
A single-cell atlas reveals shared
and distinct immune responses
and metabolic profiles in
SARS-CoV-2 and HIV-1 infections

Tony Pan1†, Guoshuai Cao1†, Erting Tang1, Yu Zhao1,
Pablo Penaloza-MacMaster2, Yun Fang3 and Jun Huang1*
1Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States, 2Department
of Microbiology-Immunology, Northwestern University, Chicago, IL, United States, 3Biological Sciences
Division, University of Chicago, Chicago, IL, United States

Introduction: Within the inflammatory immune response to viral infection, the
distribution and cell type-specific profiles of immune cell populations and the
immune-mediated viral clearance pathways vary according to the specific virus.
Uncovering the immunological similarities and differences between viral infections is
critical to understanding disease progression and developing effective vaccines and
therapies. Insight into COVID-19 disease progression has been bolstered by the
integration of single-cell (sc)RNA-seq data from COVID-19 patients with data from
related viruses to compare immune responses. Expanding this concept, we propose
that a high-resolution, systematic comparison between immune cells from SARS-
CoV-2 infection and an inflammatory infectious disease with a different
pathophysiology will provide a more comprehensive picture of the viral clearance
pathways that underscore immunological and clinical differences between infections.

Methods: Using a novel consensus single-cell annotation method, we integrate
previously published scRNA-seq data from 111,566 single PBMCs from 7 COVID-19,
10 HIV-1+, and 3 healthy patients into a unified cellular atlas. We compare in detail
the phenotypic features and regulatory pathways in themajor immune cell clusters.

Results: While immune cells in both COVID-19 and HIV-1+ cohorts show shared
inflammation and disrupted mitochondrial function, COVID-19 patients exhibit
stronger humoral immunity, broader IFN-I signaling, elevated Rho GTPase and
mTOR pathway activity, and downregulated mitophagy.

Discussion:Our results indicate that differential IFN-I signaling regulates the distinct
immune responses in the two diseases, revealing insight into fundamental disease
biology and potential therapeutic candidates.
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Introduction

Viral infection in humans initiates a coordinated response between the innate and
adaptive immune systems. This defense response involves: recruitment and activation of
inflammatory cell populations, such as macrophages and monocytes (Koyama et al., 2008);
IFN-I signaling, which drives transcription of multifunctional IFN-stimulated effector
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molecules (Koyama et al., 2008; McNab et al., 2015); and significant
metabolic shifts in immune cells, attributed to increased cytokine
signaling (Chandler et al., 2016; Sumbria et al., 2020). Cytotoxic
T cells clear infected cells via cytokine-mediated destruction or
direct killing, while helper T cells prime B cells to produce
antibodies, which neutralize viral replication. However, the
distribution and cell type-specific profiles of the different
immune cell populations vary across different viruses/diseases,
conditions, and stages of disease progression (MacParland et al.,
2018; Travaglini et al., 2020; Delorey et al., 2021).Within what seems
like a common inflammatory program, the immune-mediated
pathways are virus-specific.

Single-cell RNA sequencing (scRNA-seq), which can accurately
annotate individual cells, is widely used to characterize
heterogeneity within immune cell subsets (Tang et al., 2009;
Treutlein et al., 2014; Gawad et al., 2016; Reyfman et al., 2019;
Chow et al., 2021). Integration of scRNA-seq data to compare
immune responses across different viral diseases (typically with
similar pathophysiologies) can reveal similarities and differences
in the inflammatory immune response. This strategy has drawn
increased interest since the onset of the COVID-19 pandemic as it
can facilitate translation of insights from one disease to another. For
example, Lee et al., used scRNA-seq to examine peripheral blood
mononuclear cells (PBMCs) from patients with influenza or severe
COVID-19, reporting a common enrichment of inflammatory
monocytes upregulating TNF-α, IL-1β, and IFN-I, alongside
influenza-specific expression of STAT1 and TLR4 and COVID-
19-specific expression of NFKB1/2 and STAT4 (Lee et al., 2020).
Schuurman, Reijnders, et al. found that monocytes and NK cells
from patients with SARS-CoV-2-derived community-acquired
pneumonia (CAP) expressed higher levels of interferon-
stimulated genes (ISGs) compared to monocytes and NK cells
from patients with non-SARS-CoV-2-derived CAP (Schuurman
et al., 2021). The COMBAT Consortium generated an integrated
blood atlas of COVID-19, influenza, and sepsis which revealed a
shared neutrophil signature, alongside elevated plasmablast
frequencies, type-2 T cell responses, and plasma concentrations
of inflammatory cytokines (such as IL-6 and IL-8) in patients with
COVID-19 (COvid-19 Multi-omics Blood ATlas (COMBAT)
Consortium, 2022). Altogether, these studies point to a common
theme of inflammation regulated by specific genes and cytokines,
particularly IFN-I. However, the myriad virus-specific pathways
activated by the immune system cannot be revealed by comparing
only related diseases. We propose that a high-resolution, systematic
comparison between immune cells from SARS-CoV-2 infection and
an inflammatory infectious disease with a different pathophysiology
will provide a more comprehensive picture of viral clearance
pathways.

SARS-CoV-2 and HIV-1 are RNA viruses and thus exhibit high
mutation rates relative to DNA viruses. SARS-CoV-2 and HIV-1 are
both highly virulent, but disease progression differs substantially.
Immune cell subsets such as macrophages and monocytes have been
implicated in driving inflammatory cytokine signaling during both
SARS-CoV-2 and HIV-1 infection. (Deeks et al., 2013; Campbell
et al., 2014; Schulte-Schrepping et al., 2020; Knoll et al., 2021).
However, most of the mortality and morbidity observed with SARS-
CoV-2 infection occurs within days of infection, compared to
months or years with HIV-1 infection. Furthermore, neutralizing

antibody responses are rapidly generated following SARS-CoV-
2 infection, but these take many years to develop in people living
with HIV-1 (Stamatatos et al., 2009; Cotugno et al., 2021; Dangi
et al., 2021). These clinical and immunological differences are driven
in part by how the host responds to distinct viral infections.

