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Background: The development of distant metastasis (DM) results in poor prognosis of
breast cancer (BC) patients, however, it is difficult to predict the risk of distantmetastasis.

Methods: Differentially expressed genes (DEGs) were screened out using
GSE184717 and GSE183947. GSE20685 were randomly assigned to the training
and the internal validation cohort. A signature was developed according to the
results of univariate and multivariate Cox regression analysis, which was validated
by using internal and external (GSE6532) validation cohort. Gene set enrichment
analysis (GSEA) was used for functional analysis. Finally, a nomogramwas constructed
and calibration curves and concordance index (C-index) were compiled to determine
predictive and discriminatory capacity. The clinical benefit of this nomogram was
revealed by decision curve analysis (DCA). Finally, we explored the relationships
between candidate genes and immune cell infiltration, and the possible mechanism.

Results: A signature containing CD74 and TSPAN7was developed according to the
results of univariate andmultivariate Cox regression analysis, whichwas validated by
using internal and external (GSE6532) validation cohort. Mechanistically, the
signature reflect the overall level of immune infiltration in tissues, especially
myeloid immune cells. The expression of CD74 and TSPAN7 is heterogeneous,
and the overexpression is positively correlated with the infiltration of myeloid
immune cells. CD74 is mainly derived from myeloid immune cells and do not
affect the proportion of CD8+T cells. Low expression levels of TSPAN7 is mainly
caused by methylation modification in BC cells. This signature could act as an
independent predictive factor in patients with BC (p = 0.01, HR = 0.63), and it has
been validated in internal (p=0.023,HR=0.58) and external (p=0.0065, HR=0.67)
cohort. Finally, we constructed an individualized prediction nomogram based on
our signature. The model showed good discrimination in training, internal and
external cohort, with a C-index of 0.742, 0.801, 0.695 respectively, and good
calibration. DCA demonstrated that the prediction nomogram was clinically useful.

Conclusion: A new immune infiltration related signature developed for predicting
metastatic risk will improve the treatment and management of BC patients.
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Introduction

Currently, breast cancer (BC) has been the highest cause of cancer
death for women (Sung et al., 2021). Approximately 90% of patient
death come frommetastatic complications although only 20%–30% of
patients suffer frommetastatic recurrence, whichmakes the treatment
schedules of metastatic patients different from those of non-metastatic
patients (Chen et al., 2018; Medeiros and Allan, 2019). Therefore,
accurate identification of distant metastasis (DM) in each individual
patient with BC is crucial for determining individualized follow-up
strategy and the optimal treatment regimen. The further exploration
of new biomarkers is of great significance.

BC is a heterogeneous disease at molecular levels, which is
associated with distinct patterns of metastatic spread (Liang
et al., 2020). As a result of different molecular subtypes, accurate
prediction of DM is still a great challenge. Notably, gene expression-
based molecular subtyping appears to have clinical implications for
the treatment of patients with BC (Masuda et al., 2013; Prat et al.,
2015). Moreover, previous studies have shown that molecular
subtypes of BC could be considered as a risk factor for distant
recurrence (Gnant et al., 2014; Tobin et al., 2017), This suggests that
gene expression profiling has a great value in predicting the
probability of DM (Ellis et al., 2011; Filipits et al., 2014).
However, what pattern of gene expression causes this difference
still remains unclear. In this study, we aim to find gene biomarker
associated with metastasis and construct a gene signature that could
accurately predict distant metastasis–free survival (DMFS).

Nomogram, a simple devices for predicting the likelihood of
disease, is widely used in the field of oncology (Balachandran et al.,
2015). However, there is no literature that has applied gene signature
to a nomogram for predicting DMFS in BC, although multiple
predictive nomograms have been constructed for patients with BC
(Rouzier et al., 2005; Wang et al., 2019; Huang et al., 2020).
Therefore, the aim of this study was to provides a reliable
nomogram to predict the risk of metastasis development based
on gene signature in patients with BC.

