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Competitive endogenous RNA (ceRNA) networks are reported to play a crucial
role in regulating cancer-associated genes. Identification of novel ceRNA
networks in gallbladder cancer (GBC) may improve the understanding of its
pathogenesis and might yield useful leads on potential therapeutic targets for
GBC. For this, a literature survey was done to identify differentially expressed
lncRNAs (DELs), miRNAs (DEMs), mRNAs (DEGs) and proteins (DEPs) in GBC.
Ingenuity pathway analysis (IPA) using DEMs, DEGs and DEPs in GBC identified
242 experimentally observed miRNA-mRNA interactions with 183 miRNA targets,
of these 9 (CDX2, MTDH, TAGLN, TOP2A, TSPAN8, EZH2, TAGLN2, LMNB1, and
PTMA) were reported at both mRNA and protein levels. Pathway analysis of
183 targets revealed p53 signaling among the top pathway. Protein-protein
interaction (PPI) analysis of 183 targets using the STRING database and
cytoHubba plug-in of Cytoscape software revealed 5 hub molecules, of which
3 of them (TP53, CCND1 and CTNNB1) were associated with the p53 signaling
pathway. Further, using Diana tools and Cytoscape software, novel lncRNA-
miRNA-mRNA networks regulating the expression of TP53, CCND1, CTNNB1,
CDX2, MTDH, TOP2A, TSPAN8, EZH2, TAGLN2, LMNB1, and PTMA were
constructed. These regulatory networks may be experimentally validated in
GBC and explored for therapeutic applications.
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1 Introduction

Gallbladder Cancer (GBC) is among the most common malignant tumor of the
gastrointestinal system. The only effective treatment is complete surgical resection for
this cancer which can be given to only about 10% of patients because this cancer is usually
diagnosed at advanced stages, however, recurrence rates after surgical resections are high
(Zhu et al., 2010). GBC patients have an overall median survival of 19 months and a 5-year
survival rate of 28.8% (Zhu et al., 2020) despite standard treatment, including chemotherapy,
radiotherapy and targeted therapy. Therefore, it is necessary to understand the molecular
mechanism associated with GBC and identify novel targets for therapeutic applications
in GBC.
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MicroRNAs (miRNAs) are a class of small non-coding RNAs
(ncRNAs) of approximately ~22 nucleotides long. Their mRNA
targets are based on limited sequence complementarity between the
miRNAs seed region (first 2–7 nucleotides from the 5′ end) and
regions in the 3′ untranslated region (3’ -UTR) of the mRNA.
miRNAs play a key role in the negative regulation of target genes and
thus change the cellular environment. Nearly 60% of the total known
mRNAs are regulated by miRNAs (Friedman et al., 2008). Another
group of ncRNA—long non-coding RNAs (lncRNAs), which
are >200 nucleotides in length, also affect mRNA stability
(Sebastian-delaCruz et al., 2021). LncRNAs containing a ‘miRNA
response element’ can compete with other RNAs and are believed to
act as competing endogenous RNAs (ceRNAs). LncRNA-mediated
ceRNA regulatory network, namely, lncRNA/miRNA/mRNA axis,
is important in promoting tumorigenesis and can potentially serve
as a handle to identify key therapeutic targets (Xu et al., 2022).

There are several high-throughput studies available in GBC to
identify differentially expressed mRNAs (DEGs) and proteins
(DEPs) (Kim et al., 2008; Miller et al., 2009; Huang et al., 2014;
Wang et al., 2020a). Knowledge of the non-coding RNAs regulating
the expression of these cancer-associated genes/proteins and the
corresponding regulatory networks would be important to
understand the pathogenesis of GBC and for therapeutic
applications. Various groups have analyzed the differential
expression of miRNAs (DEMs) in tissue (Letelier et al., 2014;
Zhou et al., 2014; Goeppert et al., 2019), serum/plasma
extracellular vesicles (Ueta et al., 2021; Yang et al., 2022) using
high-throughput studies in GBC. Similarly, other researchers have
analyzed differentially expressed lncRNA (DELs) using high-
throughput studies (Ma et al., 2016; Wang et al., 2017a; Wu
et al., 2017), however, the majority of the studies on lncRNA in
GBC are targeted studies. Few of these studies revealed the
“lncRNA-miRNA-mRNA network” in GBC in a targeted manner
(Wang et al., 2016a; Hu et al., 2019; Yang et al., 2020; Zhang et al.,
2020). Another study has constructed a ceRNA network using DELs,
DEGs data and predicted miRNAs based on the DEGs from a single
GBC dataset (GSE76633) (Kong et al., 2019a). In view of the
availability of various targeted and high-throughput studies at
lncRNA, miRNA, mRNA, and protein levels in GBC, the
construction of a “ceRNA regulatory network” (lncRNA/miRNA/
mRNA axis) based on multiple experimental datasets would be
highly relevant.