Here, we sought to identify the disease-specific drivers and
mediators of inflammation, IFN-I signaling, and metabolism
pathways of immune-mediated viral clearance in patients with
COVID-19 and HIV-1. We present a comprehensive strategy to
integrate scRNA-seq data of 111,566 single PBMCs from 7 COVID-
19, 10 HIV-1+, and 3 healthy patients from previously published
datasets (Wilk et al., 2020; Kazer et al., 2020; Wang et al., 2020;
10xGenomics, 2020). Our strategy combines the advantages of
manual annotation, correlation-based label transfer and deep-
learning-based classification to generate a high-quality unified
cellular atlas of the immune landscape. We compare in detail the
phenotypic features and regulatory pathways in each of the major
immune compartments (T cells, B cells, natural killer cells, dendritic
cells, and monocytes). We find common signatures of inflammation
and disrupted mitochondrial function in both COVID-19 and HIV-
1. Moreover, we identify important differences in cell signaling,
antibody diversity, IFN-I signaling, and metabolic function,
including differential IFN-I signaling that likely regulates the
distinct immune responses against the two diseases.

Materials and methods

Preprocessing, integration, and clustering

Raw single-cell count matrices were collected from publicly
available sources (Tables 1–3) (Kazer et al., 2020; Wang et al.,
2020; Wilk et al., 2020; 10xGenomics, 2020) and merged. We
performed quality control and downstream analysis using the
Seurat package (v4.0.4) (Stuart et al., 2019). We removed cells
with greater than 15,000 unique molecular modifiers (UMIs) or
fewer than 500 UMIs, as well as greater than 20% mitochondrial
reads per cell. We performed log-based normalization with the
“NormalizeData” function with the “LogNormalize” parameter
and selected the top 10,000 variable features with the “vst”
parameter using “FindVariableFeatures”. We scaled and centered
the count matrix using the “ScaleData” function and supplied
“percent.mito” as a latent variable to regress out the effect of
percentage mitochondrial reads. We performed principal
component analysis (PCA) on the top 100 PCs using the
“RunPCA” function. To remove study-specific batch effects, we
performed integration across each patient using the Harmony
algorithm (v0.1.0) (Korsunsky et al., 2019) on the top
50 principal components (PCs) with the “RunHarmony”
function. We then performed Uniform Manifold Approximation
and Projection (UMAP) reduction using the “RunUMAP” function
on the top 50 PCs with “min.dist” = 0.1 and “n.neighbors” = 20. We
ran the “FindNeighbors” function on the top 50 Harmony
dimensions, then performed Louvain clustering using the
“FindClusters” function with a resolution of 0.3. We removed
doublets using the scDblFinder package (v1.10.0) (McGinnis
et al., 2019) by supplying sample source, 50 Harmony
dimensions, 10,000 variable features, and 100 PCs as parameters.
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We annotated the clusters using known cell type-specific markers,
resulting in a total of 19 cell types, including 7 CD8+ T cell subtypes,
3 monocyte subtypes, and 4 CD4+ T cell subtypes, and added the
labels to the main object.

Cell subset annotation

For manual annotation, we subsetted the three major cell
populations (T cells + NK cells, B cells + Plasmablasts, and
Dendritic cells + Monocytes) and separately performed
normalization, scaling, feature selection, PCA, integration,
UMAP, and clustering. For reference-based annotation, we
utilized the “SingleR” method from the SingleR package
(v1.4.1) (Aran et al., 2019) using data from (Monaco et al.,

2019) and default parameters and transferred the fine and
coarse labels to the main object. In total, we found 7 major
cell types and 27 subtypes with SingleR. For deep learning-based
annotation, we used the scANVI package (v0.7.0) from the scvi-
tools library (Xu et al., 2021) to train a deep generative model
using reference data from (Ren et al., 2021). We first merged the
raw counts from our object data with raw counts from the
reference into a combined AnnData object. We normalized
and logarithmized the matrix with the Scanpy package (Wolf
et al., 2018) (v1.4.5) using the “normalize_total” method with
“target_sum” = 10,000 and “log1p” method. We found highly
variable genes using the “highly_variable_genes” method with
“flavor” = “seurat_v3” and “n_top_genes” = 4000. To improve the
accuracy of the model, we performed hierarchical clustering on
the reference data and merged labels that fell under a common

TABLE 1 Characteristics of selected data from COVID-19 patients from Wilk et al.

ID Condition Age Sex Ventilated? Clinical outcome

C1 Severe COVID-19 60–69 M No/Yes Discharged to rehab on room air

C2 Severe COVID-19 40–49 M No Discharged home

C3 Severe COVID-19 30–39 M Yes Tracheostomy, prolonged ICU and hospital course

C4 Severe COVID-19 30–39 M Yes Discharged home

C5 Severe COVID-19 50–59 M No Discharged home

C6 Severe COVID-19 >80 M Yes Deceased

C7 Severe COVID-19 20–29 M No Discharged home

TABLE 2 Characteristics of selected data from HIV + individuals from Kazer et al.

ID Age Sex Ethnicity Controller? Weeks post infection at sampling point(s) ART suppression

P1 24 F African No 0, 1, 2, 3, 4, 26, 52 None

P2 21 F African No 0, 1, 2, 3, 4, 26, 52 None

P3 24 F African Yes 0, 1, 2, 3, 4, 26, 52 None

P4 21 F African Yes 0, 1, 2, 3, 4, 26, 52 None

TABLE 3 Characteristics of selected data from HIV + individuals from Wang et al.

ID Age Sex Ethnicity Controller? Duration of infection
(years)

ART suppression
status

Plasma HIV RNA
(copies/mL)