Materials and methods

Data collection and pre-processing

Data of the cancer and adjacent normal tissues of samples with
metastasis were downloaded from the Gene Expression Omnibus
(GEO) database: GSE183947 and GSE184717. Meanwhile,
GSE20685 and GSE6532 were singled out to construct a gene
signature and a nomogram. Samples without complete clinical
information or based on different platforms were regarded as
substandard samples in the present study. Subsequently, batch
effects were removed using Combat from R package SVA
(Johnson et al., 2007).

Acquisition of differentially expressed genes
(DEGs)

An R package limma (Ritchie et al., 2015) was applied to identify
DEGs between cancer and adjacent normal tissues. The threshold

was set to |logFC| >2 and the adjusted p < 0.05. Then, we use Venn
diagrams to find the intersection of DEGs that simultaneously
upregulated or downregulated in both metastatic tumor and
primary tumor.

Screening of optimal predictive biomarkers
and development of signature

GSE20685 was randomized 1:1 and split into a training cohort
and an internal validation cohort. For reproducibility, the random
seed was used and set to 3. To find optimal predictive biomarkers,
univariate and multivariate Cox regression analysis was performed
in the training cohort with a p-value cutoff of 0.05. Then, the
regression coefficient was defined according to the multivariate
Cox regression model and the formulas were described as follows:

risk score � ∑
N

i�1
ExpipCoei( )

Finally, results were visualized using the “forestplot” package in R.

FIGURE 1
A flowchart of the study procedure.
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Construction and assessment of the
nomogram

In order to make better use of the signature, a nomogram was
constructed using the “RMS” package. The Harrell’s Concordance
index (C-index) values range from 0 to 1, which is positively
correlated to the predictive performance of the nomogram
(Harrell et al., 1996). The nomogram was subjected to
bootstrapping validation (1,000 bootstrap resamples) to calculate
a relatively corrected C-index. To assess the consistency of DMFS at
3-, 5-, and 10-year between the nomogram predicted probabilities
and observed rates, calibration curves were plotted.

Evaluation of predictive value

Gene Expression Profiling Interactive Analysis (GEPIA) (http://
gepia.cancer-pku.cn/) is an online tool, which contains massive
RNA sequencing data from The Cancer Genome Atlas (TCGA)
and Genotype-Tissue Expression (GETx) (Tang et al., 2017). We
analyze the differential gene expression and correlation between BC
tissues (n = 1,085) and normal tissues (n = 291) using GEPIA.

In terms of the signature, the optimal cutoff value was calculated
according to themedian value of the signature in the training cohort.
Then we use it to divide patients into two groups and predict the
DMFS in the training, internal validation, and external validation
cohort by means of plotting survival curves based on the Kaplan-
Meier method. To date fifty-five dataset have been included in Breast

Cancer Gene-Expression Miner v4.7 (bc-GenExMiner) (http://
bcgenex.centregauducheau.fr/), which can be used to improve
gene prognostic analysis performance (Jézéquel et al., 2012).
Candidate biomarkers were validated again using bc-GenExMiner.

Compared with ROC curves, decision curve analysis (DCA) can
integrate patient and doctor preference into analysis, which is
increasingly being utilized in clinical practice (Huang et al.,
2016). To evaluate the clinical utility of models, DCA curves
were developed using the “stdca.R” package in R.

Gene set enrichment analysis

The degree of differential gene expression was reordered by
high- and low-score groups instead of definite differential gene
thresholds, which was used to screen significantly enriched KEGG
pathways. This method helps minimize losses of original gene
expression data (Subramanian et al., 2005). We performed Gene
set enrichment analysis (GSEA) to analyze the difference in anti-
metastatic potential between two groups.

Immune infiltration analysis

The relationship between optimal predictive biomarkers and
immune infiltrating levels was analyzed using Timer (https://
cistrome.shinyapps.io/timer/) (Li et al., 2017). An algorithm
named quanTIseq was used to estimate the fraction of immune

FIGURE 2
Identification of differentially expressed genes (DEGs). (A) Volcano plot of DEGs between primary tumor and paired normal tumor in GSE183947.
(B) Volcano plot of DEGs between metastasis tumor and paired normal tumor in GSE184717. (C) Venn diagram showing the intersection of the DEGs
in GSE 183947 and GSE 184717.
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TABLE 1 The relationship between the signature and patient characteristics.

