and weights. On the contrary,
although a slowly evolving key encoder exists, all keys used in
contrastive losses (such as LIN and LSC) are non-parametric and
rapidly changing in a FIFO manner. Given this point, positive keys
are consistent enough for the contrastive-based loss but not synchronized
enough for the angular margin-based loss. We cannot even make the
model converge using Eq. 6.

TABLE 2 Ablation study of the SupCAMmodel with ResNet50 on the 30% test set of the ChrCluster dataset. We repeated all experiments 10 times and report the mean
and standard deviation. IN indicates that the backbone network has been pre-trained by the ImageNet dataset. CatVar, category-variant image composition method;
LSM, self-margin loss.

IN MoCo SupCon CatVar LSM Accuracy Precision Sensitivity Specificity F1

88.38 ± .60 84.07 ± .82 83.94 ± .79 95.79 ± .19 82.11 ± .88

✓ 92.65 ± .30 90.24 ± .65 89.87 ± .73 97.31 ± .10 88.79 ± .72

✓ 89.15 ± .34 85.31 ± .60 85.23 ± .49 95.97 ± .15 83.61 ± .53

✓ ✓ 91.65 ± .32 88.08 ± .51 88.60 ± .38 96.97 ± .13 87.00 ± .47

✓ ✓ ✓ 93.24 ± .20 91.18 ± .46 90.60 ± .40 97.49 ± .09 89.75 ± .46

✓ ✓ ✓ ✓ 93.56 ± .18 91.65 ± .42 91.31 ±.36 97.63 ± .06 90.34 ± .41

The bold values represent that they are the best performance in this metric.

Frontiers in Genetics frontiersin.org08

Luo et al. 10.3389/fgene.2023.1109269

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1109269


As shown in Figure 2, the synchronization between query q and
positive key k+ ∈ KP has been guaranteed by the similar weights
(moving-average key encoder fk and the same batch). Therefore, in Eq.
6, for query q, we only hold on to the latest inherent positive key k+ and
ignore the remaining positive keys, including possible kg. The final
formulation of self-margin loss LSM is:

LSM � −log ecos θq,k++m( )/τ
ecos θq,k++m( )/τ + ∑ki∈KN

ecos θq,ki/τ (7)

and illustrated in Figure 6D.
We will prove the performance of LSM in Experiments 3.5 and

compare it with some intuitive candidate methods.

3 Experimental results and discussion

3.1 Dataset

In this study, we used the dataset reported by Lin et al. (2021) to
evaluate our model performance and demonstrate the effectiveness of

modules. The dataset is the first clinical chromosome cluster dataset that
has 6,592 samples, called ChrCluster. All samples are padded to the
224 × 224 size and manually labeled into four categories:
1,712 chromosome instance, 3,029 touching chromosomes cluster,
1,038 overlapping chromosomes cluster, and 813 touching-
overlapping chromosomes cluster. In the ablation study Section 3.5,
we described how we split the dataset into 3,955 training samples,
659 validation samples, and 1,978 test samples in a class-based random
stratified fashion. For the final comparison in the Section entitled
‘Comparison Result’ 3.4, we followed the division principle described
by Lin et al. (2021), which has 80% training data, 10% validation data,
and 10% test data. To avoid leaking test set information from the pre-
training step to the fine-tuning step, we pre-trained the backbone
network only using the training set no matter whether the goal is an
ablation study or final comparisons.

3.2 Evaluation metrics

To fairly evaluate the performance of SupCAM, we followed the
main evaluation metrics described by Lin et al. (2021) including

TABLE 5 The table below shows SupCAM performance with different angular margin values (m in Eq. 7) used in the self-margin loss during the first pre-training step.

