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Introduction: Sesame is an ancient oilseed crop containing many valuable
nutritional components. The demand for sesame seeds and their products has
recently increasedworldwide,making it necessary to enhance the development of
high-yielding cultivars. One approach to enhance genetic gain in breeding
programs is genomic selection. However, studies on genomic selection and
genomic prediction in sesame have yet to be conducted.

Methods: In this study, we performed genomic prediction for agronomic traits
using the phenotypes and genotypes of a sesame diversity panel grown under
Mediterranean climatic conditions over two growing seasons. We aimed to assess
prediction accuracy for nine important agronomic traits in sesame using single-
and multi-environment analyses.

Results: In single-environment analysis, genomic best linear unbiased prediction,
BayesB, BayesC, and reproducing kernel Hilbert spaces models showed no
substantial differences. The average prediction accuracy of the nine traits across
these models ranged from 0.39 to 0.79 for both growing seasons. In the multi-
environment analysis, the marker-by-environment interaction model, which
decomposed the marker effects into components shared across environments and
environment-specific deviations, improved the prediction accuracies for all traits by
15%–58% compared to the single-environment model, particularly when borrowing
information from other environments was made possible.

Discussion: Our results showed that single-environment analysis produced
moderate-to-high genomic prediction accuracy for agronomic traits in
sesame. The multi-environment analysis further enhanced this accuracy by
exploiting marker-by-environment interaction. We concluded that genomic
prediction using multi-environmental trial data could improve efforts for
breeding cultivars adapted to the semi-arid Mediterranean climate.
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Introduction

Sesame (Sesamum indicum L.) is an ancient oilseed crop with an
annual global production of 6.8 million tons (https://www.fao.org/faostat/
en/#data/QCL), and there is an increasing demand for its consumption
because of its valuable nutritional components. Sesame seeds are rich in
high-quality fatty acids, proteins, minerals, and antioxidants, which have
health benefits (Wei et al., 2022). The recent availability of sesame genome
resources (Berhe et al., 2021; Wang et al., 2022) has provided an
opportunity for quantitative genetic modeling of sesame populations.
For example, using these resources, quantitative trait loci mapping and
genome-wide association analysis in sesame have been conducted to
understand the genetic basis of its morphological traits (Mei et al., 2017;
Sabag et al., 2021), yield components (Zhou et al., 2018; Sabag et al., 2021),
plant architecture (Teboul et al., 2022), response to biotic (Asekova et al.,
2021) and abiotic (Li et al., 2018;Dossa et al., 2019) stresses, and seedquality
traits (Teboul et al., 2020; Cui et al., 2021) to understand the underlying
genetic basis. However, little is known regarding the ability of genomics to
predict genetic or breeding values in sesame. Complex traits are influenced
by multiple genes, with small effects that are not statistically significant. To
address this challenge, genomic predictions that simultaneously
accommodate all available genetic markers in regression models to
predict genetic or breeding values for capturing marker genetic effects
across the whole-genome (Meuwissen et al., 2001) are being used. Genetic
or breeding values of lines can be incorporated into selection indices to
make a selection decision in breeding (Smith, 1936; Hazel, 1943).

Agronomic traits are influenced by genetic by environment
interactions (G × E) (Gadri et al., 2020). The impact of G × E ranges
from changes in the relative ranking of genotypes to the genomic
prediction accuracy, making breeding decisions challenging. With the
availability of whole-genome data, the factors of G × E can be
reparametrized as functions of molecular genetic markers via marker-
by-environment interactions (M × E). Recent efforts have included the
use of M × E in whole-genome regression models (Lopez-Cruz et al.,
2015; Crossa et al., 2016). These studies showed that modeling M × E
could increase the prediction accuracy compared to models without the
M × E term.

In this study, we used phenotypic and genomic data from a sesame
diversity panel (SCHUJI panel) that was grown over two years
(environments) under Mediterranean climatic conditions. This panel
was recently used to perform genome-wide association analysis and
estimate genomic heritability and genomic correlations for various
agronomic traits (Sabag et al., 2021). They found major quantitative
trait loci on linkage group 2 associated with days to flowering date and
seed-yield-related traits but reported many of the sesame traits are
under polygenic control. The result indicates the difficulty of using
marker-assisted selection in sesame. Our study aimed to evaluate the
utility of genomic prediction in predicting sesame traits for both single-
and multi-environment analyses.