Q1 59 Male Non-Hispanic No 0.3 None 585,100

Q2 56 Male African
American

No 27 Intermittent 185,072

Q3 33 Male White No 7.6 Full <20

Q4 58 Male Other No 22 Full <20

Q5 36 Male African
American

No 3.5 None 259,111

Q7 60 Male Other No 11 Full <20
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FIGURE 1
Consensus clustering method to annotate single cell transcriptomic data from multiple sources. (A) Illustrated workflow of data collection,
consensus annotation, and downstream analysis. (B) Balanced accuracy of trained scANVI model on cell labels derived from Ren Cell 2021. Error bars
denote variation of accuracy across labels within major cell categories. (C) Left: Uniform manifold approximation and projection (UMAP) embeddings of
the integrated datasets colored by original (top) and consensus labels (bottom). Right: UMAP embeddings split by major cell categories colored by
original (top) and consensus labels (bottom) illustrating the contrast in cell proportions using consensus method. (D) Confusion matrix illustrating
percentage overlap of original labels and consensus labels across major cell categories. Percentage overlap was calculated by dividing each cell count by
the total number of cells in each column. (E) Violin plots of canonical normalized gene expression of designated cell populations indicated in 1D (rows).
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FIGURE 2
Integrated single-cell landscape of PBMC in HIV-1, COVID-19, and healthy controls. (A) UMAP embeddings of integrated HIV-1+ and COVID-19
patients together with healthy controls colored by major cell populations. (B) Top: UMAP split across disease conditions after regressing out patient-
specific effects using the Harmony algorithm. Bottom: UMAP highlighting distribution of major cell populations. (C) Stacked bar plots of the relative
frequency of major cell populations present in each patient. CP: COVID-19 patient. HP: HIV-1+ patient. HD: Healthy donor.(D) Box plots of the
proportions of each PBMC subset across each disease condition. Proportions are computed for each patient by dividing their number of cells in each
subset by their total number of PBMCs. p-values are computed with Wilcoxon signed-rank test with Holm-Bonferroni adjustment.(E) Double differential
gene expression plot of genes that are differentially expressed between COVID-19 patients compared to healthy controls (Y-axis) or differentially
expressed between HIV-1+ patients compared to healthy controls (X-axis). Log2FC: Log-2-fold change. (F)Dot plot of enriched biological pathways from
significantly differentially expressed genes (p < .05) that were found to be upregulated (right, positive) or downregulated (left, negative) compared to
healthy controls. Size of dot corresponds to adjusted p-value of enriched pathway. NES: Normalized enrichment score.
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FIGURE 3
Monocytes inCOVID-19 andHIV-1 share inflammatory signatures. (A)UMAPembeddings ofmonocytes andDCs colored by subtype. (B)Dot plot of canonical
monocyte and DC marker expression across subtypes. (C) Stacked bar plots of the relative frequency of subtypes present in each patient. (D)Box plots of the
proportionsof eachmyeloid subset across eachdisease condition. Proportions are computed for eachpatient bydividing their numberof cells in eachDC/monocyte
subset by their total number of DCs + monocytes. p-values are computed with Wilcoxon signed-rank test with Holm-Bonferroni adjustment. (E) Double
differential gene expression plot of genes that are differentially expressed between COVID-19 patients compared to healthy controls or differentially expressed
between HIV-1+ patients compared to healthy controls. (F) Dot plot of enriched biological pathways from differentially expressed genes that were found to be
upregulated (right, positive) or downregulated (left, negative) compared tohealthy controls. (G)Heatmapof thenumberof receptor-ligand interactionsbetweeneach
cell type in COVID-19 patients (top) andHIV-1+ patients (bottom). (H)Dot plot of selected receptor-ligand interactions betweenCD4+ T cells andmonocytes/DCs in

(Continued )
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hierarchy, resulting in 32 total labels: 5 B cell subsets, 3 DC
subsets, 4 monocyte subsets, 7 CD4+ T cell subsets, and 8 CD8+

T cell subsets (Supplementary Figures S1A, S1B). We applied the
resulting labels to the reference data. We subsampled
approximately 500 cells from each cell subset from the
reference data to act as the training set and built the model
with a latent dimensionality of 30 and 2 hidden layers using the
“model.SCANVI” method. We then trained the model using
300 passes for semi-supervised training using the “train”
method. We obtained the labels using the “predict” method
and transferred the labels to the main object. Our resulting
model had an overall accuracy of 76% and a median F1 score
of .78, which was higher than the reported accuracy of existing
methods such as LAmDA, scmapcluster, and LDA (Abdelaal
et al., 2019), in addition to a high purity score, which was
computed using the ROGUE package (v1.0) (Liu et al., 2020)
(Supplementary Figures S1C–S1E). The labels were further
merged based on similarity of marker gene expression. Two
clusters (proliferating monocyte and platelet + monocyte)
were found to have high doublet content and were removed,
resulting in 25 final labels.

Consensus annotation

Generation of consensus markers was performed using the
following steps:

1. Compare manual and SingleR labels. If labels are identical, leave
the label as-is.

2. If one label is at higher resolution (i.e. is a subset of the other),
assign the higher resolution label.

3. If the two labels are inconsistent, subset out and pool with
similarly inconsistent labels. Plot gene expression using
markers of either label type. Assign the label with
corresponding marker expression (Consensus 1).

4. Repeat 1-3 using Consensus 1 and scANVI labels.

In the T cell compartment, a significant proportion of CD8+

T cells were originally classified as CD4+ (Figure 1D ‘i, ii’). When
comparing the expression of canonical genes CD8A, CD8B, and
CD4 in this population (Figure 1E ‘i’) to the expression of the main
cluster of CD8+ T cells (Figure 1E ‘ii’), we saw that levels were
markedly similar, leading us to conclude that they are indeed CD8+

T cells. Similarly, we used expressions ofMZ4A1 (a canonical B cell
marker), MZB1, and CD38 (canonical plasmablast markers,
Figure 1E ‘iii, iv’) to confirm that the population indicated in
Figure 1E ‘iii’ are plasmablasts instead of B cells, and the expression
of CD3G, CD8A, and NCAM1 (a canonical NK cell marker,
Figure 1E ‘v, vi’) to confirm that the population indicated in
Figure 1E ‘v’ are unconventional T cells instead of NK cells.

Cell type composition comparison

We computed frequencies of each cell type for each patient and
performed Wilcoxon signed-rank tests (with Holm-Bonferroni
adjustment for tests with multiple comparisons) to find
significantly different compositions between pairs of patient types
(HIV, COVID-19, and healthy). For broad cell types, frequencies are
computed as a fraction of total PBMCs (i.e. Figure 2D). For lineage-
specific cell types, frequencies are computed as a fraction of that
specific lineage (e.g. Figures 3D, 4D, 5D).

Cluster purity assessment

We utilized the ROGUE package (Liu et al., 2020) (v1.0) to
assess purity of clusters determined by consensus labels. We
calculated the expression entropy of each gene using the “SE_
fun” method with “span” = 1.0. We calculated the ROGUE value
of each consensus label across each patient using the
“CalculateRogue” function with “platform” = “UMI”.

