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Background: As one of the most common autoimmune diseases, myasthenia
gravis (MG) severely affects the quality of life of patients. Therefore, exploring the
role of dysregulated genes between MG and healthy controls in the diagnosis of
MG is beneficial to reveal new and promising diagnostic biomarkers and clinical
therapeutic targets.

Methods: The GSE85452 dataset was downloaded from the Gene Expression
Omnibus (GEO) database and differential gene expression analysis was performed
on MG and healthy control samples to identify differentially expressed genes
(DEGs). The functions and pathways involved in DEGs were also explored by
functional enrichment analysis. Significantly associated modular genes were
identified by weighted gene co-expression network analysis (WGCNA), and MG
dysregulated gene co-expression modular-based diagnostic models were
constructed by gene set variance analysis (GSVA) and least absolute shrinkage
and selection operator (LASSO). In addition, the effect of model genes on tumor
immune infiltrating cells was assessed by CIBERSORT. Finally, the upstream
regulators of MG dysregulated gene co-expression module were obtained by
Pivot analysis.

Results: The green module with high diagnostic performance was identified by
GSVA andWGCNA. The LASSOmodel obtained NAPB, C5orf25 and ERICH1 genes
had excellent diagnostic performance for MG. Immune cell infiltration results
showed a significant negative correlation between green module scores and
infiltration abundance of Macrophages M2 cells.

Conclusion: In this study, a diagnostic model based on the co-expressionmodule
of MG dysregulated genes was constructed, which has good diagnostic
performance and contributes to the diagnosis of MG.

KEYWORDS

myasthenia gravis, biomarkers, WGCNA, infiltrated immune cells, LASSO

OPEN ACCESS

EDITED BY

Xiang Xue,
University of New Mexico, United States

REVIEWED BY

Sarbjeet Makkar,
Washington University in St. Louis,
United States
Mi Jian,
Yantai Yuhuangding Hospital, China
Ke Mo,
YuanDong International Academy Of Life
Sciences, China

*CORRESPONDENCE

Demin Zhang,
samczx@yeah.net

†These authors contributed equally to
this work

SPECIALTY SECTION

This article was submitted to RNA,
a section of the journal
Frontiers in Genetics

RECEIVED 23 November 2022
ACCEPTED 14 March 2023
PUBLISHED 27 March 2023

CITATION

Zhang D, Luo L, Lu F, Li B and Lai X (2023),
Transcriptional landscape of myasthenia
gravis revealed by weighted gene
coexpression network analysis.
Front. Genet. 14:1106359.
doi: 10.3389/fgene.2023.1106359

COPYRIGHT

© 2023 Zhang, Luo, Lu, Li and Lai. This is
an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Abbreviations: MG, myasthenia gravis; GEO, gene expression omnibus; DEGs, Differentially expressed
genes; WGCNA, Weighted gene co-expression network analysis; GSVA, Gene set variance analysis;
LASSO, Least absolute shrinkage and selection operator; AChR, acetylcholine receptor; MuSK, muscle-
specific kinase; PBMCs, peripheral blood mononuclear cells; GO, Gene Ontology; KEGG, kyoto
encyclopedia of genes and genomes; GSEA, gene set enrichment analysis; MsigDB, molecular
signature database; ROC, recipient operating characteristic; AUC, area under the curve; RBPs, RNA
binding proteins; PCA, principal component analysis; NAPB, N-ethylmaleimide-sensitive accessory
protein beta; MS, multiple sclerosis; NMO, neuromyelitis optica; GBS, guillain-barré syndrome.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 27 March 2023
DOI 10.3389/fgene.2023.1106359

https://www.frontiersin.org/articles/10.3389/fgene.2023.1106359/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1106359/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1106359/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1106359/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2023.1106359&domain=pdf&date_stamp=2023-03-27
mailto:samczx@yeah.net
mailto:samczx@yeah.net
https://doi.org/10.3389/fgene.2023.1106359
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2023.1106359