We aimed to uncover the potential ceRNA regulatory networks
regulating cancer-associated processes involved in the development
of GBC. The present study applied multi-omics datasets available in
GBC, including high-throughput GBC-proteomics data from our
lab (Akhtar et al., 2023), and RNA interaction databases (predicted/
experimentally verified) to identify novel lncRNA-miRNA-mRNA
regulatory networks in GBC which may be explored for their
therapeutic applications in GBC.

2 Methodology

2.1 Data collection

The literature search was performed and studies with high-
throughput expression data in GBC were included for miRNA and

mRNA. As the detection of proteins is low in comparison to mRNAs
ormiRNAs, due to technical limitations, here, both high-throughput
studies as well as targeted studies in GBC were used to achieve a
comprehensive DEP dataset. The high-throughput proteomic
studies include the data from our lab (Akhtar et al., 2023). For
lncRNA, only targeted studies were used as their interactions with
miRNA are well-annotated.

2.2 miRNA-mRNA regulatory axis of
gallbladder cancer

Non-redundant lists of DEMs and DEGs were imported into
QIAGEN IPA (QIAGEN Inc., https://digitalinsights.qiagen.com/
IPA) (Krämer et al., 2014) and identified the miRNA-mRNA
interactions. Similarly, non-redundant lists of DEMs and DEPs
were imported into IPA and identified the miRNA-mRNA
interactions. miR IDs (for DEMs) and gene symbols (for DEGs
and DEPs) were used for IPA analysis.

The expression of lncRNA/miRNA/mRNA/protein was
considered “Up” or “Down” based on the expression trend
in >50% of the studies. The ones showing an opposite expression
in equal no. of studies (50%) were not considered for any further
analysis. Similarly, in the case of multiple transcripts of a gene the
expression was considered “Up” or “Down” based on the expression
trend in >50% of the transcripts.

For IPA analysis, an expression pairing filter was applied to
include miRNA-mRNA pairs which are showing an opposite
correlation in expressions (miRNA-Up/mRNA-Down; miRNA-
Down/mRNA-Up). The confidence level filter was used to
include only those interactions which were ‘experimentally
observed’ or ‘predicted with high confidence’ [the cumulative
weighted context score (or “CWCS”) as defined by TargetScan
is −0.4 or lower]. The datasets from miRNA-mRNA interactions
from DEGs and DEPs were integrated and obtained a non-
redundant list of miRNA-mRNA interactions. “Experimentally
observed” miRNA-mRNA interactions (from the non-redundant
list) were selected and miRNA regulatory network was constructed
using Cytoscape software v3.9.1 (https://cytoscape.org/) (Shannon
et al., 2003).

2.3 Functional enrichment analysis

The Search Tool for Retrieval of Interacting Genes database
(STRING version 11.5; https://string-db.org) (Szklarczyk et al.,
2019) is an online database and tool that can build protein-
protein interaction (PPI) network based on known and predicted
interactions. Gene ontology analysis for “experimentally observed”
miRNA targets was performed through STRING (cellular
components and biological processes) and IPA (molecular and
cellular functions and canonical pathways).

2.4 Protein-protein interaction analysis

The PPI of the “experimentally observed” miRNA targets were
analyzed using STRING 11.5, [Organism: Homo sapiens and PPI
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score was set as 0.9 (highest confidence)]. The network was
visualized by cytoscape v3.9.1. Cytohubba, a plugin of cytoscape
software, was used to identify the hub genes of the PPI network
(Chin et al., 2014). The intersection of the top 10 nodes ranked by
degree, closeness, betweenness and bottleneck centrality were
considered hub genes.