Variables GSE20685 (Training cohort) p-value GSE20685 (validation cohort) p-value GSE6531
(validation cohort)

p-value

Total
(n = 164)

High
risk (n = 82)

Low risk
(n = 82)

Total
(n = 163)

High
risk (n = 79)

Low
risk (n = 84)

Total
(n = 87)

High
risk (n = 41)

Low
risk (n = 46)

Age(years)

≤60 143 70 (49%) 73 (51%) 0.483 139 67 (48%) 72 (52%) 0.869 36 11 (31%) 25 (69%) 0.009

>60 21 12 (57%) 9 (43%) 24 12 (50%) 12 (50%) 51 30 (59%) 21 (41%)

T stage

T1-T2 144 70 (49%) 74 (51%) 0.34 146 72 (49%) 74 (51%) 0.525 83 39 (47%) 44 (53%) 0.906

T3-T4 20 12 (60%) 8 (40%) 17 7 (41%) 10 (59%) 4 2 (50%) 2 (50%)

N stage

N0 63 34 (54%) 29 (46%) 0.422 74 35 (47%) 39 (53%) 0.786 29 17 (59%) 12 (41%) 0.129

N+ 101 48 (48%) 53 (52%) 89 44 (49%) 45 (51%) 58 24 (41%) 34 (59%)

M stage

M0 103 44 (43%) 59 (57%) 0.015 141 63 (45%) 78 (55%) 0.014 59 22 (37%) 37 (63%) 0.008

M1 61 38 (62%) 23 (38%) 22 16 (73%) 6 (27%) 28 19 (68%) 9 (32%)

Expression of
CD74

<mean 86 66 (77%) 28 (23%) <0.001 79 59 (75%) 20 (25%) <0.001 41 29 (71%) 12 (29%) <0.001
≥mean 78 16 (21%) 62 (79%) 84 20 (24%) 64 (76%) 46 12 (26%) 34 (74%)

Expression of
TSPAN7

<mean 75 62 (83%) 13 (17%) <0.001 84 64 (76%) 20 (24%) <0.001 49 37 (76%) 12 (24%) <0.001
≥mean 89 20 (22%) 69 (78%) 79 15 (19%) 64 (81%) 38 4 (11%) 34 (89%)
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cell subsets infiltrating the tissue from GSE20685 and GSE6532
(Finotello et al., 2019). Student’s t-test was used to test for
significance between high-score group and low-score group.

Immunohistochemistry

28 tissue samples of BC were collected in Shunde Hospital of
Guangzhou University of Chinese Medicine to analyze the
correlation between CD74 and myeloid cells. To reduce error,
Immunohistochemistry (IHC) for CD74 (1:200 dilution;
EPR4064, Abcam) and CD33 (1:200 dilution; EPR23051-101,
Abcam) were performed by an autostrainer system (Lumatas

Titan, LumatasBiosystem Inc.) on 3-μm-thick,formalin-fixed and
paraffin-embedded (FFPE) Sections. Counterstaining was done with
hematoxylin. The average optical density (AOD) was calculated with
Image Pro Plus6.0 to determine the protein expression level.

Cell culture

BC cell line MCF-7,ZR-75-1, MDA-MB-231 and myeloid
leukemia cell line K562 were all obtained from the Experimental
Center, Shunde Hospital of Guangzhou University of Chinese
Medicine (Foshan, China). Three breast cell lines were
maintained in DMEM medium with 10% fetal bovine serum

FIGURE 3
Screening of potential prediction biomarkers and risk factors for distant metastasis. (A, B) Univariate (A) and multivariate (B) Cox regression analysis
of the metastasis-related genes. (C, D) Univariate (C) and multivariate (D) Cox regression analysis of correlations between the signature and clinical traits.
Red and blue, respectively indicate 95% confidence interval and hazard ratio. T_stage, tumor size; N_stage, nodal status; Signature, the risk score.
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TABLE 2 Details of the candidate genes.