Introduction

As an autoimmune disease, myasthenia gravis (MG)
manifests primarily as fluctuating muscle weakness caused by
autoantibodies and cell-mediated disruption of acetylcholine
receptors (Nations et al., 1999). It is characterized by
dysfunctional transmission of the neuromuscular junction,
resulting in muscle weakness (Meriggioli and Sanders, 2009).
MG reduces the quality of life of patients and can be life-
threatening in severe cases (Phillips, 2004; Andersen et al.,
2014; Bettini et al., 2017). The prevalence of MG is estimated
to be 0.3–2.8/100,000, with a global prevalence of 700,000, and
the current mortality rate of MG is 5%–9% (Alshekhlee et al.,
2009; Carr et al., 2010; Deenen et al., 2015). In recent years, many
advances have been made in the treatment of MG, and more
evidence-based medical evidence has been accumulated, which
has significantly improved the prognosis of the vast majority of
patients and enabled the effective control of a small number of
refractory MG cases (Batocchi et al., 2000; Vincent and
Drachman, 2002; Rowin et al., 2004; Grob et al., 2008; Muscle
Study, 2008). However, the clinical manifestations of MG are
highly heterogeneous (Rodolico et al., 2002; Grob et al., 2008).
Identifying potential biomarkers of MG will help in the diagnosis
and treatment of MG.

Currently, serological tests for autoantibodies are commonly
used for the diagnosis and disease classification of MG patients
(Gilhus and Verschuuren, 2015). About 85% of MG patients
have antibodies against the muscle acetylcholine receptor
(AChR) (Higuchi et al., 2011). In addition, antibodies against
muscle-specific kinase (MuSK) were found in about 6% of
patients (Berrih-Aknin et al., 2014), and antibodies against
LRP4 were found in about 2% of MG patients (Berrih-Aknin
et al., 2014). The pathogenicity of all these autoantibodies has
been demonstrated by animal studies (Mori et al., 2012; Shen
et al., 2013). However, the pathogenicity of these disease
biomarkers is usually uncertain. There is still a need to
identify new biomarkers to complement existing diagnostic
tools.

Therefore, in this study, we identified dysregulated genes in MG
patients and performed a weighted gene co-expression network
analysis (WGCNA) on these genes. In addition, we further
developed a clinical diagnostic model based on dysregulated
genes and revealed the relationship between this clinical
diagnostic model and the multi-omics landscape of
immunological features and global regulatory networks.

Materials and methods

Data resources

In this study, the MG dataset GSE85452 (Mamrut et al., 2017)
was downloaded from the Gene Expression Omnibus (GEO)
database (http://www.ncbi.nlm.nih.gov/geo/). The
GSE85452 dataset is based on the GPL10558 platform and
contains the mRNA expression profiles of 13 MG and 12 healthy
control PBMCs.

Differential gene expression analysis

To identify differentially expressed genes (DEGs) between
control and MG samples, differential gene expression analysis
was performed using the Bioinforcloud application DEbylimma,
which was developed based on the limma package (Ritchie et al.,
2015). Among the differences, those associated with p < 0.01 and |
logFC|> 0 were considered significant. Subsequently, heat maps
were drawn using the Bioinforcloud application PlotHeatmap to
further demonstrate the expression of DEGs between samples.

Weighted gene co-expression network
analysis

The weighted gene co-expression network analysis (WGCNA)
application in Bioinforcloud was based on the WGCNA package in
the R language (Langfelder and Horvath, 2008) being used to
perform WGCNA on DEGs. Candidate powers (Nations et al.,
1999; Batocchi et al., 2000; Rodolico et al., 2002; Vincent and
Drachman, 2002; Phillips, 2004; Rowin et al., 2004; Grob et al.,
2008; Muscle Study, 2008; Alshekhlee et al., 2009; Meriggioli and
Sanders, 2009; Carr et al., 2010; Higuchi et al., 2011; Mori et al., 2012;
Shen et al., 2013; Andersen et al., 2014; Berrih-Aknin et al., 2014;
Deenen et al., 2015; Gilhus and Verschuuren, 2015; Bettini et al.,
2017; Mamrut et al., 2017) were used to test the average connectivity
of the different modules and their independence. Powers were
selected if the degree of independence was >0.85. The samples
were clustered by using the hclust function of the WGCNA
package and checked for outliers. Subsequently, a heat map of
module-phenotype correlations was constructed to find module-
phenotype correlations and their significance. A high correlation
means that the genes of the corresponding module also tend to be
highly correlated with the disease state.