Materials and methods

Plant materials, field experiments, and
genomic data

The complete dataset included phenotypic and genomic data
of 182 sesame genotypes (landraces) from the SCHUJI panel

(Supplementary Table S1) grown over two seasons (2018 and
2020) at the experimental farm of the Hebrew University of
Jerusalem (Rehovot, Israel) (Sabag et al., 2021). In both years, the
plants were grown between May and September, and the
minimum and maximum temperatures along the growing
seasons are shown in Supplementary Figure S1. The panel was
characterized for nine agronomic traits: flowering date (FD, in
days), height to the first capsule (HTFC, in cm), plant height (PH,
in cm), reproductive zone (RZ, in cm), reproductive index (RI, a
ratio), number of branches per plant (NBPP), seed-yield per plant
(SYPP, in g), seed number per plant (SNPP), and thousand-seed
weight (TSW, in g). The summary statistics for these traits are
presented in Supplementary Table S2. The experimental layout
was a randomized complete block design with seven and five
replicates for the 2018 and 2020 growing seasons, and the size of
the plots was 1 and 2.5 m, respectively. Three (2018) and five
(2020) middle individual plants were chosen for all phenotypic
measurements. The best linear unbiased estimates (BLUE) of the
genotypes were calculated per year by treating the block effect as
random (Sabag et al., 2021).

yio � μ + gi + bo + ϵio, (1)
where yio is the phenotypic observation for the ith genotype in the
oth block, μ is the intercept, gi is the genotype fixed effect, bo is the
block random effect and ϵ is the model residuals. We used the BLUE
values per year for all further analyses.

Genotyping by sequencing was used to obtain marker
information for the 182 genotypes (Elshire et al., 2011). The
quality control step included removing tightly linked markers
(r2 ≥ 0.99), minor allele frequencies less than 0.05, and
heterozygosity rates greater than 0.2. The remaining
20,294 single nucleotide polymorphism (SNPs) markers were
used for subsequent analyses (Sabag et al., 2021).

Statistical analyses

Single-environment analysis
A single-environment analysis was conducted by fitting two

kernel-based methods, genomic best linear unbiased prediction
(GBLUP) (VanRaden, 2008) and reproducing kernel Hilbert
spaces regression (RKHS) (de los Campos et al., 2010); and two
variable selection methods, BayesB (Meuwissen et al., 2001) and
BayesC (Kizilkaya et al., 2010).

The kernel-based methods GBLUP and RKHS were fitted as
follows.

y � 1μ + Zu + , (2)
where y is the vector of phenotypes; 1 is the vector of ones; μ is the
overall mean; Z is the incidence matrix for the random effect;
u ~ N(0,Kσ2u) is the vector of random genotypes; and  ~ N (0,
Iσ2ϵ) is the random residual effect. Here, the kernel matrix K was
set to the genomic relationship matrix (G) and the Gaussian
kernel matrix (GK) in GBLUP and RKHS, respectively; I is the
identity matrix; σ2u is the genetic variance; and σ2ϵ is the residual
variance. The genomic relationship matrix captures additive gene
action. In contrast, the Gaussian kernel is equivalent to a space
continuous version of the diffusion kernel deployed on graphs
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(Morota et al., 2013), which can model additive by additive
epistatic gene action up to an infinite order (Jiang and Reif,
2015). In GBLUP, G � WW′

m , where W is a centered and
standardized gene content matrix and m is the total number
of SNP markers. The Gaussian kernel between a pair of lines i and
i′ with their marker vectors wi and wi′ is given by

GK wi,wi′( ) � exp −θd2
ii′( )

� ∏m
k�1

exp −θ wik − wi′k( )2( ),
where dii′ �

�����������������������������������������
(wi1 −wi′1)2 +/+(wik −wi′k)2 +/+(wim −wi′m)2

√
is the Euclidean distance and θ is the bandwidth parameter.
Here, large θ leads to GK entries closer to 0 (i.e., local kernel),
and smaller θ produces entries closer to 1 (i.e., global kernel),
controlling the magnitude of genetic similarity between lines. The
bandwidth parameter was determined using kernel averaging or
multiple kernel learning (de los Campos et al., 2010) by fitting two
contrasting kernel matrices with θ = 0.2 and 1.2.