Differential gene expression analysis and
gene set enrichment analysis (GSEA)

To compare the relative similarities and differences of HIV-1
and COVID-19 gene expression, we performed differential gene
expression analysis for either disease with respect to healthy
controls. Differentially expressed genes were determined using a
Wilcoxon Rank Sum test with Seurat’s “FindMarkers” function with
the parameters “logfc.threshold” = 0 and “min.pct” = .1. p values
were adjusted based on Bonferroni correction. We denoted
differentially expressed genes (DEGs) with average log-2-fold
change greater than 1 or less than −1 as differentially
upregulated or downregulated, respectively. We performed GSEA
on DEGs using the clusterProfiler package (v3.18.1) (Yu et al., 2012)
with the “GSEA” function using default parameters using pathways
from the MSigDB database (Subramanian et al., 2005).

B cell chain analysis

We determined the frequency of heavy chain/light chain
combinations using a method adopted from (Melms et al., 2021).
We filtered B cells and plasmablasts to only the cells that expressed
both heavy chain (IGVH) and light chain (IGVL) genes. These
consisted of genes beginning with IGHG, IGHM, IGHA, or IGHE
for heavy chain genes, and IGLV or IGKV for light chain genes. We
counted the number of mRNA transcripts for each IGVH and each
IGVL gene expressed on a per-cell basis, then assigned the most
highly expressed IGVH and IGVL genes to be that cell’s IGVH-

FIGURE 3 (Continued)
COVID-19 patients (left) versus HIV-1+ patients (right). Color of each dot corresponds to the inverse log of the p-value of the interaction. Size of the
dot corresponds to the number of patients the interaction was found to be significant in. (I) Dot plot of selected receptor-ligand interactions between
CD8+ T cells and monocytes/DCs in COVID-19 patients (left) versus HIV-1+ patients (right). Color of each dot corresponds to the inverse log of the
p-value of the interaction. Size of the dot corresponds to the number of patients for which the interaction was found to be significant.
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FIGURE 4
B cells in COVID-19 show more robust plasmablast response and antibody diversity relative to HIV-1. (A) UMAP embeddings of B cells colored by
subtype. (B) Dot plot of canonical B cell marker expression across subtypes. (C) Stacked bar plots of the relative frequency of subtypes present in each
patient. (D) Box plots of the proportions of B cell and plasmablast subsets across each disease condition. Proportions are computed for each patient by
dividing their number of cells in each B cell/plasmablast subset by their total number of B cells + plasmablasts. p-values are computedwithWilcoxon
signed-rank test with Holm-Bonferroni adjustment. (E) Double differential gene expression plot of genes that are differentially expressed between
COVID-19 patients compared to healthy controls or differentially expressed between HIV-1+ patients compared to healthy controls. (F) Dot plot of
enriched biological pathways from differentially expressed genes that were found to be upregulated (right, positive) or downregulated (left, negative)
compared to healthy controls. (G) Heatmap of top 20 light chain (Y-axis) and heavy chain (X-axis) combinations found in HIV-1+ and COVID-19 patients.
(H) Heatmap indicating the light chain/heavy chain combinations that are either unique to HIV-1+ (light blue), COVID-19 (red), or shared across the two
diseases (dark blue).
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FIGURE 5
T cells in COVID-19 and HIV-1 show varied IFN-I and activation signatures. (A) UMAP embeddings of T cells colored by subtype. (B) Dot plot of
canonical T cell marker expression across subtypes. (C) Stacked bar plots of the relative frequency of subtypes present in each patient. (D) Figure 5D: Box
plots of the proportions of each T/NK cell subset across each disease condition. Proportions are computed for each patient by dividing their number of
cells in each T/NK subset by their total number of T + NK cells. p-values are computed with Wilcoxon signed-rank test with Holm-Bonferroni
adjustment. (E) Dot plots of the key genes differentially upregulated (top) or downregulated (bottom) compared to healthy controls. (F) Dot plot of
enriched biological pathways from differentially expressed genes that were found to be upregulated (top) or downregulated (bottom) compared to
healthy controls.
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IGVL pairing. We categorized each combination as disease-specific
if at least 1 cell expressed that combination in a given patient and
shared if it was found in a patient from both diseases.

Receptor-ligand analysis

To infer the putative receptor-ligand interactions between pairs
of cell types, we utilized CellPhoneDB (Efremova et al., 2020). We
first normalized raw count matrices to counts per 10,000 for each
patient. We then performed CellphoneDB separately for each
patient using the statistical method and default parameters, while
supplying labels as the metadata for the 10 broad cell types. This was
done to maintain biological accuracy, as feasible ligand-receptor
interactions are only meaningful when measured within a given
patient. We filtered out all ligand-receptor pairs with negative
values, then merged interactions from patients of the same
disease, treating each ligand-receptor/cell type combination as a
unique interaction while preserving directionality (i.e. monocyte-
NK is unique from NK-monocyte). This was done to capture the full
spectrum of possible interactions across cell types. We averaged
expression values and p-values for each interaction across patients.
We repeated this process for all 25 consensus labels.

IFN-I correlation analysis

We first compiled genes belonging to MSigDB pathways
including the term “Type-I Interferon Signaling” into an IFN-I
gene list. We identified DEGs between HIV-1+ and COVID-19
patients using the previously mentioned parameters and filtered
them to keep only IFN-I related genes. We scored each gene module
using the Seurat function “AddModuleScore”. To perform
correlation analysis, we first used the SuperCell package
(Okhotnikov et al., 2016) to group cells from each batch into
supercells of 100 cells each using 5 K-Nearest-Neighbors and
2,000 variable genes and combined the resulting gene expression
matrices from common diseases together. We then ran the “bicor”
function from the WGCNA package (v1.70) (Langfelder and
Horvath, 2008) on each gene belonging to the COVID-19 IFN-I
module with each gene present in the COVID-19 supercell matrix,
and extracted the top correlated genes (>.65). This was repeated for
the HIV-1 IFN-I module and supercell matrix. We then performed
GSEA enrichment on each set of top correlated genes.