Angular margin Accuracy Precision Sensitivity Specificity F1

m = 0.1 93.39 ± .15 91.10 ± .29 90.92 ± .35 97.59 ± .07 89.90 ± .37

m = 0.2 93.56 ± .18 91.65 ± .42 91.31 ± .36 97.63 ± .06 90.34 ± .41

m = 0.3 93.21 ± .26 90.62 ± .57 90.73 ± .52 97.51 ± .10 89.46 ± .58

m = 0.4 91.87 ± .35 88.50 ± .42 88.42 ± .42 97.10 ± .12 87.04 ± .53

m = 0.5 \ \ \ \ \

The bold values represent that they are the best performance in this metric.

TABLE 4 Ablation study of the look-up table. Besides the middle-Table, which was our final choice, we tried to extend the label assigning to the extreme, namely
through the heavy-Table and light-Table schemes. The goal of the no-Table is to examine the effects of candidate image Ic.

Scheme Accuracy Precision Sensitivity Specificity F1

middle-Table 93.56 ± .18 91.65 ± .42 91.31 ± .36 97.63 ± .06 90.34 ± .41

heavy-Table 93.30 ± .28 90.76 ± .56 90.56 ± .56 97.55 ± .11 89.52 ± .57

light-Table 93.09 ± .11 90.77 ± .34 90.66 ± .29 97.47 ± .05 89.50 ± .31

no-Table 93.19 ± .10 90.84 ± .31 90.71 ± .40 97.53 ± .05 89.56 ± .36

The bold values represent that they are the best performance in this metric.

TABLE 3 Ablation study of composition methods. Equal weights mean that the overlapping area of Ip and Ic are combined half and half. λ shows that we sampled a λ
from beta distribution and then applied linear interpolations in the overlapping areas of two images. The final maximum experiment represents the operation of
taking the maximum pixel value in overlapping areas.

Composition method Accuracy Precision Sensitivity Specificity F1

Equal weights 93.56 ± .18 91.65 ± .42 91.31 ± .36 97.63 ± .06 90.34 ± .41

λ-interpolation [Yun et al. (2019)] 93.41 ± .21 91.66 ± .37 91.66 ± .35 97.62 ± .09 90.47 ± .35

Maximum 93.04 ± .17 89.93 ± .37 89.93 ± .36 97.44 ± .08 88.77 ± .36

The bold values represent that they are the best performance in this metric.
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accuracy, precision, sensitivity, specificity, and F1. It is worth noticing
that except for the accuracy, all the above-mentioned metrics were
averaged in a ‘macro’ fashion. The ‘macro’ fashion will first calculate
metrics for each category individually and then average the metrics
across classes with equal weights.

Now, we should clarify the definition of the following four basic
criteria in a multi-classification task:

• True positive(TPi): given a test sample that belongs to i-th class, if the
model correctly predicts it as i-th class, we regard it as true positive.

• False positive(FPi): given a test sample that does not belong to i-
th class, if the model incorrectly predicts it as i-th class, we
regard it as false positive.

• False negative(FNi): given a test sample that belongs to i-th class,
if the model incorrectly predicts it as other classes, we regard it as
false negative.

• True negative(TNi): given a test sample that does not belong to i-
th class, if the model correctly predicts it as other classes, we
regard it as true negative.

Assume that Nc represents the number of chromosome cluster
categories and N is the number of test set instances, then we have:

accuracy � 1
N

∑Nc

i�0
TPi (8)

precision � 1
Nc

∑Nc

i�0
precisioni

� 1
Nc

∑Nc

i�0

TPi

TPi + FPi

(9)

sensitivity � 1
Nc

∑Nc

i�0
sensitivityi

� 1
Nc

∑Nc

i�0

TPi

TPi + FNi

(10)

specificity � 1
Nc

∑Nc

i�0
specificityi

� 1
Nc

∑Nc

i�0

TNi

TNi + FPi

(11)

FIGURE 9
Comparison of margin-based methods. The backbone network is shared between the first and second steps, and the fully connected layer outputs
queries and keys. The dashed lines indicate that all layers are updated in amoving-averagemanner. LSC represents SupCon loss. (A) represents the “parametric
margin” schema which applies angular margin loss between query embedding and additional parametric weights W. (B) is the “cluster margin” method that
clusters all key embeddings into four class centers {C1, C2, C3, C4} according to class label, and applies angular margin between query embeddings and
cluster centers.