The variable selection methods BayesC and BayesB followed

yi � μ +∑m
j�1

wijαj + ϵi, (3)

where yi is the vector of phenotypes for the ith genotype; μ is the
overall mean;wij is the marker covariate at the jth SNPmarker coded
as 0, 1, or 2;m is the number of SNPs; and αj is the jth marker effect.
The prior of αj for BayesB was:

αj|π, σ2αj �
0 with probability of π

~ N 0, σ2αj( ) with probability 1 − π( )
⎧⎨⎩

where σ2αj is the marker genetic variance for the jth SNP and π is a
mixture proportion set to 0.99. A Gaussian prior N(0, σ2ϵ) was
assigned to the vector of residuals, and a flat prior was assigned to μ.
The scaled inverse χ2 distribution was assigned to σ2αj by setting the
degrees of freedom equal to five and choosing the scale parameter,
assuming that the model explained 50% of the phenotypic variance.
In BayesC, σ2αj was replaced with the common marker genetic
variance σ2α.

Multi-environment analysis
A multi-environment analysis was conducted using the M × E

model (Lopez-Cruz et al., 2015). The core idea of the M × Emodel is
to partition the total marker genetic effects into the main marker
genetic effects across all environments and specific marker effects in
each environment. As a vector of genetic values consists of a linear
combination of marker effects, G × E GBLUP is equivalent to M × E
ridge regression BLUP (RR-BLUP). The M × E RR-BLUP model is
expressed as yil � μl +∑m

k�1wilk(α0k + αlk) + ϵil, where α0k is the
main effect of the markers stable for all the environments, αlk. is
the specific effect of the markers unique for each environment, and l
is the lth environment. In matrix notation,

y1

y2
[ ] � 1μ1

1μ2
[ ] + W1

W2
[ ]α0 + W1 0

0 W2
[ ] α1

α2
[ ] + 1

2
[ ]

where
1μ1
1μ2

[ ] is the vector of grand means;
W1

W2
[ ] is the matrix of

centered and standardized marker matrix for each environment;
α0 ~ N(0, Iσ2α0 ) is the marker effects among environments; the

variance component σ2α0 is common across the environments and
borrows information among them; α1 ~ N(0, Iσ2α1 ) and
α2 ~ N(0, Iσ2α2 ) capture the environment specific marker effects
with their environment specific variances; and 1 � N(0, Iσ2ϵ1 )
and 2 � N(0, Iσ2ϵ2 ) are the heterogeneous residual variances. The
extent of variance components associated with α0 relative to α1 and
α2 suggests the importance ofM × E. The grandmean was assigned a
flat prior. The variance components of markers were drawn from a
scaled inverse χ2 distribution with degrees of freedom ] = 5 and scale
parameter s such that the prior means of variance components equal
half of the phenotypic variance.

Additionally, the genomic correlation between the same trait in
different environments was estimated using a bivariate GBLUP
model by extending the single-environment variance-covariance
structure to

u


( ) ~ N 0
0

( ), Σu ⊗ G 0
0 Σ ⊗ I

( )[ ],
where I is an identity matrix and Σu and Σ are genetic and residual
variance-covariance matrices, respectively. Genomic correlations
were derived as

σ2u1*u2*��
σ2u1*

√ ��
σ2u2*

√ where σ2u1*u2* is the additive genetic

covariance of the trait between the two environments, and σ2u1*
and σ2u2* are additive genetic variances of the trait in 2018 and
2020, respectively. The covariance matrices, Σu and Σ, were
assigned an inverse Wishart prior distribution with W−1(Su, ]u)
andW−1(Sϵ, ]ϵ), respectively; Su and Sϵ are the identity matrices; and
]u and ]ϵ are the degrees of freedom. In addition, the phenotypic
correlation between the two environments was estimated using the
sample phenotypic correlation and the variance components
obtained from the M × E model. The latter was obtained from
the G × E GBLUP model

σ2uo��������
σ2uo+σ2u1+σ2ϵ1

√ ��������
σ2uo+σ2u2+σ2ϵ2

√ , where σ2uo is the

main genetic variance common to both environments, σ2u1 , σ
2
u2
, σ2ϵ1

and σ2ϵ2 are the specific genetic and residual variances for each
environment, respectively (Lopez-Cruz et al., 2015). The full data set
was used to estimate the variance components and genetic
correlations.