Gene
Symbol

Gene
Id

Full name Cytogenetic
locations

Protein function

CD74 972 CD74 molecule 5q33.1 CD markers; Disease related genes; Cancer-related genes: Candidate cancer
biomarkers

TSPAN7 7,102 tetraspanin 7 Xp11.4 Transporters: Accessory Factors Involved in Transport; CD markers; Disease
related genes; Potential drug targets

COL11A1 1,301 collagen type XI alpha 1 chain 1p21.1 Predicted intracellular proteins; Disease related genes; Predicted secreted
proteins; Cancer-related genes: Candidate cancer biomarkers

FLG 2,312 filaggrin 1q21.3 Cancer-related genes: Mutated cancer genes; Predicted intracellular proteins;
Disease related genes

MMP11 4,320 matrix metallopeptidase 11 22q11.23 Peptidases: Metallopeptidases; Cancer-related genes: Candidate cancer
biomarkers; FDA approved drug targets: Small molecule drugs; Predicted
secreted proteins; Enzymes

CHRDL1 91,851 chordin like 1 Xq23 Disease related genes; Predicted secreted proteins

FNDC1 84,624 fibronectin type III domain
containing 1

6q25.3 Predicted intracellular proteins; Predicted secreted proteins

MELK 9,833 maternal embryonic leucine
zipper kinase

9p13.2 Disease related genes; ENZYME proteins: Transferases; Predicted intracellular
proteins; Potential drug targets; Kinases: CAMK Ser/Thr protein kinases;
Enzymes

PITX1 5,307 paired like homeodomain 1 5q31.1 Predicted intracellular proteins; Disease related genes; Transcription factors:
Helix-turn-helix domains

FIGURE 4
Validation of the expression of potential predictive biomarker in TCGA and GETx (n = 1,376). (A) TSPAN7, (B) CD74, (C) MMP11, (D) MELK, (E)
COL11A1, (F) CHRDL1, (G) PITX1, (H) FNDC1. T: tumor; N: normal. Green and blue, respectively indicate tumor and normal groups. *p < 0.05.
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(FBS). Cells were seeded in 6-well plates and, 12 h after plating,
demethylation was induced with 10 μM 5-aza for 24 h. Stable
expression of TSPAN7 was confirmed by RT-qPCR and
Western blot.

qRT-PCR

Total RNA was extracted using TRIzol (Invitrogen) and a two-
step reverse transcription-quantitative PCR (RT-qPCR) protocol
was performed using PrimeScript RT Master Mix (Takara) and TB
Green Premix Ex Taq (Takara), following manufacturer’s
instructions. GAPDH was used as a loading control. The
sequences of TSPAN7 primers were as follows: 5′-CTGGCTGTT
GGAGTCTGG-3′ (forward); 5′-CCGATGAGCACATAGGGA’
(reverse). The sequences of GAPDH primers were:5′-
CGGATTTGGTCGTATTGGG-3′ (forward); 5′-CTGGAAGAT
GGTGATGGGATT-3′ (reverse). The experiment was repeated
three times biologically for statistical analysis. The relative
expression was quantified using the 2−ΔΔCT method.

Western blot analysis

Cells were placed on ice and lysed with RIPA buffer (Beyotime,
China) containing protease inhibitors Cocktail (MCE,China).
Proteins were resolved on SDS-PAGE gels, transferred to PVDF
membranes (Millipore, United States), and incubated at 4°C
overnight with TSPAN7 primary antibodies diluted at 1:1,000
(ProteinTech, 18695-1-AP) and β-tubulin loading control
antibodies diluted at 1:1,000 (Servicebio, GB11017) and the
secondary antibody diluted at 1:10,000 (Abcam,ab6721). Bands
were visualized using an ECL kit.

Results

Screening of DEGs

A flow chart of the study design is shown in Figure 1. The R
package “limma” was used to screen DEGs between tumor and
normal tissues in GSE184717 and GSE183947, where a total of
1967 (1,494 upregulated and 473 downregulated) and 351
(180 upregulated and 171downregulated) DEGs were obtained,
respectively. The distribution of each gene was visualized by
volcano plots (Figures 2A,B). The resulting list of DEGs was the
intersection between the above datasets and a total of 62 overlapping
DEGs were obtained (Figure 2C).