2.5 ceRNA regulatory network construction

DELs (targeted studies) and DEMs (miRNAs associated with hub
molecules among the top pathway and the targets reported at both
mRNA and protein levels) were used to screen the experimentally

validated interaction between them by DIANA-LncBase v3 (https://
diana.e-ce.uth.gr/lncbasev3) (Karagkouni et al., 2020). Both the
subunits of miRNA, i.e., “-3p” and “-5p” were considered for
finding associated lncRNAs in those cases where the subunits were
not specified. Then, lncRNA-miRNA and miRNA-mRNA co-
expression pairs (positive relation) were then used to construct
ceRNA interaction networks (lncRNA-miRNA-mRNA). The
networks were visualized using Cytoscape. Another database,
mirTarBase (mirtarbase.cuhk.edu.cn), containing more than three
hundred and sixty thousand miRNA-mRNA interactions was then
used to categorize the miRNA-mRNA interactions with strong
evidence (Reporter assay/Western blot/qPCR) or less strong
evidence (Microarray, NGS, pSILAC, CLIP-Seq and others).

FIGURE 1
The overall workflow of the study. DE miRNAs, mRNAs, proteins and lncRNAs in GBC based on a literature survey were used for the study. DE,
Differentially expressed; GBC, Gallbladder Cancer; IPA, Ingenuity pathway Analysis; PPI, protein-protein interaction.
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3 Results

The study design and workflow of the study is shown in Figure 1.
‘Tissue-based’ datasets (DELs, DEMs, DEGs, and DEPs) were used
from high-throughput and/or targeted studies and performed IPA
analysis for miRNA-mRNA interactions (predicted and
experimentally observed) using DEMs and DEGs or DEPs. The
“experimentally observed targets” were further used for associated
canonical pathways and PPI analysis to identify hub molecules. In
addition, miRNA targets DE at bothmRNA and protein levels with a

positive correlation in expression were also analyzed. Finally,
lncRNA-miRNA-mRNA regulatory networks were constructed
for the selected targets possibly functional in GBC.

3.1 DEM, DEG, DEP, and DEL dataset

Literature search revealed three high-throughput studies on
tissue miRNA analysis in GBC (Letelier et al., 2014; Zhou et al.,
2014; Goeppert et al., 2019). A total of 382 DEMs (non-redundant

FIGURE 2
miRNA regulatory network in GBC. miRNA-mRNA regulatory network using DE miRNAs, mRNAs and proteins in GBC. Yellow color represents
miRNAs and green represents mRNA or protein. GBC, Gallbladder Cancer; DE, Differentially expressed.
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list) were obtained and shown in Supplementary Table S1. A total
of seven high-throughput studies were found analyzing the
expression of mRNAs in tissues. A total of 3,135 DEGs (non-
redundant list) were obtained and are shown in Supplementary
Table S2. Both high-throughput and targeted studies on the
differential expression of proteins in GBC tissues were used for
the analysis. Data on DEPs from our lab (Akhtar et al., 2023) was
also included. A total of 359 DEPs (non-redundant list) were
obtained and are shown in Supplementary Table S3. For lncRNAs,
45 targeted studies representing expressions of 43 different
lncRNAs (non-redundant list) were found and is shown in
Supplementary Table S4.

3.2 miRNA-mRNA regulatory axis of GBC

First, non-redundant lists of DE miRNAs (n = 382) (miRNA
IDs) and DE mRNAs (n = 3,135) (gene symbol) were imported into
IPA, out of which 372 miRNAs and 2,996 mRNAs were mapped.
Inverse expression pairing resulted in a total of 3,906 miRNA and
mRNA interactions “Dataset 1” (with high prediction and/or
experimentally observed) that includes 278 miRNAs and
1,667 miRNA targets (mRNAs).

Similarly, non-redundant lists of DE miRNAs (n = 382)
(miRNA IDs) and DE proteins (n = 359) (gene symbol) were
imported into IPA, out of which 372 miRNAs and 356 mRNAs
were mapped. Expression pairing resulted in a total of 410 miRNA
and mRNA interactions “Dataset 2” (with high prediction and/or
experimentally observed) that includes 171 miRNAs and
210 miRNA targets (proteins).