TABLE 6 Other candidate angular margin based scenarios and the main differences are detailed in Section 3.5.4.

Other angular margin method Accuracy Precision Sensitivity Specificity F1

self-margin loss 93.56 ± .18 91.65 ± .42 91.31 ± .36 97.63 ± .06 90.34 ± .41

Parametric margin(m = 0.2) 93.29 ± .20 90.88 ± .38 91.10 ± .34 97.56 ± .08 89.94 ± .35

Parametric margin(m = 0.3) 93.13 ± .15 91.03 ± .34 90.88 ± .32 97.49 ± .07 89.83 ± .29

Parametric margin(m = 0.4) 93.08 ± .19 90.66 ± .36 90.44 ± .24 97.47 ± .06 89.40 ± .32

Parametric margin(m = 0.5) 93.26 ± .13 91.42 ± .31 91.03 ± .29 97.56 ± .05 90.07 ± .30

Cluster margin 93.09 ± .18 90.57 ± .42 90.74 ± .49 97.51 ± .08 89.49 ± .47

The bold values represent that they are the best performance in this metric.
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F1 � 1
Nc

∑Nc

i�0
2 · precisioni · sensitivityi

precisioni + sensitivityi
(12)

All above-mentioned metrics are as higher as better. We use
percentages for them and keep two decimal places.

3.3 Implementation details

We implemented our work on the Pytorch Lightning1 toolbox
based on the Pytorch [Paszke et al. (2019)] deep-learning library. We
finished all experiments on an Ubuntu OS Server with one NVIDIA
GTX Titan Xp GPU.

In the first pre-training phase, following the MoCo pipeline, we
optimized the structure and some hyperparameters for the
chromosome cluster type identification task. As described in the
two-step framework Section 2.1, besides the conventional query q
and key k+ used in MoCo, we additionally generated xg using the
category-variant image composition method and encoded it as the
third embedding kg through the key encoder. Limited by the size of
the dataset, we reduced the embedding dimension to 128-d and the
queue capacity to 1,024 accordingly. The scalar temperature τ used
in SupCon loss and self-margin loss was set as 0.07. We chose 0.2 for
angular margin m and 200 for pixel intersection hyperparameter
P∩. We used SGD as our optimizer, where momentum is 0.9, and
weight decay is 0.0001. We set the mini-batch size as 32 for the
single GPU and trained the model for 200 epochs. Furthermore, we
applied linear warm-up during the first 20 epochs until achieving
the initial learning rate 0.03 and then decayed it through a cosine
annealing schedule. Category-invariant image augmentation
methods used in the first step included RandomResizedCrop and
HorizontalFlip. The total loss is the sum of SupCon loss LSC and
self-margin loss LSM:

L � LSC + LSM (13)
In the second fine-tuning step, for the classification model, we first

loaded the corresponding pre-trained backbonemodule and randomly
initialized the weights and bias of the final classifier. Only
RandomRotate was employed during the training phase to reduce
overfitting. We used SGD as our optimizer and had the same setting as
the pre-training step.We trained the classificationmodel for 15 epochs
with a mini-batch of 16 images. Unlike the first step, the initial
learning rate was set as 0.01 and decreased by 0.1 after 8 and
12 epochs individually. The loss function adopted in the fine-
tuning step was cross-entropy loss enhanced by label smoothing
(hyperparameter σ = 0.1) [Szegedy et al. (2016)].