Results

Consensus clustering approach corrects cell
type labels and reveals additional cell
subsets

A study comparing gene expression at the single-cell level
following SARS-CoV-2 and HIV-1 infections has not been
previously performed. Therefore, our analysis required that we
integrate scRNA-seq data from different sources. Attempts to
integrate scRNA-seq data from different sources (for example, to
compare PBMCs) have mainly utilized manual supervision based on

marker gene expression to assign cellular labels (Liu N. et al., 2021).
These labels can be subjective and difficult to compare across
different studies due to differences in label granularity and choice
of markers (Liao et al., 2020; Wen et al., 2020). Here, we developed a
reliable and accurate integration strategy to transfer labels from
study one to another for cross-study analyses.

We aggregated publicly available scRNA-seq data from PBMCs
derived from 7 severe COVID-19 (20, 829 cells) (Wilk et al., 2020),
10 HIV-1+ (70, 203 cells) (Kazer et al., 2020; Wang et al., 2020), and
3 healthy patients (20,534 cells) (10xGenomics, 2020) (Tables 1, 2, 3;
Figure 1A, left). Our integration strategy is based on the
combination of three different annotation approaches, namely
manual annotation, correlation-based label transfer and deep-
learning-based classification (Aran et al., 2019; Xu et al., 2021).
We performed cell annotation using each of the three methods
independently, and then integrated the three sets of labels to produce
one final set of consensus labels (Figure 1A; Supplementary Figure
S1A, S1B; see Materials and Methods). Our deep learning
annotation resulted in high accuracy and purity across cell types
(Figure 1B; Supplementary Figure S1C–S1E).

Our integration strategy resulted in 25 total cell types, consisting
of 5 B cell subsets, 2 dendritic cell (DC) subsets, 2 monocyte subsets,
7 CD4+ T cell subsets, 8 CD8+ T cell subsets, and 1 natural killer (NK)
cell subset (Figure 1C, bottom). For reference, 15 cell types had been
identified in the COVID-19 scRNA-seq data source publication (the
most detailed of the source publications) (Wilk et al., 2020),
comprised of 4 B cell subsets, 2 DC subsets, 2 monocyte subsets,
2 CD4+ T cell subsets, 4 CD8+ T cell subsets, and 1 NK cell subset
(Figure 1C, top). In the COVID-19 scRNA-seq data, we identified
subsets amongst CD4+ T cells, CD8+ T cells, and unconventional
T cells which were previously unclassified by the source publication:
effector memory CD4+ T cells, cytotoxic CD4+ T cells, IFN-I+ CD4+

T cells (which express high levels of ISGs), regulatory CD4+ T cells
(Tregs), naïve CD8+ T cells, precursor exhausted CD8+ T cells, natural
killer T (NKT) cells, mucosal-associated invariant T (MAIT) cells, and
apoptotic T cells. Using a confusion matrix, we identified
subpopulations with disagreeing labels (between original and
consensus) (Figure 1D). We then compared gene expression in
these subpopulations, using the expression of canonical genes to
confirm that our updated consensus labels were correct. This
method corrected cells originally labeled as CD4+ T cells, B cells,
and NK cells to their accurate labels: CD8+ T cells, plasmablasts, and
unconventional T cells, respectively (Figure 1E; see Materials and
Methods). Our labels also consistently displayed high cluster purity
(>.75) according to their ROGUE score (Liu et al., 2020)
(Supplementary Figure S1D). Overall, our consensus clustering
approach allowed us to generate high-resolution labels with
improved biological accuracy.

Integrated immune landscape of PBMCs
from COVID-19, HIV-1+ and healthy patients

We integrated all the single-cell data (7 COVID-19, 9 HIV-1+,
and 3 healthy controls) into a single UMAP, where the 25 consensus
clusters grouped into 10 major cell types (Figure 2A). The balanced
distribution of cells across the three conditions demonstrated the
successful integration of the data (Figure 2B, top). Of the four major
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cell clusters present in the UMAP, the top left cluster comprises
CD4+ and CD8+ T cells, innate-like T cells (lymphocytes that express
both the T-cell marker CD3G and NK-cell markers GNLY and
NKG7), NK cells, and proliferating cells; the central and bottom
clusters comprise primarily plasmablasts and B cells; and the
rightmost cluster consists of monocytes and dendritic cells (DCs)
(Figure 2B, bottom). Given that scRNA-seq results can vary due to
confounding factors across batches, we explicitly regressed out any
patient-specific effects to provide a more accurate representation of
the distribution of cell types across patients (Figure 2C).

COVID-19 and HIV-1+ patients had elevated frequencies of
CD8+ T cells compared to healthy controls (Figure 2D;
Supplementary Figure S2), indicating the recruitment of
inflammatory cells with both viral infections. However, DEG
analysis, comparing healthy controls to patients with each
disease, revealed that HIV-1+ patients uniquely exhibited
substantial upregulation of IL8, CCL3, and NFKBIA, which have
been implicated in the antiviral response and inflammation
(Figure 2E), while patients with COVID-19 showed upregulation
of OAS2, XAF1, and MX1, which are part of the type-I interferon
(IFN-I) signaling pathway (Figure 2E; Supplementary Figure S3A).
OAS proteins function to degrade double-stranded RNA viral
intermediates during coronavirus replication (Choi et al., 2015).
A recent genome-wide association study (GWAS) reported a
significant association between genetic variants in human OAS
genes and COVID-19 severity (Pairo-Castineira et al., 2021).
Other IFN-associated genes, such as ISG15, IFI27, and IFITM3,
were commonly upregulated (Supplementary Figure S3B). Patients
with COVID-19 showed downregulation of genes involved in the
AP-1 transcription factor pathway (including JUN, JUNB, JUND,
and FOSB) as well as HLA genes (including HLA-E, HLA-DRB1,
HLA-DRA, and HLA-DPB1) (Supplementary Figure S3C). We
found a shared downregulation of LTB, which encodes
lymphotoxin-B, an inflammatory protein that plays a role in
lymphoid tissue development (Lu and Browning, 2014) and
KLF2, which regulates the differentiation and function of
immune cells (Jha and Das, 2017) (Figure 2E).