The above two datasets were integrated and obtained a non-
redundant list of 4,211 miRNA-mRNA interactions (Supplementary
Table S5). This includes 242 interactions with “experimentally
observed targets” (Figure 2) and 3,969 interactions with targets
“predicted with high confidence”. These 242 interactions include
183 targets (Figure 3, Supplementary Table S6) and were used for

gene ontology, pathway, and protein-protein interaction (PPI)
network analysis. Out of 242, a total of 11 interactions include
9 targets (CDX2, MTDH, TOP2A, TSPAN8, EZH2, TAGLN2,
LMNB1, PTMA, and TAGLN) that are reported to be
differentially expressed at both mRNA and protein level in GBC
(Figure 3B; Supplementary Table S7).

3.3 Functional enrichment analysis

Gene ontology analysis of 183 proteins through STRING
showed that these are localized in intracellular organelle lumen,
cytoplasm, membrane-bound organelle, nucleoplasm and
chromosome (Figure 4A). The top biological processes include
positive regulation of cellular process, biological process,
metabolic process and developmental process (Figure 4B).
Molecular and cellular function and canonical pathways were
analyzed through IPA and the threshold criteria considered for
the analysis are -log p-value >1.3 or p-value <0.05. The top
molecular and cellular functions include cell death and survival,
cancer, organismal injury and abnormalities, organismal survival,
and cell cycle (Figure 4C). The top canonical pathways include
p53 signaling pathway, pancreatic adenocarcinoma signaling,
ovarian carcinoma signaling, Aryl hydrocarbon receptor
signaling, cyclins and cell cycle regulation (Figure 4D;
Supplementary Table S8).

3.3 Protein-protein interaction analysis

PPI analysis of 183 miRNA targets using STRINGwas visualized
by cytoscape (Figure 5A). A total of 5 hub molecules (TP53, STAT3,
CTNNB1, CDK1, CCND1) were identified based on the intersection
of the top 10 nodes ranked by degree, closeness, betweenness and
bottleneck centrality (Figure 5B). Three of the hub molecules (TP53,
CCND1, CTNNB1) belong to “p53 signaling pathway” (Figure 3A).

FIGURE 3
DE miRNAs and their targets DE in GBC. A total of 183 experimentally observed targets were identified. (A) PPI network analysis of 183 proteins
showed 5 hubmolecules. Pathway analysis showed p53 signaling among the top pathway which includes 3 of the hubmolecules. (B)We found 9miRNA
targets reported to be DE at both mRNA and protein levels. DE- Differentially expressed; GBC, Gallbladder Cancer; PPI- protein-protein interaction.
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3.4 ceRNA regulatory networks

ceRNA regulatory networks were constructed for miRNAs
associated with 3 hub molecules (TP53, CTNNB1, CCND1)
associated with “p53 signaling pathway”. Since lncRNAs can bind
to miRNA and indirectly regulate the translation of targeted
mRNAs, the expression of lncRNAs and mRNAs should be
positively correlated (López-Urrutia et al., 2019). The lncRNA-
miRNAs-mRNA networks for p53, CCND1, and CTNNB1 is
shown in Figure 6. The ceRNA regulatory networks for 8 out of
9 miRNA targets (reported to be DE at both mRNA and protein
levels) were also constructed. No lncRNA-miRNA interaction was
found for one of the targets, TAGLN. The lncRNA-miRNAs-mRNA
networks for CDX2, MTDH, TOP2A, TSPAN8, EZH2, TAGLN2,

LMNB1, and PTMA is shown in Figure 7. All the lncRNA-miRNA
interactions were reported to be strong interactions except for hsa-
miR-23b-3p and associated lncRNAs. The miRNA-mRNA
interactions with “strong evidence” as per miRTarBase are shown
with thick lines and the ones that are with “less strong evidence” is
shown with a dashed line (Figures 6, 7).