Two genes were screened out as potential
predictive biomarkers

The clinicopathologic characteristics are summarized in
Table 1. To identify DEGs that are associated with metastasis,
univariate Cox regression analysis was performed. A total of nine
candidate genes (CD74, TSPAN7, COL11A1, FLG, MMP11,
CHRDL1, FNDC1, MELK, PITX1) with an adjusted p <
0.05 were screened out (Figure 3A). Detailed information for
each gene was listed in Table 2.

We further analyzed the differential gene expression between BC
tissues (n = 1,085) and normal tissues (n = 291) using GEPIA. As
shown in Figure 4, eight genes were found to be differentially
expressed in BC tissues, including six upregulated genes
(CD74,MMP11,MELK,COL11A1,PITX1,FNDC1) and two
downregulated genes (TSPAN7, CHRDL1).

Interestingly, breast tissues with low CD74 expression were related
to poorer DMFS although CD74 commonly upregulated in BC patients.

FIGURE 5
Kaplan-Meier curves for Distant metastasis-free survival (DMFS) of TSPAN7 (A), CD74 (B), MMP11 (C), MELK (D), COL11A1 (E), CHRDL1 (F), and PITX1
(G)in breast cancer patients using bc-GenExMiner.
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Additionally, bc-GenExMiner was utilized to validate the
relationship between predictive biomarkers and DMFS. The
expression levels of seven genes, including TSPAN7(HR:0.75;
95%CI:0.69-0.83; p < 0.0001), CD74(HR:0.88; 95%CI:0.81-0.97;
p = 0.0094), MMP11 (HR:1.33; 95%CI:1.21-1.46; p < 0.0001),
MELK(HR:1.87; 95%CI:1.70-2.06; p < 0.0001), COL11A1(HR:
1.13; 95%CI:1.03-1.24; p = 0.0108), CHRDL1(HR:0.81; 95%CI:
0.73-0.89; p < 0.0001), PITX1(HR:1.17; 95%CI:1.07-1.29; p =
0.0010), were found able to estimate DMFS (Figure 5).

Finally, CD74 (HR:0.61; 95%CI:0.4-0.92; p = 0.019) and
TSPAN7(HR:0.51; 95%CI:0.29-0.9; p = 0.021) were screened out to
develop a signature according to the results of multivariate Cox
analysis (Figure 3B).

Development and validation of the signature

We calculated the signature based on the expression of
CD74 and TSPAN7 as follows:

Signature = (0.7,697,433 X expression of CD74) + (0.6633031 X
expression of TSPAN7).

Of note, the expression of CD74 and TSPAN7 was negatively
correlated with DMFS, suggesting that patients with low scores have
a higher probability of distant metastasis.

To be better applied in clinical diagnosis, a constant cutoff
value was determined by the median of the training cohort
(15.488). Survival analysis, using the Kaplan-Meier method,
indicated that the low score group portends a worse DMFS
(HR:0.63; 95%CI:0.49-0.82; p = 0.01; Figure 6A). Subsequently,
survival analysis was performed twice with the same results in the
internal validation cohort (HR:0.58; 95%CI:0.36-0.96; p = 0.023;
Figure 6B), and the external validation cohort (HR:0.67; 95%CI:
0.47-0.95; p = 0.0065; Figure 6C), respectively. To individually
show the differences between low score and high score groups, we
visualized the scores, distant metastasis, and gene expression
profiles in the three cohorts (Figures 6D–F). The above results
indicated that the signature could predict the risk of metastasis
development as an independent risk feature.