Gene set enrichment analysis (GSEA) on each set of DEGs
revealed high enrichment for interferon-alpha/beta (IFN-α/β)
signaling and interferon-gamma (IFN-γ) signaling in both
COVID-19 and HIV-1+ PBMCs (Figure 2F). We also
identified disease-specific enrichment of other signaling
pathways. Most notably, PBMCs from COVID-19 patients
were enriched in JAK-STAT and IL-4 signaling, which has
been known to drive inflammation following infection (Lu
et al., 2011; de la Rica et al., 2020; Satarker et al., 2021).
PBMCs from COVID-19 patients also showed upregulated
IL-10 production, an anti-inflammatory cytokine that is
correlated with disease severity (Islam et al., 2021). In
contrast, cells from HIV-1+ patients were enriched in
CD40 signaling and CD4+ T cell activation, as well as
apoptosis. We also found a shared downregulation of
ribosome and oxidative phosphorylation (OXPHOS)
pathways, which indicates that both infections cause a shift
in metabolic function, potentially due to viral hijacking of
cellular metabolic machinery or host responses. In
conclusion, while our analysis of the immune landscape in
COVID-19 and HIV-1 reveals a common theme of

inflammation, IFN-I signaling, and metabolic
reprogramming, even at the broadest level we begin to see
differential enrichment of specific genes and biological
pathways.

Innate-induced inflammation is driven by
different genes and cell-cell interactions in
COVID-19 and HIV-1

We surmised that cell-type-specific analyses, based on the four
main clusters in the UMAP (Figure 2A), could shed further light on
the potential virus-specific immune specific pathways emerging in
our results. Since a strong inflammatory monocyte response is a
hallmark of both diseases, we first sought to closely examine the
transcriptomic differences between DCs and monocytes in COVID-
19 and HIV-1+ patients (rightmost cluster in UMAP, Figure 2A).
We subsetted out only the DCs and monocytes and performed
integration (removing patient-specific features, etc., as above)
followed by clustering analysis based on gene expression. We
identified 4 total clusters (Figure 3A): conventional dendritic cells
(cDCs, CD1Chigh FCER1Ahigh CLEC10Ahigh) (Collin et al., 2013),
plasmacytoid dendritic cells (pDCs, CLEC4Chigh IL3RAhigh TCF4high)
(Collin et al., 2013), classical monocytes (CD14high FCGR3Alow)
(Kapellos et al., 2019), and non-classical monocytes (CD14low

FCGR3Ahigh) (Kapellos et al., 2019) (Figure 3B). We found that
HIV-1+ patients exhibited significantly higher frequencies of non-
classical monocytes compared to COVID-19 patients and healthy
donors (adjusted p-values = 0.01 and 0.036, respectively) (Figures
3C, D), which have been shown to massively expand in the
peripheral blood in response to immune activation by HIV-1
infection (Campbell et al., 2014). We did not find any significant
sex-driven differences in any subset (Supplementary Figure S4A).
While we did not find a significant difference in non-classical
monocyte frequencies between acute and chronically-infected
HIV-1+ individuals (adjusted p-value = 0.055) (Supplementary
Figure S4B), male HIV-1+ individuals were found to have a
higher frequency compared to female HIV-1+ individuals
(adjusted p-value = 0.0159) (Supplementary Figure S4C). DEG
analysis revealed a common inflammatory phenotype across both
HIV-1 and COVID-19 which included known IFN-I signaling genes
such as IFITM3 and IFI27 (Figures 3E, F). However, we once again
found that most contributing genes were virus specific. Monocytes
from HIV-1+ patients express high levels of genes associated with
proinflammatory cytokines including CXCL3, CCL3, and IL1B, all of
which play a role in the acute viral response and immune cell
recruitment (Figure 3E; Supplementary Figure S4D). Monocytes
from patients with COVID-19 express high levels of genes
associated with inflammation including IL17RA, JAK-STAT-
associated gene STAT6, and inflammatory protein-encoding
genes TNFRSF1B and ANXA2 (Supplementary Figure S4D).
Interestingly, while cDCs in HIV-1+ patients did show a slight
upregulation of SAMHD1, which encodes an antiretroviral
protein reported to be effective in inhibiting early HIV-1
infection, SAMHD1 gene expression was much more upregulated
in cDCs from patients with COVID-19.

We utilized external scRNA-seq PBMC data to validate our
findings, hereinafter referred to as the “validation dataset”. The
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validation dataset consisted of a COVID-19 dataset (Liu C. et al.,
2021) of patients with severe COVID-19 (n = 5), critical COVID-19
(n = 25), and healthy donors (n = 16); in addition to a HIV dataset
(Farhadian et al., 2022) of HIV+ individuals (n = 6) and healthy
donors (n = 4). We first performed DEG analysis between COVID-
19 and HIV-1monocytes, assigning DEGs into two separate disease-
specific monocyte signatures. We then performed GSEA on DEGs
found between COVID-19 and HIV-1 monocytes in the validation
dataset using the monocyte signatures, which revealed a significant
enrichment (adjusted p-values = 2.87e-12 and 0.0480)
(Supplementary Figures S4E, F), illustrating that DEGs found in
our monocyte analysis were also enriched in the validation dataset.

GSEA analysis of monocyte DEGs revealed shared upregulation
of inflammatory pathways such as IFN-I response and IFN-α/β
signaling (Figure 3F). However, we also found a greater diversity in
the inflammatory response associated with COVID-19 compared to
HIV-1. Enrichment of IL-20, IL-2, IL-6, KIT, and JAK-STAT
signaling pathways was unique to monocytes and DCs from
patients with COVID-19, suggesting that innate immune cells
may be much more active and cytotoxic in COVID-19 compared
to in HIV-1 (Figure 3F). Several of these cytokines, including IL-6,
have been found to be overexpressed and positively correlated with
disease severity in COVID-19 patients (Costela-Ruiz et al., 2020;
Weisberg et al., 2020; Jones and Hunter, 2021; Ma et al., 2021; Rubin
et al., 2021).