4 Discussion

The molecular mechanism associated with the development and
progression of GBC is not clear. An understanding of the ceRNA
regulatory networks targeting the “tumor-associated proteins” in
GBC would be highly important. In the present study, we integrated

FIGURE 4
Gene ontology analysis of 183 experimentally observed miRNA targets. The top five cellular components (A) biological processes (B)molecular and
cellular functions (C) canonical pathways (D) associated with these targets are shown in the figure. The threshold criteria considered for the analysis are
-log p-value >1.3 or false discovery rate <0.05. The genes associated with canonical pathways are provided in Supplementary Table S5.
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the “tissue-based” datasets (lncRNAs, miRNAs, mRNAs and
proteins) from high-throughput and/or targeted studies to
identify novel ceRNA regulatory networks in GBC. IPA analysis

was performed for miRNA-mRNA interactions (predicted and
experimentally observed) using DEMs and DEGs or DEPs. We
focused on “experimentally observed targets” for associated

FIGURE 5
miRNA-regulated protein-protein interaction network. (A) PPI network of 183 miRNA targets (B) The intersection of the top 10 nodes ranked by
degree, betweenness, closeness and bottleneck. We found 5 hub genes including TP53, STAT3, CTNNB1, CDK1, and CCND1. PPI- protein-protein
interaction.

Frontiers in Genetics frontiersin.org07

Saklani et al. 10.3389/fgene.2023.1107614

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1107614


canonical pathways and PPI analysis to identify hub molecules. In
this study, we included the protein dataset to explore the interactions
in which the miRNA target is DE at both mRNA and protein levels
with a positive correlation in expression in GBC. Then, lncRNA-
miRNA-mRNA regulatory networks were constructed for the
selected targets, and the following strategy was used for screening
the potential ceRNA regulatory network. First, the miRNA-mRNA
interactions with strong evidence were screened as per miRTarBase
and a literature survey was done for any report on these interactions
in cancer conditions. Then, lncRNA-miRNA pairs were also
screened for any report of cancer. Further, using the miRNA-
mRNA interactions and lncRNA-miRNA interactions, we
propose ceRNA networks (lncRNA-miRNA-mRNA) possibly
functional in GBC and may have a potential for therapeutic
applications in GBC.

We found “p53 signaling pathway” to be among the top pathway
associated with 183 miRNA targets. PPI network analysis using these
miRNA targets showed 5 hubmolecules, 3 of them (p53, CCND1 and
CTNNB1) were associated with p53 signaling pathway. TP53, a tumor
suppressor gene, affects the cell cycle mechanism and programmed
cell death (apoptosis) (Lowe and Lin, 2000; Yildirim et al., 2015). It is

reported to be overexpressed in ~56% of GBC cases (Ghosh et al.,
2013) and 70% of GBC cases (Misra et al., 2000). Cyclin D1 (CCND1)
participates in the cell cycle phase transition (G1/S phase) (Luo et al.,
2017). Accumulation of β-catenin promotes the transcription of many
oncogenes such as c-Myc and CyclinD-1 (Shang et al., 2017). Both
CCND1 and CTNNB1 are negatively regulated by the p53 genes (Liu
et al., 2001; Swaminathan et al., 2012).

Further, lncRNA-miRNA-mRNA regulatory networks for p53,
CCND1 and CTNNB1 revealed novel ceRNAs possibly regulating
the expression of p53 in GBC. We found three p53-miRNAs
interactions (miR-125b-5p, miR-34a-5p, and miR-30a-5p), with
strong evidence (miRTarBase), regulating the expression of p53
(Figure 6A). Le et al. (2009) highlighted the importance of miR-
125b, a brain-enrichedmiRNA, in the negative regulation of p53 and
p53-induced apoptosis during development and stress response.
miR-125b has been reported as an oncogene that inhibits cell
apoptosis by negatively regulating p53 expression (Wu et al.,
2013). There is no report on the regulation of p53 through miR-
34a-5p and miR-30a-5p in cancer. In one of our networks
(Figure 6B), miR-193a-3p and miR-195-5p are regulating the
expression of CCND1, and they are also reported to participate