3.4 Comparison result

3.4.1 Overview
In this section, we report the final results following the division

principle of Lin et al. (2021). Table 1 shows the comparison results
between SupCAM and previous methods. On the top of Table 1, we list
some representative experiment results of previous methods with

different backbones, including ResNet101 [He et al. (2016)],
DenseNet121 [Huang et al. (2017)], and ResNeXt101 [Xie et al.
(2017)]. Specifically, ResNeXt† optimizes the header of the
classification model using a mixed pooling layer and multiple
linear-dropout groups. Meanwhile, not only 1.28 million images
from the ImageNet dataset but also approximately 940 million
images from the Instagram dataset are used to pre-train backbone
weights, which are loaded as initial weights of the ResNeXt†. Owing to
above-mentioned improvements, ResNeXt† proposed by Lin et al.
(2021) achieves the previous state-of-the-art performance, which is
94.09 accurate and has the best results with other evaluation metrics.

In this study, benefiting from the supervised contrastive learning
framework enhanced by the category-variant image composition
methods and self-margin loss, SupCAM achieved the best performance.
Specifically, SupCAM improved the accuracy by a large margin of
2.35 under ResNet101 and 2.72 under the original ResNeXt101. Finally,
although Lin et al. (2021) used an extremely large Instagram dataset, which
was almost 140,000 times larger than ChrCluster, we still increased the
accuracy by approximately 0.9 compared with ResNeXt†. Except for F1,
other metrics also performed better. It is worth noting that previous
methodsmay suffer fromheavy overfitting, as shown in the result that used
the DenseNet121 as the backbone network in Lin et al. (2021). As a more
powerful backbone than ResNet101, DenseNet121 performed less well in
all metrics. By contrast, under SupCAM, DenseNet121 successfully
outperformed ResNet101, which means that SupCAM can alleviate the
risk of overfitting without relying on a large dataset but using only the
ChrCluster dataset. To sum up, Table 1 shows the high data utilization
efficiency and robustness of the SupCAM for solving the task of
chromosome cluster type identification. In addition, we evaluated the
performance using pre-trained weights from ImageNet instead of random
initialization in the first step of SupCAM, and as shown in Supplementary
Table S1, it also outperformed the previous method, but was worse than
the final SupCAM.

3.4.2 Confusion matrix
Besides the above metrics across classes, we used a confusion

matrix to further reveal the performance of the SupCAM method in
each class. As shown in Figure 7, SupCAM outperformed a previous
study [Lin et al. (2021)] on instance, overlapping, and touching-
overlapping classes but was weak in the overlapping category.
Specifically, the number of touching-overlapping clusters
incorrectly predicted as touching and overlapping types were
reduced simultaneously, which resulted in an increment of 3.66 in
the accuracy of the touching-overlapping class. Additionally, the
accuracy of the instance class and the touching class was increased
to 99.42 and 96.04, respectively. It is obvious that the combination of
the category-variant image composition method and self-margin loss
can improve the performance of the identification model in most
chromosome cluster categories.

At the same time, to try to explain the degeneracy of SupCAM in
the overlapping category, we list some false negative samples,
especially those misclassified as the instance type. As illustrated by
Figure 8, they are puzzling samples, and it is hard to decide whether
they belong to the overlapping type at first glance. On the other side, a
hard threshold of pixel intersection in the category-variant image
composition method may import artificial disturbance to the label
system, which adds confusion to the final prediction. Therefore, these
weaknesses inspire us to propose more reasonable and natural image
composition methods in the future.1 https://pytorch-lightning.readthedocs.io/en/latest/
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3.5 Ablation study

3.5.1 Overview
To evaluate the effectiveness of each model, we applied the

ablation study at the 30% test set of the ChrCluster dataset. To
avoid performance fluctuations due to the small size of the dataset,
all experiments during the ablation study were repeated 10 times and
we obtained the mean and standard deviation of each evaluation
metric. In this way, as well as comparing the performance through the
mean value, we can further justify the stableness of each method.