All the models were implemented in a Bayesian manner.
Posterior inferences were based on 50,000 Markov chain Monte
Carlo samples, 20,000 burn-in, and a thinning rate of five using the
BGLR R package following default rules for choices of
hyperparameters (Pérez and de Los Campos, 2014; Pérez-
Rodríguez and de Los Campos, 2022).

Cross-validation scenarios

For the single-environment analysis, the prediction accuracies of
the GBLUP, BayesB, BayesC, and RKHS models were evaluated
using the repeated random subsampling cross-validation (CV)
(Figure 1A). Two-thirds of the lines were used as a training set
(TRN) and the remaining one-third were used as a testing set (TST).
We measured the predictive Pearson correlation for each repeat
between the observed and predicted values in the TST. The average
across 50 replications was used to derive the prediction accuracy of
the model.

The predictive ability of the multi-year analysis was assessed
using three different CV scenarios that simulated various prediction
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challenges in plant breeding (Burgueño et al., 2012) (Figure 1B–D).
In the first scenario, leave one environment-out CV (CV0), used all
the lines in one environment to predict the same lines in a new
environment. The second scenario (CV1) predicted the performance
of new lines that were not phenotyped in either environment. This
scenario evaluated whether newly developed lines that had never
been observed in any of the environments could be predicted from
their genetic relationships with other lines. In this scenario, the same
lines in the same environments were used as TRN, whereas the
remaining lines were used for TST. The third CV scenario (CV2)
posed the following challenge: some lines were evaluated in only one

environment owing to the sparse field design. In this case, the
prediction leveraged both genetic and environmental relationships.
The GBLUP model was used to evaluate CV0, and the performance
of the M × E RR-BLUP model was benchmarked with that of
GBLUP in CV1 and CV2 using resampled corrected t-test. The
repeated random subsampling CV was employed for CV1 and CV2.

Data availability

The phenotypic and genomic information can be found at
https://figshare.com/s/94a222afca9423d0b1aa and https://figshare.
com/s/a061d548a97237b51a61, respectively.

Results

The sample phenotypic correlations between the environments
were all positive, ranging from 0.50 (SNPP) to 0.96 (FD) (Table 1).
Similarly, variance component-derived phenotypic correlations
were all positive, ranging from 0.37 (SNPP) to 0.80 (FD)
(Table 1). Genomic correlation estimates between the
environments were all positive, ranging from 0.63 (SNPP) to 0.97
(FD) (Table 1).

Single-environment genomic prediction

Single-environment prediction accuracies of the nine agronomic
traits were evaluated using the four whole-genome regression
models (Figure 2; Supplementary Table S3). Overall, no notable
difference was observed between the environments and the models
according to the analysis of variance. The highest mean prediction
accuracy was obtained for HTFC (0.77 and 0.78 in 2018 and 2020,

FIGURE 1
Single-and multi-environment genomic prediction cross-validation scenarios. (A) Single-environment analysis, (B) All the lines in one environment
were used to predict the same lines in a new environment (CV0), (C) Performance of new lines that are not phenotyped in any environment was predicted
through the genetic relationship with other lines (CV1), and (D) Predict lines that were evaluated in only one environment through the genetic and
environmental relationships (CV2).

TABLE 1 Genomic heritability estimates of the nine agronomic sesame traits
(h2), genetic correlations (rg), sample phenotypic correlations (ry), and
variance-components derived phenotypic correlations (ry9) between the two
environment using the marker-by-environment interaction model. Flowering
date (FD), height to the first capsule (HTFC), plant height (PH), reproductive
zone (RZ), reproductive index (RI), number of branches per plant (NBPP), seed-
yield per plant (SYPP), seeds number per plant (SNPP), and thousand-seed
weight (TSW).