Functional enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analysis of MG dysregulated gene co-
expression module genes using the Bioinforcloud application
RunMutiGroupclusterProfiler. The application was developed
based on the clusterProfiler package in the R language (Yu et al.,
2012), and the enriched functions or pathways were considered
significant when p< was 0.05.

Gene set enrichment analysis

Gene set enrichment analysis (GSEA) was performed using the
Bioinforcloud application RunGSEA to further explore the potential
biological properties of MG dysregulated gene co-expression
modules. The application uses the Molecular Signature Database
(MsigDB) (Liberzon et al., 2015) of c2. cp.kegg.v7.0. symbols.gmt as
the reference gene set, and was developed based on the
clusterProfiler package in the R language (Yu et al., 2012), the
enrichment results at p < 0.05 were considered significant.

Frontiers in Genetics frontiersin.org02

Zhang et al. 10.3389/fgene.2023.1106359

http://www.ncbi.nlm.nih.gov/geo/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1106359


Gene set variation analysis

Gene set variation analysis (GSVA) of modular genes using
RunGSVA. The application is based on the GSVA package
(Hanzelmann et al., 2013) for calculating GSVA scores of MG
dysregulated gene co-expression module genes in different
samples. Subsequently, heat maps were drawn using the
Bioinforcloud application PlotHeatmap to further demonstrate
the expression of GSVA scores across samples.

Assessment of diagnostic efficacy

Evaluation of diagnostic efficacy of potential markers using the
Bioinforcloud application PlotROC. The application is based on the
pROC package in R (Robin et al., 2011) and the results were plotted
as receptor operating characteristic (ROC) curves. In this study, the
potential of GSVA scores of MG dysregulated gene co-expression
module genes as a diagnostic marker for MG was evaluated using
this application. In the case of area under the curve (AUC) > 0.5, the
closer the AUC is to 1, the better the diagnosis.

Construction of minimum absolute
shrinkage and selection operator models

The least absolute shrinkage and selection operator (LASSO) has
a strong predictive value and low correlation and is suitable for
selecting the best features for high-dimensional data. LASSO
regression analysis was performed using the Bioinforcloud
application RunLASSO, which was developed based on the
glmnet software package (Friedman et al., 2010) and extracted
the expression profiles of MG dysregulated genes and co-
expression module functional genes with diagnostic efficacy to
construct the LASSO model. The expression values of the
selected genes were weighted using the regression coefficients of
the LASSO analysis to create a model index for each sample with the
following equation: Index = ExpGene1*Coef1 + ExpGene2*Coef2 +
ExpGene3*Coef3 +.

“Coef” is the regression coefficient of the gene, derived from
LASSO Cox regression, and “Exp” indicates the expression value of
the gene, thus constructing the MG dysregulated gene co-expression
module-based Lasso model.

Immune cell infiltration analysis

In this study, immune cell infiltration analysis was performed
using the Bioinforcloud application RunCIBERSORT to assess
the abundance of immune cell infiltration in MG as well as
between control samples. The application is based on the
CIBERSORT tool (Chen et al., 2018). It was developed to
enable the estimation of immune infiltration for large volumes
of transcripts and thus assess the relationship between gene
expression or other phenotypes and immune cell infiltration.
In addition, correlation analysis was performed using the
Bioinforcloud application PlotCor to explore the correlation
between MG dysregulated gene co-expression module-based

models, model genes and the abundance of immune cell
infiltration, immune checkpoint genes and tertiary lymphoid
structural marker genes.

Identification of upstream regulators

In this study, the differentially expressed RNA binding proteins
(RBPs) were screened in combination with the results of differential
gene expression analysis, and subsequently, the upstream regulators
regulating the gene sets of the MG dysregulated gene co-expression
module-based model were identified using the Bioinforcloud
application Pivot. The application is based on a hypergeometric
approach to implement Pivot analysis to identify RBPs in the
regulatory gene set.

Data analysis and statistics

All statistical analyses were performed in the Bioinforcloud
platform (http://www.bioinforcloud.org.cn), which was applied by
calling the appropriate R package. Comparisons between the two
groups were made using Student’s t-test and correlation coefficients
were calculated using Spearman analysis. p < 0.05 was considered
significant.