FIGURE 6
Kaplan-Meier curves of DMFS according to signature and the prognosis of patients with BC. (A–C) Kaplan-Meier curves of DMFS based on the
signature (15.488) in training cohort (A), internal validation cohort (B) and external validation cohort (C). (D–F) The distribution of risk score (top),
metastatic status (middle) and expression heatmap (bottom) of the two biomarkers in training cohort (D), internal validation cohort (E) and external
validation cohort (F). M, metastasized; NM, unmetastasized.
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Gene set enrichment analysis

GSEA was performed to analyze the causes of BC metastasis
risk difference between high and low score groups. Figure 7A
showed that upregulated genes in the high score group were
significantly enriched in immune related signal pathways, such as
T cell receptor signaling and chemokine signaling pathway,
suggesting that our signature may be an immune infection
related signature (IIRS).

Immune infiltration analysis

We further utilized TIMER to analyze the possible correlation
between CD74, TSPAN7 expression and levels of immune
infiltration in BC (Figure 7B). Both CD74 and TSPAN7 are

associated with multiple immune cell infiltration, especially
T cells. Therefore, we want to know whether the correlation
between the signature and immune infiltration is applicable to all
our cohorts. We integrated three cohorts and calculated the fraction
of immune cell subsets using quanTIseq. As shown in Figure 7C, the
high score group had a higher fraction of B cells (p < 0.001),
M2 Macrophage (p < 0.001), Neutrophil (p = 0.009), CD8+T cell
(p < 0.001), Tregs (p < 0.001). On the contrary, the fraction of NK
cell (p = 0.012) and uncharacterized cells were found to increase
significantly in the low score group. It is worth noting that the
analysis showed that there was the most significant difference in
CD8+T cells between groups.

In view of myeloid cells playing an important role in the
recruitment and concentration of CD8+ T cells (Jiang et al.,
2022), we attempted to evaluate the correlation between
myeloid cell levels and the IIRS in BC patients. CD33 is widely

FIGURE 7
Functional analysis of the CD74 and TSPAN7. (A) GSEA identified gene sets significantly enriched in the phenotype of high score patients based on
the IIRS. (B) Correlations between CD74 or TSPAN7 expression and immune infiltration levels. (C) Different levels of immune infiltration were observed
between the high score (n = 212) and the low score (n = 202) groups.
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used as a marker for tumor infiltrating myeloid cells (Choi et al.,
2020; Toor et al., 2021), so we collected FFPEs from 28 consecutive
pairs of BC patients and performed IHC for CD74 and CD33,
respectively. Interestingly, CD74 protein mainly existed in some
CD33+ cells (Figure 8A), and was positively correlated with
CD33 levels in three cohorts (Figure 8B), IHC (Figure 8C) and
TCGA (Figure 8D), respectively. In addition, there is a significant
positive correlation between CD74 and CD8 in BC (Figure 8E),
which means that CD74+ myeloid cells will not affect the
recruitment of CD8+T cells.

We detected TSPAN7 protein expression in three common
BC cell lines (MCF-7, ZR-75-1, MDA-MB-231) and a myeloid
cell line K562 (Figure 8F). TSPAN7 was almost undetectable in
BC cell lines, contrary to the myeloid cell line. Importantly, we

found that the expression of TSPAN7 was significantly correlated
with CD33 in a variety of molecular subtypes, which has been
proven to exist mainly in myeloid immune cells (Figures 8G–K).
It suggested that the differential expression of TSPAN7 may
affect the prognosis by reflecting the infiltration of myeloid cells.
However, TSPAN7 expression in BC tissues is lower than that in
normal tissues without immune invasion. To explain this
paradoxical phenomenon, we hypothesized that
TSPAN7 methylation occured and treated three TSPAN7-
silenced cells with demethylation agent 5-Aza, respectively.
TSPAN7 expression was subsequently restored in all treated
BC cells (Figures 8L,M). TSPAN7 methylation in BC cells and
myeloid cells infiltration together result in the difference of
TSPAN7 expression.