Trait h2 rg ry ry′

FD 0.72 0.97 0.96 0.80

HTFC 0.68 0.94 0.95 0.77

PH 0.57 0.82 0.83 0.66

RZ 0.62 0.87 0.82 0.71

RI 0.68 0.92 0.93 0.75

NBPP 0.55 0.83 0.78 0.65

SYPP 0.38 0.76 0.58 0.47

SNPP 0.29 0.63 0.50 0.37

TSW 0.70 0.87 0.80 0.77
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respectively, averaged across the models), whereas the lowest was for
SNPP in 2018 (0.49) and SYPP in 2020 (0.39). FD, PH, RI, and
NBPP showed relatively high prediction accuracies. In particular,

the prediction accuracies ranged from 0.74 in 2018 to 0.70 in
2020 for FD, 0.68 in 2018 to 0.67 in 2020 for PH, 0.71 in
2018 to 0.74 in 2020 for RI, and 0.69 in 2018 to 0.62 in 2020 for

FIGURE 2
Single-environment prediction accuracies of the nine agronomic sesame traits in 2018 (A) and 2020 (B) growing seasons using genomic best linear
unbiased prediction (GBLUP), BayesB, BayesC, and reproducing kernel Hilbert spaces regression (RKHS). Flowering date (FD), height to the first capsule
(HTFC), plant height (PH), reproductive zone (RZ), reproductive index (RI), number of branches per plant (NBPP), seed-yield per plant (SYPP), seeds
number per plant (SNPP), and thousand-seed weight (TSW).

FIGURE 3
Proportion of the main genetic variance (main effect), environment-specific variance (specific effect), and residual variance components for each
trait obtained from themarker-by-environment interactionmodel. Flowering date (FD), height to the first capsule (HTFC), plant height (PH), reproductive
zone (RZ), reproductive index (RI), number of branches per plant (NBPP), seed-yield per plant (SYPP), seeds number per plant (SNPP), and thousand-seed
weight (TSW).
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NBPP. The prediction accuracy of RZ was slightly lower than that of
these traits, with 0.56 in 2018 and 0.53 in 2020. The three yield-
related traits SYPP, SNPP and TSW showed moderate prediction
accuracies of 0.57 and 0.39, 0.49 and 0.40, and 0.55 and 0.50 for
2018 and 2020, respectively. The prediction accuracies for 2018 were
higher than those for 2020.

Multi-environment genetic parameter
estimation

Variance component estimates were obtained from the M × E
RR-BLUP model using the full data set and expressed in terms of
proportions (Figure 3). In the two yield-related traits, SYPP and
SNPP, the M × E components were the largest, whereas the additive
genetic components were the lowest. However, the extent of M × E
was lower for FD, HTFC, RI, and TSW. Similarly, the genomic
heritability estimates were low for SYPP and SNPP and high for FD,
HTPC, RI, and TSW (Table 1). Estimates of genomic correlations
between the two environments were all moderate to high, ranging
from 0.63 (SNPP) to 0.97 (FD) (Table 1).

Multi-environment genomic prediction

One of the main challenges for the genomic prediction of multi-
environmental data was predicting the performance of new or
observed lines in new or known environments. We used multi-
environment data to evaluate the genomic prediction accuracies of
nine important agronomic traits in sesame by accounting for M × E.
Our main objective was to investigate whether obtaining
information from another environment could improve
predictions compared to a single-environment analysis. As we
did not observe a difference among GBLUP, BayesB, BayesC, and

RKHS in the single-environment analysis, multi-environment
analysis was conducted using the GBLUP or RR-BLUP type of
models.

CV0 scenario
In the CV0 scenario, all lines in one environment were used to

predict the same lines in a new environment by applying the GBLUP
model (Figure 1B). Overall, we obtained an improvement in the
prediction accuracies of all traits compared to the single-
environment model (Figure 4). The prediction accuracies were
highest for FD and HTFC, with 0.93 and 0.92, respectively. For
other agronomic traits, the prediction accuracies ranged between
0.78 (NBPP) and 0.9 (RI). For yield components, prediction
accuracies were 0.63, 0.55, and 0.74 for SYPP, SNPP, and TSW,
respectively.

CV1 scenario
The CV1 scenario mimicked the situation in which we aimed to

predict the performance of new lines (Figure 1C). We did not observe
a major difference between the single-environment andM × Emodels
(Figure 5; Supplementary Table S4). The prediction accuracies from
the multi-environment analysis were almost equal to or lower than
those from the single-environment analysis for some traits.