Results

Dysregulated gene co-expression modules
characterize the global regulatory pattern of
myasthenia gravis

As shown in Figure 1A, gene expression data from PBMC
samples of 13 MG patients and 12 healthy controls were analyzed
in this study. The bias of sequencing data due to gene length,
sequencing volume and other factors was removed by
normalization. Principal component analysis (PCA) scatter plots
showed good discrimination between different samples (Figure 2A).
DEGs between MG and control were identified by differential gene
expression analysis, including 861 upregulated DEGs and
643 downregulated DEGs (Figure 2B, Supplementary Table S1).
The heat map showed that these dysregulated genes could
significantly distinguish between MG and control samples
(Figure 2C).

Subsequently, to further explore the relationship between
these dysregulated genes and MG, this study screened these
genes for WGCNA. to construct a scale-free network, we set
the soft threshold power β to 16, and DEGs with similar
expression patterns were co-classified into six co-expression
modules. The module ring tree diagram demonstrates the
neighbor-joining relationships among the dysregulated gene
co-expression modules (Figure 2D). In addition, the module
heat map further demonstrates the co-expression of MG
dysregulated genes in different modules (Figure 2E). The
expression correlations of some significantly dysregulated
genes were demonstrated in the module correlation plots
(Figure 2F), which may be closely related to MG development.
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Biological functions and signaling pathways
significantly involved in myasthenia gravis
dysregulated gene co-expression modules

To further investigate the biological functions and signaling
pathways significantly involved in MG dysregulated gene co-
expression modules, enrichment analysis of these genes was
performed. The results showed that these genes are significantly
involved in the biological processes of positive regulation of innate
immune response, regulation of interferon-beta production and positive
regulation of cytokine production and KEGG pathways such as
neurodegeneration-multiple diseases pathway, Th1 and Th2 cell
differentiation, TGF -beta signaling pathway and mTOR signaling
pathway. (Figures 3A, B). In addition, GSEA further confirmed the
activation or inhibition of KEGG signaling pathways in different co-
expression modules (Figure 3C), suggesting that these pathways may
play an important role in the development ofMG. In addition to this, we
compared the scores of ferroptosis and necroptosis in MG and control
samples and found that the scores of necroptosis were higher in the MG
group, while the scores of ferroptosis were not significant (Figure 3D).

Myasthenia gravis dysregulated gene co-
expression module-based clinical model has
significant diagnostic efficacy

The GSVA scores of MG dysregulated gene co-expression modules
were calculated based on the GSVA method (Figure 4A), and the

diagnostic efficacy of GSVA scores of different modules for MG was
identified using ROC analysis. The results showed that the Green
module had the best diagnostic efficacy for MG (AUC = 0.584,
Supplementary Figure S1). Subsequently, the MG dysregulated gene
co-expression module-based clinical model was further constructed
using the LASSO method, and three characteristic genes with non-zero
regression coefficients were obtained (lambda.min = 0.110, Figures
4B,C). ROC curve analysis showed that the MG dysregulated gene co-
expression module-based model showed excellent diagnostic efficacy
for MG (AUC = 0.981, Figure 4D), and some of these genes, such as
NAPB, showed significantly high expression inMG, while C5orf25 and
ERICH1 showed significantly low expression in MG (Figure 4E). In
addition, the correlation between NAPB, C5orf25 and ERICH1 genes
and ferroptosis and necroptosis was analyzed and the results were
shown in Supplementary Table S2, ERICH1 was negatively associated
with necroptosis.

Co-expression module reprograms the
immune microenvironment of myasthenia
gravis

By immune infiltration analysis, this study explored the level of
immune cell infiltration in Control and MG samples. Correlation
analysis showed a significant negative correlation between the Green
module score and the infiltration abundance of Macrophages
M2 cells, suggesting that the expression of these module genes
may inhibit the infiltration of the corresponding immune cells