Given the different functional profiles of DCs and monocytes
between the two viral infections, and the frequent interactions of
DCs and monocytes with the adaptive immune system as antigen
presenting cells (APCs), we surmised that these cells may also play a
divergent role in mediating the adaptive immune response. We
applied CellphoneDB (Efremova et al., 2020) to determine putative
receptor-ligand interactions based on gene co-expression patterns
on pairs of cell types (Figure 3G). We found that DC-T cell and
monocyte-T cell interactions were noticeably enriched in COVID-
19 (Figure 3G). Further, cDCs from patients with COVID-19 had
more frequent interactions with monocytes, NK cells, and T cells,
while cDCs from HIV-1+ patients had more frequent interactions
with plasmablasts. We next took a closer look at the CD4+ and CD8+

T cell receptor-ligand interactions with monocytes and DCs across
the two infections (Figures 3H, I). We found a large number of
costimulatory and inflammatory interactions shared across cell
types and diseases, notably CD28−CD86 (which provides a
critical costimulatory signal for T cells) (Hui et al., 2017), CD6-
ALCAM (which drives immune synapse formation and activation,
and migration in CD4+ T cells) (Ampudia et al., 2020), and
TNFRSF1B-GRN (which drives apoptosis and inflammation)
(Ward-Kavanagh et al., 2016). We also found common
enrichment of the inhibitory interaction CD99-PILRA (which
curbs NK-like cytotoxicity). Migratory inhibitory factor (MIF),
which promotes inflammation by elevating cell recruitment
(Grieb et al., 2010), is known to be present in high
concentrations in the peripheral blood of HIV-1+ patients (Regis
et al., 2010). We found that the MIF-CD74 interaction between
cDCs/monocytes and CD4+/CD8+ T cells was unique and highly
prevalent across HIV-1+ patients (Figures 3H, I). We also found the
IFNγ- IFNγ receptor interaction between cDCs/monocytes and
CD8+ T cells to be uniquely upregulated in HIV-1+ patients. On
the other hand, the inflammatory NOTCH2-IL24 interaction which

induces STAT1 and STAT3 to regulate cell proliferation and survival
(Ouyang and O’Garra, 2019) and the inhibitory interactions
CTLA4-CD86 and HAVCR2-LGALS9 were unique to patients
with COVID-19. Altogether, this analysis indicates that although
innate-induced inflammation is present in both diseases, it is likely
driven by very different genes and cell-cell interactions.

COVID-19 exhibits a stronger plasmablast
and antibody response compared to HIV-1

B cells are the primary effectors of the humoral antiviral immune
response (Upasani et al., 2021). To investigate if B cells from
COVID-19 and HIV-1+ patients exhibited distinct transcriptional
signatures, we performed integration and clustering on B cell and
plasmablast populations (central and bottom clusters in UMAP,
Figure 2A), identified by upregulation of CD19/MS4A1 and CD38
respectively (Figure 4A). We found 5 total subpopulations: naïve
B cells (TCL1Ahigh IGHDhigh CD27low), memory B cells (TCLA1low

CD27high AIM2high), TNFRSF1B+ B cells (TNFRSF1Bhigh CD84high),
plasmablasts (CD38highXBP1high), and proliferating plasmablasts
(CD38high MKI67high TOP2Ahigh) (Figure 4B) (Sanz et al., 2019).
Consistent with prior COVID-19 studies that show extensive
plasmablast expansion in infected patients (Bernardes et al., 2020;
De Biasi et al., 2020; Kuri-Cervantes et al., 2020), we found that
patients with COVID-19 have significantly higher proportions of
plasmablasts and proliferating plasmablasts (adjusted p-values =
0.041 and 0.033, respectively), and significantly lower proportions of
naïve and memory B cells (adjusted p-values = 0.05 and 0.041,
respectively), compared to healthy controls (Figures 4C, D). This
was also corroborated in the validation dataset, as critical COVID-19
patients had a significant (adjusted p-value = 0.007) increase in
plasmablasts compared to healthy donors (Supplementary Figure
S5A). We did not find any sex-driven differences in any subset
(Supplementary Figure S5B). HIV-1+ patients also had increased
proportions of plasmablast and proliferating plasmablast subsets
compared to healthy controls, but these responses were more
moderate. While we did find a significant (adjusted p-value =
0.042) increase in plasmablast frequency in acutely-infected HIV-
1+ individuals compared to healthy donors (Supplementary Figure
S5C), we found a non-significant (adjusted p-value = 0.114)
difference compared to chronically-infected HIV-1+ individuals,
which may suggest that plasmablasts expand in response to acute
HIV-1 infection and persist throughout chronic infection. In HIV-
1+ patients, we found an enrichment of TNFRSF1B+ B cells
(Figure 4D), a subset of effector memory-like B cells with
intermediate expression levels of memory B-cell marker genes
(intermediate expression of AIM2 and CD27) and upregulation
of TNFRSF1B and CD84. CD84 is associated with B cell
proliferation, activation and signal transduction (Tangye et al.,
2002), while TNFRSF1B encodes for a TNF-receptor protein
known to induce TNF-mediated apoptosis. Plasmablasts from
patients with COVID-19 expressed higher levels of XBP1 and
SLAMF7 than plasmablasts from HIV-1+ patients, suggesting
greater maturation (Supplementary Figure S5D).

Differential gene expression analysis in B cells and plasmablasts
between patients with COVID-19 and HIV-1, relative to healthy
controls (Figure 4E) revealed a common upregulation of SIK1, a
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FIGURE 6
IFN-I signaling is correlated with divergent biological functions in COVID-19 versus HIV-1. (A) Network plot of genes related to IFN-I signaling that
are differentially upregulated in COVID-19 (Right), HIV-1 (Left), or jointly upregulated compared to healthy controls. Genes are colored based on Log-2-
fold change in expression in HIV-1+ versus COVID-19 patients. (B) Box plots of the average expression of HIV-1, COVID, and shared IFN-I module scores
for each condition. p-values are computedwithWilcoxon signed-rank test with Holm-Bonferroni adjustment. (C)Normalized gene expression plots
of IFN-I genes in COVID-19 (top) and HIV-1 (bottom). (D) Network plot of key pathways correlated with IFN-I signaling in COVID-19 (left) and HIV-1+

patients (right). Size of each center corresponds to the number of genes present in the pathway. Genes are colored based on Log-2-fold change in
expression in HIV-1+ versus COVID-19 patients. (E) Box plots of the average expression of CD8+ T cell actin polymerization module scores for each
disease condition (left). Box plots of the average expression of CD8+ effector, T/NK proliferating, and CD8+ Tex precursor scores for each disease

(Continued )
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gene that regulates cell cycling and plays a role in plasmablast
maturation. We also found shared upregulation of genes involved in
apoptosis and B-cell activation including TNFAIP3, XAF1, and
LCP1, as well as ADAR, which has been implicated in viral RNA
replication (Zhu et al., 2020). Interestingly, we found shared
downregulation of several conventional B-cell markers including
CD24, CD37, CD40, and CD79a, which play key roles in BCR
signaling and B-cell regulation. We also found downregulation of
FCER2, FCMR, LTB, and TNFRSF13, which help regulate cell
differentiation and maintain cellular homeostasis. Taken together,
these results suggest that B cells in both COVID and HIV-1 are
actively responding to viral infection, and as a result they exhibit a
drastic shift away from homeostasis.