CV2 scenario
In this scenario, we evaluated the multi-environment analysis

when some of the lines were not evaluated in all environments
(Figure 1D). Large improvements were observed for all traits
(Figure 5). The predictive accuracies of CV2 were greater than
those of CV1 and the single environment GBLUP. For 2018 and
2020, improvements ranged from 17% (HTFC) to 48% (TSW) and
from 15% (HTFC) to 58% (TSW), respectively. Although the single-
environment prediction accuracies of the yield-related traits, SYPP
and SNPP, were low, using the M × Emodel, the gains achieved were

FIGURE 4
Multi-environment genomic prediction accuracies of the nine agronomic sesame traits using the best linear unbiased predictionmodel when all the
lines in one environment were used to predict the same lines in a new environment (CV0). Flowering date (FD), height to the first capsule (HTFC), plant
height (PH), reproductive zone (RZ), reproductive index (RI), number of branches per plant (NBPP), seed-yield per plant (SYPP), seeds number per plant
(SNPP), and thousand-seed weight (TSW).
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20% and 45% for 2018 and 20% and 28% for 2020, respectively,
compared to those obtained from the single-environment analysis.
Prediction accuracies between the GBLUP model and the M × E
model were all statistically significant except for SNPP in 2020 based
on the corrected resampled t-test (Supplementary Table S4).

Discussion

The future of food systems and security relies heavily on accelerating
plant breeding (Lenaerts et al., 2019). Developing new varieties with high
nutritional value and integration ofOrphan crops such as sesame provide
new opportunities to expand the human diet quality and sustainability
(Dawson et al., 2019). Among the modern methods for plant breeding,
genomic selection has proven effective in terms of genetic gain (Voss-Fels
et al., 2019). In this study, we evaluated the genomic prediction accuracies
of nine agronomic traits in sesame using a diversity panel. This was the
first critical step taken toward establishing a genomic selection program
for sesame.

Performance of single-environment
genomic prediction

Overall, we observed moderate-to-high prediction accuracies for
all traits in the single-environment analysis (Figure 2). We did not

find any significant differences between GBLUP, BayesB, BayesC,
and RKHS. Variable selection methods, such as BayesB and BayesC,
are expected to perform better than GBLUP in the presence of large
quantitative trait locus effects (Daetwyler et al., 2010). Comparable
prediction performance between GBLUP and variable selection
methods supported a previous genome-wide association study
reporting that only a few significant loci influenced the studied
traits using the same sesame panel (Sabag et al., 2021). This suggests
that agronomic traits in sesame are mostly controlled by many
small-effect quantitative trait loci rather than by major quantitative
trait loci. In addition, we found an association between the genomic
heritability estimates and prediction accuracy. The higher the
genomic heritability estimate, the higher the accuracy of genomic
prediction. For example, FD and HTFC showed high genomic
heritability estimates (0.72 and 0.68, respectively) and high
prediction accuracies (0.72 and 0.78 on average, respectively, for
both environments). Similarly, the yield components SYPP and
SNPP had the lowest prediction accuracies in the two
environments, as well as the lowest genomic heritability
estimates. Overall, the correlation between genomic heritability
estimates and the mean prediction accuracies across the models
was 0.62 and 0.75 for 2018 and 2020, respectively. Numerous factors
affect genomic prediction accuracies, such as genetic architecture,
the quantitative genetic model used, trait heritability, marker
density, size of the reference population, and the genetic
relationship between TRN and TST (Daetwyler et al., 2010). For

FIGURE 5
Comparison of prediction accuracies in single- andmulti-environmentmodels for predicting new lines that are not phenotyped in any environment
(CV1) and predicting lines that were evaluated in only one environment (CV2) in 2018 (A) and 2020 (B) growing seasons. Flowering date (FD), height to the
first capsule (HTFC), plant height (PH), reproductive zone (RZ), reproductive index (RI), number of branches per plant (NBPP), seed-yield per plant (SYPP),
seeds number per plant (SNPP), and thousand-seed weight (TSW).
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example, given the small sample size of the sesame diversity panel
(Sabag et al., 2021), increasing the number of lines could improve the
predictive performance of lowly heritable traits, such as yield
components (e.g., SYPP and SNPP).