FIGURE 8
Gene expression and correlation. (A) IHC for CD74 and myeloid marker CD33. (B–D) Correlation between the expression of CD74 and CD33 in
cohorts (Panel B), IHC (Panel C) and TCGA (Panel D) (Pearson correlation coefficient). (E)Correlation between the expression of CD74 andCD8A in TCGA.
(F) Western blot analysis of TSPAN7 in cell lysates of myeloid cells and breast cancer cells. (G–K) Correlation between CD33 and TSPAN7 expression of
different PAM50 subtypes in bc-GenExMiner. Basal-like subtype (G); HER2-enriched subtype (H); Luminal A subtype (I); Luminal B subtype (J);
Nromal-like subtype (K). (L, M) TSPAN7mRNA (L) and protein (M) expression was upregulated after treatment with the demethylation reagent 5-Aza. *p <
0.05,**p < 0.01, by Student’s t-test.
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Construction and assessment of
predictive nomogram

In order to increase clinical utility, a predictive nomogram was
constructed (Figure 9) based on the risk feature verified by
univariate and multivariate Cox analysis, including the IIRS,
age, T stage, and N stage (Figures 3C,D). Interestingly, we
found that younger patients are at higher risk of metastasis,
which was consistent with previous findings (Purushotham
et al., 2014).

Subsequently, calibrate curves were plotted to identify the
consistency between ideal outcome and actual observation in
prediction of 3-,5- 10-year distant metastasis-free survival times.
The calibration curves showed good performance in training cohort
(Figure 10A), internal validation cohort (Figure 10B), and external
validation cohort (Figure 10C), especially for long term survival rate
(10-year DMFS).

To assess the predictive performance of this model, the
nomogram was internally validated by 1,000 bootstrap resamples
in three cohorts. Pleasantly, and surprisingly, the nomogram yielded
a C-index of 0.742 (95% CI, 0.715–0.769) for training cohort, 0.801
(95% CI, 0.754 to 0.0.848) for internal validation cohort and 0.695
(95% CI, 0.643 to 0.0.747) for external validation cohort. Therefore,
we demonstrated that the nomogram could predict the DMFS of BC
patients effectively.

We subsequently performed a decision curve analysis to
evaluate the clinical net benefit in predicting the probability of
10- year DMFS. As shown in Figure 10D, if the threshold
probability of a patient or doctor is <48% or >63%, using the
nomogram with IIRS to predict DMFS adds more benefit than the
other without IIRS.

Discussion

It is well known that almost all metastatic BC has poor overall
survival and incurable nature (Gobbini et al., 2018). In recent years,
it is gratifying to note that the median survival time after diagnosis of
metastatic BC has been increasing due to improved treatment
(Mariotto et al., 2017). Therefore, early assessment and diagnosis
of distant metastasis are still meaningful strategies for improving the
prognosis of BC patients.

Nowadays multiple biomarkers, such as circulating miRNA
(Baldasici et al., 2022), circulating tumor DNA (Page et al., 2021)
and circulating tumor cell (Ring et al., 2022), can be used to detect
metastasis of BC. What’s more, several serum biomarkers related to
metastasis, including soluble POSTN (Jia et al., 2022), PTHrP
(Washam et al., 2013), S100P (Peng et al., 2016), have been
found. Non-etheless, when these biomarkers increase, it is very
likely that BC has undergone distant metastasis (Al-Mahmood et al.,

FIGURE 9
Nomogram to predict for 3-year,5-year and 10-year probabilities of DMFS for breast cancer patients. Age: older: ≥60,young: <60; T_stage: 0: T0; 1:
T1; 2: T2; 3: T3; 4: T4; N_stage: 0: N0; N+: N1, N2, N3; signature, IIRS.
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FIGURE 10
Performance of the nomogram to predict DMFS. (A–C) Calibration curves of 3-year, 5-year and 10-year DMFS in training cohort (A), internal
validation cohort (B), and external validation cohort (C). (D) Decision curve analysis for the nomogram with/without signature.
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2018). Therefore, improved methods based on gene expression to
predict the risk of BC metastasis in advance are needed.

Unfortunately, there is no effective way to achieve this goal.
Although PAM50 signature has proven to be able to provide
prognostic information from the lymph node metastasis of BC
patients, only a few subtypes are associated with metastasis (Tobin
et al., 2017; Wang et al., 2019), suggesting that individualized accurate
prediction according to PAM50 subtypes is still difficult.