FIGURE 1
Flowchart of this work.
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FIGURE 2
Dysregulated gene co-expression modules characterize the global regulatory pattern of myasthenia gravis. (A). Principal component analysis (PCA)
plots showing significant differences between disease and control. (B) Manhattan plots showing differential expression of Case-Control. (C) Heat map
showing expression of dysregulated genes in Case-Control groupings. (D). Module ring tree plots showing neighboring relationships between
dysregulated gene co-expressionmodules. (E)Module heat map showing genemembers of dysregulated gene co-expressionmodules. (F)Module
correlation plot showing the expression correlation of gene co-expression modules with Top10 significantly dysregulated genes.
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FIGURE 3
Biological functions and signaling pathways significantly involved in myasthenia gravis dysregulated gene co-expression modules. (A) Clustered
bubble plots showing the biological functions significantly regulated by MG dysregulated gene co-expression modules (listed as different modules). (B)
Clustered bubble plots showing the signaling pathways significantly regulated by MG dysregulated gene co-expression modules (listed as different
modules). (C) Comprehensive GSEA diagram showing signaling pathways significantly activated/repressed by MG dysregulated gene co-expression
modules, (a) blackmodule, (b) bluemodule, (c) greenmodule, (d) graymodule, (e) pinkmodule, (f) redmodule. (D) Scoring of ferroptosis and necroptosis
in MG and control samples.
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(Figure 5A). Notably, MG dysregulated gene co-expression module
scores as well as scored genes showed significant correlation with the
abundance of some immune cells, immune checkpoint genes and
tertiary lymphoid structural marker genes (Figures 5B, C), suggesting
that these module genes may be indirectly involved in reprogramming
the MG immune microenvironment by promoting the infiltration
of immune cells, or regulating the expression of immune-related
genes.

Upstream regulators of dysregulated gene
co-expression modules

To construct a global regulatory network for the MG
dysregulated gene co-expression module-based model, we further
explored the upstream regulators of these genes. The upstream
regulators regulating this model gene set, including RBPs such as
YTHDF1, U2AF2, TARDBP, STAU1, were identified by Pivot

FIGURE 4
The myasthenia gravis dysregulated gene co-expression module-based clinical model has significant diagnostic efficacy. (A) Heat map
demonstrating significant enrichment of MG dysregulated gene co-expression module gene (GSVA) scores in Case-Control. (B) Lambda plot
demonstrating model performance of the set of MG dysregulated gene co-expression module functional genes with diagnostic efficacy at different
Lambda (single factor significant genes were selected for Lasso modeling). (C) Lasso model Plot showing the model confidence of the set of
functional genes with diagnostic efficacy of MG dysregulated gene co-expression module at different log (Lambda). (D) ROC curve showing the ROC
curve of MG dysregulated gene co-expression module-based model. (E) Box plot showing the expression level of model genes.
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analysis (Figure 6A), where EIF3D, RBM15, STAU1, TARDBP and
YTHDF1 showed significant high expression in MG samples
(Figure 6B).

Discussion

The clear pathogenesis of MG is still unknown, and due to its
heterogeneous and complex pathogenesis, there are no effective
treatment options for MG patients (Sanders et al., 2016). The
present study is based on the mRNA expression profile of MG
from the GEO database. In this study, we identified MG-related
DEGs for WGCNA based on the mRNA expression profile of
MG in the GEO database, and searched for the most relevant
modules to construct a scoring clinical model, which can
adequately ensure the interaction between genes. Then, the
diagnostic efficacy of the scoring clinical model for MG was
determined. In addition, few established immune-related gene
profiles were combined with conventional prognostic models to
optimize routine clinical practice. They are not very effective as a
direct guide to clinical workup. To remedy these shortcomings,
we further explored the immune microenvironment of MG
based on clinical models of MG scoring. These findings
strongly suggest a great potential role for the MG
dysregulated gene co-expression module-based model in MG
obtained in this study.

WGCNA makes strongly correlated genes strongly correlated
after power function treatment, therefore, the construction of
WGCNA network helps to identify and screen important
modules and key genes associated with specific clinical
phenotypes (Langfelder and Horvath, 2008). In this study,
WGCNA analysis was performed on RNA-seq datasets
downloaded from the GEO database, and DEGs were calculated
separately between MG patients and healthy controls, yielding a
total of 1504 DEGs as the dataset for subsequent co-expression
network analysis to prevent high correlations for genes that were not
significantly different. Notably, the co-expression network analysis
identified and clustered into six co-expression modules, and the
correlation analysis of genes with significantly dysregulated genes
was performed for each module, and the Top10 pivotal genes
contained in each module were screened for strong interaction
with MG, respectively.