As shown in Table 2, we first trained the chromosome cluster types
classification model from scratch as the baseline, which was 88.38 ± 0.60
accurate. Pre-training on the large ImageNet dataset further improved the
accuracy to 92.65 ± 0.30. However, the above experiments suffer from
larger performance fluctuation than ourmethods, which reminds us that a
huge domain gap exists between the ImageNet andChrCluster. Therefore,
pre-training the chromosome cluster types identification model on the
large ImageNet dataset is not the best choice. Finally, we proved that the
key factor driving the model performance improvement is the model
structure itself as SupCAM achieved the best performance among all
experiments under the same fine-tuning strategies.

3.5.2 Supervised contrastive learning
To verify the contribution of supervised contrastive learning to the

performance, before completing the basic classification task, we imported
the pre-training step, which pre-trained the backbone in a supervised
contrastive manner with SupCon loss through MoCo architecture. We
took theMoCo augmentation setting [Chen X. et al. (2020b)] as the initial
augmentation method in this experiment. Table 2 shows that the MoCo-
style supervised contrastive pre-training step increased accuracy by
3.27 points and had a F1 score 4.89 points higher than the model
trained from scratch. It is notable here that the direct employment of
the MoCo-style supervised contrastive pre-training step was worse than
the identification model pre-trained by the ImageNet dataset, but it was
more stable in some cases. In conclusion, pre-training the backbone in a
supervised contrastive manner is effective but we need more specific
optimizations to adapt the chromosome cluster types identification task.

3.5.3 Category-variant image composition
The experiment results in Table 2 show that the category-variant

image composition method improves accuracy from 91.65 ± 0.32 to
93.25 ± 0.20 and specificity from 96.97 ± 0.13 to 97.49 ± 0.09. Both the
performance and stableness of this model were increased and even
outperformed the model trained by the MoCo setting, which validates
that the category-variant image composition method can more
reasonably and effectively augment chromosome cluster data than
the original MoCo augmentation setting.

To be more specific, as shown in Supplementary Figure S1, we
experimented with multiple candidate pixel intersection threshold P∩,
and box plots show that when the P∩ is set as 200 pixels, the model
achieves the best performance in all metrics. Meanwhile, we also
examined the choices of composition methods in overlapping areas, as
shown in Table 3. Besides the equal weights method used in this study,
we list two representative composition methods. Linear interpolation
through a sampled λ ~B(1,1) is widely used in Yun et al. (2019) and
Zhang et al. (2018). Another straightforward idea is taking the
maximum pixel value from the primary image Ip and the candidate
image Ic as the final pixel in overlapping areas. Experiments show that
the ‘maximum’ method is not suitable for the chromosome cluster

types identification task and the ”λ-interpolation” method performs
badly on the most important accuracy criterion, although slightly
outperforms the ‘equal weights’ method on other metrics.

Furthermore, we confirmed the design of the look-up table in
Table 4. As shown in the results, themiddle-Table scheme achieved the
best performance. In addition, we evaluated some extreme scenarios,
such as the heavy-Table scheme and the light-Table scheme.
Specifically, the heavy-Table scheme assigns an explicit label to
each (Ip, Ic) pair directly no matter whether disagreements exist in
overlapping cases. Suppose there is a touching-instance pair in an
overlapping case, the middle-Table will tag them with an uncertainty
label, but with a heavy-Table, we roughly assign the touching-
overlapping category. The light-Table solution takes the opposite
approach by not providing any valid label for overlapping cases
unless they all belong to the instance type. The results in Table 4
show that the heavy-Table achieved an accuracy of 93.30 ± .28, which
outperformed the 93.09 ± .11 accuracy of the light-Table scheme.
Through the comparison between light-middle-heavy solutions, we
can conclude that 1) category-variant image composition method
indeed improves the performance of the cluster type identification task
(μAccheavy > μAcclight); 2) we should avoid roughly assigning a label for
complicated cases (μAccmiddle > μAccheavy); and 3) manually composing an
image and assigning a label inevitably imports unnatural counterfeits,
resulting in performance fluctuation (σAccheavy > σAccmiddle > σAcclight).