In this study, we sought to identify metastasis-related genes to
predict the probability of distant metastasis in BC patients. A total of
62 genes were screened out in GSE184717 and GSE183947.7 genes
(CD74,TSPAN7,COL11A1, MMP11, CHRDL1, MELK, PITX1)
proved to be associated with DMFS in BC patients, and seven of
them (TSPAN7, CD74, MMP11, MELK, COL11A1, CHRDL1, PITX1)
were verified by bc-GenExMiner. Two potential biomarkers (CD74,
TSPAN7) of metastasis development were used to construct a gene
signature bymultivariate analysis. The signature proved to be associated
with distant metastasis–free survival in three cohort.

The CD74 gene, responsible for producing a protein associate with
class II major histocompatibility complex (MHC) is implicated in an
effective intratumor immune response (Wang et al., 2017). It also serves
as a cell surface receptor for the cytokine macrophage migration
inhibitory factor, which may play a pro-oncogenic role in promoting
BC cell-stroma interactions (Verjans et al., 2009). Of note, CD74 was
observed to be related to triple-negative breast cancer, which is themost
aggressive subtype of breast cancer (Tian et al., 2012). The TSPAN7 is a
cell-surface protein coding gene, and the coding protein of which plays a
role in the regulation of cell development, activation, growth and
motility (Perot and Ménager, 2020). For this reason, TSPAN7 is also
known as CD231. Our study is the first to link CD74 and
TSPAN7 expression with distant metastasis–free survival in breast
cancer, highlighting gene signature based on CD74 and TSPAN7 as
a predictor of metastasis development in BC, with a strong effect on
patients’ distant metastasis–free survival.

In past studies, multiple prognostic models have been constructed
because of the differential expression of CD74 (Wang et al., 2020) or
TSPAN7 (Wu et al., 2020) between tumor and normal tissues.
However, the reason for this difference is still unclear. As a result,
much effort has been expended in trying to explore differential
expression of CD74 or TSPAN7 in cancer cell strains, ignoring the
influence of immune infiltration (Greenwood et al., 2012; Wang et al.,
2018; Qi et al., 2020; Yu et al., 2021). Notably, heterogeneity of
CD74 expression has been confirmed in tumor tissues (Richard
et al., 2014), indicating that characterization of immune landscape
cannot be discounted. In this study, GSEA revealed a statistical
enrichment of immune-related signaling pathways in the high score
group. Thus we speculated that the signature we constructedmay reveal
the levels of immune infiltration. The results of TIMER database
confirmed this conjecture. CD74 and TSPAN7 expression was
negatively correlated with tumor purity while positively correlated
with the level of multiple immune cells. Furthermore, the fraction of
immune cells in high score group was significantly higher than that in
low score group, especially CT8+ T cells. According to the results
presented above, we identified a novel cause of differential expression of
CD74 and TSPAN7. The levels of CD74 and TSPAN7 reflected the
ability of immune cells to infiltrate tumors. To the best of our
knowledge, this is the first study to show that high CD74 and
TSPAN7 expression is associated with tumor-infiltrating immune

cells. Further studies on Intra-tumoral heterogeneity are warranted,
in order to analyze the relationship between survival time and the level
of immune cell infiltration.

Our study has some potential limitations. First, pathologic
features were unavailable, so the correlation between our signature
and pathological features could not be evaluated. Second, quanTIseq is
a prediction tool of immune cell fraction based on deconvolution
algorithm, as a result, it will predict a minimal amount of immune
cells even though they are absent (Sturm et al., 2019).

In conclusion, we identified seven genes related to distant
metastasis–free survival, namely, TSPAN7, CD74, MMP11, MELK,
COL11A1, CHRDL1, PITX1, and a signature based on CD74 and
TSPAN7 expression that may have potential of predicting DMFS. We
found that methylation of TSPAN7 in BC cells inhibits the
recruitment of CD74 positive immune cells, which may be
associated with a lower risk of metastasis. The present study was
the first to propose that high CD74 expression may be derived from
tumor-infiltrating immune cells. Given the favorable discrimination
of the signature, we developed a nomogram for clinical applications.
This is the first nomogram based on gene signature that can be used to
facilitate the individualized prediction of DMFS in BC patients.
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