FIGURE 6
lncRNA-miRNA-mRNA regulatory network of 3 hubmolecules among p53 signaling pathway in GBC. (A) TP53 (B)CCND1 and (C)CTNNB1. Different
shapes indicate different RNA molecules (Round rectangle‒lncRNA, Ellipse-miRNAs, Diamond-mRNA). The red color indicates “upregulation” and the
green color indicates “downregulation” of RNAmolecules. mRNA-miRNA interactions with strong evidence, as per the miRTarBase database, are marked
with thick lines. GBC, Gallbladder Cancer.
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in the pathogenesis of hepatocellular carcinoma and pancreatic
ductal adenocarcinoma, respectively, by targeting CCND1 (Chen
et al., 2019; Wang et al., 2020b). miRNA-195 inhibits cell
proliferation, migration and invasion in epithelial ovarian
carcinoma (EOC). In addition, a negative correlation of miR
195 expression with that of CDC42 and CCND1 expression
levels was also observed in EOC (Hao et al., 2020). We found
miR-200a to be regulating the expression of CTNNB1 in our
network (Figure 6C). miR-200a is demonstrated to target
CTNNB1 in nasopharyngeal carcinoma (Xia et al., 2010).

Literature search on “lncRNA-miRNA pairs” in cancer revealed
one lncRNA (MALAT1) -miR125b interaction in laryngocarcinoma
(Zong et al., 2021), three lncRNA (TUG1, NEAT1, MALAT1) -miR-
34a interactions reported in endometrial cancer, Nasopharyngeal
Cancer, Melanoma (Liu et al., 2017; Ji et al., 2019; Li et al., 2019) and
three lncRNA (PVT1, NEAT1, and MALAT1) -miR-30a-5p
interactions in papillary thyroid carcinoma, gastric cancer,
Hepatocellular Carcinoma (Feng et al., 2018; Pan et al., 2018;
Rao et al., 2021). Previous studies revealed that the lncRNAs
H19 and NEAT1 were found to directly target miR-193a-3p in
Hepatocellular Carcinoma and Lung Adenocarcinoma, respectively
(Ma et al., 2018; Xiong et al., 2018). PVT1 is reported to target miR-
195 in osteosarcoma (Zhou et al., 2016). H19 has been reported to
competitively bind to miR-200a and indirectly regulate β-catenin in

colorectal cancer (Yang et al., 2017). MALAT1 is found to
competitively bind to miR-200a-3p in non-small cell lung cancer
(Wei et al., 2019).

Here, six ceRNA regulatory networks (MALAT1-miR125b-p53;
PVT1/MALAT1-miR-195-CCND1, H19/NEAT1-miR-193a-3p-
CCND1, H19/MALAT1-miR-200a-CTNNB1) were found for
which lncRNA-miRNA and/or miRNA-mRNA interactions have
been reported in other cancers. In view of the correlation in
expression of these lncRNA, miRNA and mRNA, the ceRNA
networks appear to play key regulatory roles and may be
explored in GBC.

Out of 242, a total of 11 interactions include 9 targets reported to
be DE at both mRNA and protein levels in GBC. Out of 9, we found
lncRNA-miRNA-mRNA regulatory networks for 8 of them (CDX2,
MTDH, TOP2A, TSPAN8, EZH2, TAGLN2, LMNB1, and PTMA)
(Figure 7). The same strategy as explained earlier was used for
screening the potential ceRNA regulatory networks possibly
functional in GBC. We found miRNA-mRNA interaction for a
total of 4 genes (EZH2, CDX2, TAGLN2, and PTMA). EZH2 has
different roles in cancer, such as oncogenic, tumor suppressor,
cancer cell metastasis, cancer immunity, and metabolism.
Previous studies have shown its overexpression in different
cancers, including prostate cancer, breast cancer, etc. (Duan
et al., 2020). PTMA is upregulated and associated with the

FIGURE 7
lncRNA-miRNA-mRNA regulatory network of eight miRNA targets DE at both mRNA and protein levels in GBC. (A) EZH2 (B) CDX2 (C) MTDH (D)
TSPAN8 (E) LMNB1 (F) PTMA (G) TOP2A (H) TAGLN2. Different shapes indicate different RNA molecules (Round rectangle‒lncRNA, Ellipse-miRNAs,
Diamond-mRNA). The red color indicates “upregulation” and the green color indicates “downregulation” of RNA molecules. mRNA-miRNA interactions
with strong evidence are marked with thick lines, and the ones with less strong evidence are marked with dotted lines as per the miRTarBase
database. DE, Differentially expressed; GBC, Gallbladder Cancer.
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development of various cancers, including esophageal squamous cell
carcinoma, colorectal, bladder, lung, and liver cancer (Zhu et al.,
2019). The Caudal-type homeobox transcription factor 2 (CDX2)
gene is a specific intestinal transcription factor that is involved in the
embryonic development and differentiation of the intestine. Its
overexpression in gastric carcinoma cells significantly inhibits cell
growth and proliferation (Xie et al., 2010). Transgelin 2 (TAGLN2)
is known to bind to actin to facilitate the formation of cytoskeletal
structures. Downregulation of transgelin 2 is reported to promote
breast cancer metastasis (Yang et al., 2019).