Multi-environment analysis to enhance
genomic prediction

Understanding genotype-by-environment interactions are
among the main challenges for plant breeding (Cooper and
DeLacy, 1994; Mathews et al., 2008). The M × E model
decomposes the marker effect into the marker main effect, which
borrows information from the other environment, and the marker-
specific effect for each environment (Lopez-Cruz et al., 2015). No
notable improvement from the M × E model was observed for
CV1 when predicting the performance of new lines that were not
observed in any environment. This agreed with previous reports of
no strong evidence of gain in prediction for the CV1 scenario using
the M × E model compared to single-environment analysis
(Burgueño et al., 2012; Lopez-Cruz et al., 2015; Crossa et al.,
2016). In this scenario, no borrowing of information within line
across environments. In such a case, integrating environmental
covariates into the prediction model may be an alternative
strategy for improving the prediction accuracy (Jarquín et al., 2014).

Many lines are often evaluated simultaneously for multiple
environments in plant breeding programs (Lorenz, 2013). This
leads to unbalanced field experimental designs (Lado et al.,
2016), in which not all lines are present in all environments. We
simulated this scenario using CV2 to investigate whether capturing
environmental information improved the prediction accuracies of
agronomic traits in sesame. In general, considerable improvements
in prediction accuracies were observed with the M × E model
compared to those of GBLUP for all traits in all environments.
Our results concurred with those of previous studies (Lopez-Cruz
et al., 2015; Crossa et al., 2016; Cuevas et al., 2016; Bandeira e Sousa
et al., 2017; Cuevas et al., 2018), suggesting that the M × E model
borrowed information within line across environments and
improved prediction accuracies (Lopez-Cruz et al., 2015). In
particular, the M × E model performed well when the sample
phenotypic correlations between environments were positive
(Lopez-Cruz et al., 2015). This is because the phenotypic
covariance between any two environments is linearly related to
the proportion of the genetic variance, explained by themarker main
effect in the M × E model, causing the phenotypic correlation
between the two environments to be positive or zero in our data.
The pairs of phenotypic correlations between the environments were
positive for all the agronomic traits. The mean (standard deviation)
of the sample phenotypic correlation between the environments was
0.79 (0.16) (Table 1). The correlation between the sample- and the
ratio of variance component-based phenotypic correlations was
0.95. The positive sample phenotypic correlation between the two
environments might be a critical factor in explaining why the M × E
model outperformed the single-environment GBLUPmodel in CV2.
In addition, the largest gain in prediction in CV0 compared to that
in the single-environment analysis was achieved for traits with a
large extent of M × E components (SNPP and SYPP) (Table 1;
Figure 4). This finding indicated that when G × E is present, the M ×

E model can improve prediction accuracy. Although we employed
the M × E model, which only captured additive genetic effects, the
extension of G × E GBLUP to RKHS has been reported to
outperform G × E GBLUP in maize and wheat grain yield,
especially when many environments were analyzed (Cuevas et al.,
2016).

The future of genomic prediction in a
sesame breeding

Crop rotation is critical for sustainable agricultural
production systems (Li et al., 2019), and the introduction of
new crops, such as sesame, can be used for this purpose. Although
sesame is primarily cultivated in developing countries with
relatively low yields (Dossa et al., 2017), its demand for
consumption is increasing. Accelerated breeding efforts are
necessary to meet this growing demand. In this study, we
performed genomic prediction for nine important agronomic
traits in sesame using single- and multi-environment analyses for
the first time. As genomic prediction is an essential first step
toward the implementation of genomic selection in breeding
programs, we examined the potential of using genomic
prediction to enhance genetic gain in sesame while accounting
for M × E. Additional improvements in yield components may be
achieved using a multi-trait model along with secondary traits
evaluated in this study or applying high-throughput phenotyping
during the growing season (Morota et al., 2022).

Conclusion

Currently, genetic research on sesame is limited to quantitative trait
locus mapping (Teboul et al., 2020) or genome-wide association studies
(Berhe et al., 2021; Sabag et al., 2021). This study evaluated the usefulness
of whole-genome prediction models in predicting important agronomic
traits in sesame. Overall, we obtained moderate-to-high genomic
prediction accuracies. Prediction performance was further enhanced
by accounting for M × E. Given the reduced cost of genotyping and
the availability of high-quality genomic resources for sesame, we conclude
that genomic prediction has the potential to facilitate sesame breeding by
transforming the prediction gain into selection decisions in
Mediterranean climatic conditions.
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