Moreover, to clarify the effects of taking Ic as Ig as in line 16 of
Algorithm 1; Table 4 shows the results from a contrast experiment we
conducted, called a no-Table scheme, that only used existing candidate
image Ic rather than composed images. As expected, no-Table achieved an
accuracy of 93.19 ± .10, which was lower but more stable than that of
middle-Table, proving the effectiveness and relative unstableness of the
category-variant image composition method once more.

3.5.4 SupCAM with Self-margin loss
As shown in Table 2, self-margin loss improved the accuracy from

93.24 ± .20 to 93.56 ± .18 and the precision, sensitivity, specificity, and
F1 scores were also improved. Besides, it is worth noting that weights
pre-trained with self-margin loss could further stabilize the final
classification performance. Thus, we validated the effectiveness of
self-margin loss of the first pre-training step.

It is important to find the optimal margin m for the chromosome
cluster types identification task, and the best marginm observed in Table 5
was 0.2. Specifically, smaller additional angular margin penalties, such as
m = 0.1 andm = 0.2, improved the performance. However, when margin
penalties was large, e.g., m = 0.3 and m = 0.4, self-margin loss not only
decreased the performance but alsomade themodel more unstable.When
the margin penalty increased to 0.5, the model could not be converged.
Therefore, we conclude that although we ensure synchronization by (q, k+)
pair, the moving-average update manner makes the model more sensitive
to the large margin penalty than the model updated in an end-to-end
manner, which is further described in the next paragraph.

Furthermore, margin-based architectures are diverse, and we justified
the advantages of self-margin loss through the results shown in Table 6. As
illustrated in Figure 9A, with ‘parametric margin’ as one of the candidate
schemes, we additionally added an end-to-end updating weight
W ∈ Rd×4 as classes centers after the original fully connected layer
and the angular margin-based loss is applied between the parametric
weights and query embedding q. Results proved that the ‘Parametric
Margin’ scheme is not good at the chromosome cluster types
identification task; however, its better stability also confirms the
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conclusion in the above paragraph. Another candidate scheme is ‘cluster
margin’, as shown in Figure 9B. To formmeaningful class centers for each
query q, we clustered all key embeddings stored in the memory queue
according to their label and renormalized the center of each cluster.
Cluster centers were updated in a moving-average manner. However, the
results in Table 6 confirmed what we inferred in the self-margin loss’
Section 2.3, i.e., that terrible synchronization leads to worse performance
under the angular margin framework.

4 Conclusion

In this study, we proposed a two-step SupCAM method to solve the
chromosome cluster types identification task. In the first step, we
improved the supervised contrastive learning method through a strong
category-variant image composition algorithm and self-margin loss. After
pre-training, we further fine-tuned the classification models in the second
step. The effectiveness of each module was proved by massive ablation
studies. The top prediction performance suggested that SupCAM has
state-of-the-art performance in the chromosome cluster identification
task. All these experimental findings demonstrate that the proposed
SupCAM, as a supervised contrastive learning method, can effectively
extract more representative and domain-friendly weights from the small-
scale ChrCluster and is a better alternative to previous ImageNet pre-
trained weights as it alleviates overfitting risks, resulting in better
performance. Specifically, SupCAM introduces a strong category-
variant image composition method with discrete labels to generate
more abundant visual schemas. Meanwhile, we designed and
implemented a new stable self-margin loss by adding an angular
margin between the different embeddings of the instance contrastive
loss, resulting in higher intraclass compactness and interclass discrepancy.
Although our study focuses on chromosome cluster identification, our
proposed method can inspire more researchers to analyze medical images
using only small-scale medical image datasets rather than large natural
image datasets. In the future, we will refine image composition processing
and the look-up table to achieve more stable performance. In addition,
other schemes that add angular margin into instance contrastive-based
loss should be further studied.
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