Among the different modules, genes were found to be mainly
enriched in Pathways of neurodegeneration - multiple diseases,
Alzheimer disease, Th1 and Th2 cell differentiation, Regulation
of actin cytoskeleton, Oxidative phosphorylation, Necroptosis,
TGF-beta signaling pathway, Wnt signaling pathway and other
KEGG signaling pathways. Notably, each module was
significantly enriched in Pathways of neurodegeneration -
multiple diseases. In addition, functional enrichment analysis
revealed that module genes were mainly enriched in positive
regulation of innate immune response, regulation of interferon-

FIGURE 5
Co-expression modules reprogram the immune microenvironment of myasthenia gravis. (A) Series of correlation scatter plots showing expression
correlation of immune cell infiltration abundance with diagnostic potency of MG dysregulated gene co-expression module scores. (B) Bubble plots
showing correlation of MG dysregulated gene co-expression module-based Lasso model genes with immune cell infiltration abundance. (C) Bubble
plots showing correlation of MG dysregulated gene co-expression module-based Lasso model genes correlated with immune checkpoint-
associated genes and tertiary lymphoid structural marker genes.
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beta production, positive regulation of cytokine production,
activation of innate immune response This suggests that the
main cause of MG development is abnormalities in interferon
and immune pathways. In the course of MG, abnormal antigen
processing and presentation may contribute to the onset and
progression of the disease (Xu et al., 2021). In addition, it has
been found that imbalance of various helper T cells (including
Th1, Th2, Th17, Th22 and follicular helper T (TFH) cells in MG
is associated with immune disorders, suggesting that the balance
of Th cells and their cytokines in MG patients is related to the
clinical status or severity of MG disease (Wang et al., 2019). It has
also been shown that oxidative stress and low antioxidant status
play a major role in the pathogenesis of inflammatory and
autoimmune diseases, and that MG patients with low
antioxidant status have active oxidative processes (Yang et al.,
2016; Adamczyk-Sowa et al., 2017). In addition to this, studies
have confirmed that AChR-MG may be an acquired interferon
disease (Payet et al., 2022). The results of GO and KEGG analysis
in this study also suggest that MG dysregulated genes are mainly
enriched in interferon and immune-related processes.

To date, there are no studies on the NAPB, C5orf25, and
ERICH1 genes in PBMCs in MG. The N-ethylmaleimide-
sensitive accessory protein beta (NAPB) gene is associated with
brain development as well as brain development in neurological
disorders, such as various severe early onset epilepsy (Conroy et al.,
2016; Zhao et al., 2021). In addition, NAPB has been shown to act as
a pivotal gene in Alzheimer’s disease and to be involved in the
pathogenesis of Alzheimer’s disease (Zhang et al., 2020). CAPN3 has
been reported to have multiple muscle cell functions and mutations

in this protease cause limb-girdle muscular dystrophy type 2A (Ono
et al., 2013). C5orf25 is a novel CAPN3-binding protein that
regulates the protease activity of CAPN3 and has the potential to
act as a scaffolding protein (Ono et al., 2013). While ERICH1 has
been reported to be associated with the risk of multiple sclerosis
(MS) (Maltby et al., 2017), MS and MG are two uncommon
neurological problems, both of which can affect the nervous system.

Immune cell infiltration analysis showed a significant negative
correlation between the infiltration abundance of green module
Macrophages M2 cells. Macrophages the cause of the pathogenesis
of some human neuroimmune diseases, mainly MS, optic
neuromyelitis optica (NMO), MG and Guillain-Barré syndrome
(GBS) (Fan et al., 2016).

However, the present study still has limitations, as the sample
size of the public database is too small, which may lead to the
omission of pivotal genes. In addition, the results of this analysis
were obtained exclusively by bioinformatics and failed to
experimentally validate the expression of the obtained biomarkers
at protein and RNA levels, and further experimental validation is
proposed in the future.

Conclusion

The results of this study showed that a gene-based clinical model
consisting of NAPB, C5orf25 and ERICH1 showed high diagnostic
ability for MG (AUC = 0.981), and this model developed can be used
as a diagnostic indicator for MG, which is crucial for subsequent
clinical treatment and improvement of disease prognosis.

FIGURE 6
Upstream regulators of the dysregulated gene co-expression module. (A) Circular network plot demonstrating the regulatory effect of RBP on MG
dysregulated gene co-expression module-based Lasso model genes. (B) Box plot demonstrating the expression level of RBPs.
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