We found miRNA-mRNA interactions (miR-26a-5p/miR-101-3p-
EZH2; miR-181c-5p-CDX2; miR1-3p-TAGLN2/PTMA) involving
four genes. Interestingly, miR-26a-5p-EZH2 interaction was found
to be involved in cell proliferation, cell invasion and apoptosis in
GBC cells (Wang et al., 2016b). EZH2 is reported to be a direct
target of miR-26a in Uveal Melanoma (UM) cells. Further, the
knockout of EZH2 mimicked the tumor inhibition of miR-26a in
UM cells (Li et al., 2021). A recent study demonstrated thatmiR-101-3p
prevented retinoblastoma cell proliferation by targeting EZH2 and
HDAC9 (Jin et al., 2018), prevented autophagy in endometrial
cancer cells by targeting EZH2 (Wang and Liu, 2018) and inhibits
invasion and metastasis in renal cell carcinoma by Targeting EZH2
(Dong et al., 2021). PTMA was identified as a target gene regulated by
the miR-1 in bladder cancer (Yamasaki et al., 2012).

A literature search on “lncRNA-miRNA pairs” in cancer revealed
two lncRNA (NEAT1, MALAT1) -miR-101-3p interactions in lung
cancer (Wang et al., 2017b; Kong et al., 2019b), two lncRNA (TUG1,
MALAT1) -miR-26a-5p interactions observed in colon cancer and
colorectal cancer (Tian et al., 2019; Zhou et al., 2021) and two lncRNA
(TUG1, MALAT1) -miR-1-3p interactions in hepatic carcinoma,
esophagus cancer (Li et al., 2020; Tang et al., 2022). We found six
ceRNA regulatory networks (TUG1/MALAT1-miR-26a-5p-EZH2;
NEAT1/MALAT1-miR-101-3p- EZH2; TUG1/MALAT1-miR-1-
3p-PTMA) targeting two genes, EZH2 and PTMA. In view of the
functional role of EZH2 and PTMA in cancer, as discussed earlier, the
ceRNA regulatory network targeting these two genes may be
investigated in GBC.

Overall, we identified twelve ceRNA regulatory networks which
might be functional in GBC, however, the experimental validation of
these networks (expression analysis) in the clinical samples is the
limitation of the present study. In future, in vitro and in vivo studies
would be planned that might establish the functional role of these
networks in GBC.

5 Conclusion

The present study used the experimental data from high-
throughput/targeted studies on miRNAs, mRNAs and proteins in
GBC and identified 183 miRNA targets. IPA analysis showed
“p53 signaling pathway” to be the top pathway associated with
them. Three of the targets were among the top 5 hub molecules in
PPI network analysis. A total of 9 targets were reported to be DE at both
mRNA and protein levels. Further, lncRNA-miRNA-mRNA regulatory
networks were constructed for 3 targets (TP53, CCND1, and CTNNB1)
associated with p53 signaling pathway and 9 targets (CDX2, MTDH,
TOP2A, TSPAN8, EZH2, TAGLN2, LMNB1, and PTMA) DE at both
mRNA and protein level. Overall, twelve ceRNA regulatory networks

(MALAT1-miR125b-p53; PVT1/MALAT1-miR-195-CCND1, H19/
NEAT1-miR-193a-3p-CCND1, H19/MALAT1-miR-200a-CTNNB1,
TUG1/MALAT1-miR-26a-5p-EZH2; NEAT1/MALAT1-miR-101-
3p- EZH2; TUG1/MALAT1-miR-1-3p-PTMA) were identified for
which lncRNA-miRNA and/or miRNA-mRNA interactions have
been reported in other cancers. These and other lncRNA-miRNA-
mRNA regulatory networks may be experimentally validated and
explored for their therapeutic applications in GBC.
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