We also observed COVID-19-specific enrichment of signaling
genes such as MAP3K1 (Figure 4E), which helps activate JNK and
ERK pathways, and STAT6, which is involved in IL-4 and IL-13
signaling (de la Rica et al., 2020; Goel et al., 2021). We found
upregulation of activation markers CD80 and CD40 in HIV-1 B cells
(Supplementary Figure S5E). Apoptosis-associated pathways were
enriched in both COVID-19 and HIV-1 B cells and plasmablasts
(Figure 4F). Consistent with our cell proportion analysis
(Figure 4C), we found that terms related to plasmablasts were
positively enriched in both COVID-19 and HIV-1, while terms
related to B cells were negatively enriched (Figure 4F). We also
found several important pathways specific to HIV-1:
CD40 signaling, which regulates the activation of the non-
canonical NF-κB and JNK signaling pathways (Hömig-Hölzel
et al., 2008); and TNF-α signaling via NF-κB, suggesting that
NF-κB may play a central role in regulating the humoral
immune response in HIV-1.

Seeking to explore the antibody diversity across the two viral
infections, we mapped the top immunoglobulin light chain (IGVL)
and immunoglobulin heavy chain (IGVH) combinations found in
either COVID-19 or HIV-1 B cells and plasmablasts to determine
the most frequent IGVL-IGVH pairings (Figure 4G). Of the top
combinations, 150 were unique to COVID-19, 29 were unique to
HIV-1, and 110 combinations were shared, suggesting that the
humoral response to produce antibodies is not only stronger in
COVID-19, but also more diverse (Figure 4H). Out of the top
20 IGVH and IGVL combinations, we found IGKV1-39/IGHV2-26
(a COVID-19 specific combination) to be the most frequent
combination, which could offer insight into a potential broadly
neutralizing antibody (bnAb) design.

T cells in patients with COVID-19 and HIV-1
exhibit different IFN-I profiles

Integration and clustering of T-cell and NK cell populations (top
left cluster in UMAP, Figure 2A) uncovered 16 subpopulations in
total (Figures 5A, B). Across the 19 donors, two clusters of effector

CD4+ T cells were present in higher proportions in both COVID-19
and HIV-1+ patients relative to healthy controls, but especially
frequent in COVID-19 patients: IFN-I+ CD4+ T cells, expressing
high levels of IFN-I-stimulated genes ISG15 and IFIT3, as well as
IL7R, all of which are reported to be upregulated by IFNβ in CD4+

T cells (Hoe et al., 2010); and cytotoxic CD4+ T cells, expressing
cytotoxic genes GZMH, GNLY, NKG7, PRF1, and GZMB (Figures
5C, D). Effector CD8+ T cells were also enriched in all patient
samples compared to healthy controls (Figures 5C, D). In contrast,
we found a shared decrease in naïve and central memory CD4+

T cells and naïve CD8+ T cells in both COVID-19 and HIV-1+

patients (Figures 5C, D), suggesting that viral infection is polarizing
both CD4+ and CD8+ T cells toward cytotoxicity programs,
especially following SARS-CoV-2 infection. The NK population
found in our data is CD56dimCD16+ (Figure 5B). We did not find
a CD56brightCD16- population, which is corroborated in the data
source publications.

Gene enrichment analysis further revealed an upregulation of
genes associated with T cell activation and inflammation in COVID-
19 and HIV-1. T-cell activation genes PTPRCAP and CD97 were
consistently upregulated in T cells from both patients with COVID-
19 and HIV-1+ patients. COVID-19 subsets additionally expressed
LCP1, STAT5B, and ILF3 (Figure 5E), which are involved in T-cell
activation and signaling. Although T cells from both diseases express
high levels of genes encoding for inflammatory proteins and
chemokines, COVID-19 subsets expressed high levels of GZMB
and CXC3CR1 (Figure 5E), suggesting increased cytotoxicity and
terminal effector function, while HIV-1 subsets showed
upregulation of CXCR4 and TNFAIP3, which modulate cell
proliferation and initiate inflammatory immune responses,
respectively. We also identified IFN-stimulated, disease-specific
genes; for example, XAF1 is specifically upregulated in COVID-
19 patients while IFITM1 is specifically upregulated in HIV-1+

patients. In addition to its antiviral capability, XAF1 can enhance
IFN-induced apoptosis. To validate these DEGs, we first performed
DEG analysis on COVID-19 and HIV T cells, assigning DEGs into
two separate disease-specific T-cell signatures. We then performed
GSEA on DEGs found between COVID-19 and HIV-1 T cells in the
validation dataset using the T-cell signatures, which revealed a
significant enrichment (adjusted p-values = 3.01e-6 and 0.0110)
(Supplementary Figures S6A, S6B), illustrating that DEGs found in
our T-cell analysis were also enriched in the validation dataset.
Enhanced activation and cytokine signaling, namely IFN-α and IFN-
γ, were common to both COVID-19 and HIV-1 subsets. We found
diverse signaling pathways and activation pathways associated with
COVID-19 subsets, which were enriched in IL2/STAT5, PDGF, and
mTOR signaling (Figure 5F). HIV-1 subsets, in contrast, exhibited a
less terminally differentiated phenotype, and upregulated IFN-β
signaling (Figure 5F).

Altogether, our results revealed a shared activated profile
characterized by a robust IFN-I response in T cells from both

FIGURE 6 (Continued)
condition (right). p-values are computed with Wilcoxon signed-rank test with Holm-Bonferroni adjustment. (F) Box plots of the average expression
of CD8+ T cell TLR-signalingmodule scores for each disease condition (left). Box plots of the average expression of CD8+ effector, CD8+ effectormemory
and CD8+ naive TLR-signaling scores for each disease condition (right). p-values are computed with Wilcoxon signed-rank test with Holm-Bonferroni
adjustment.
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FIGURE 7
Metabolic differences associated with HIV-1 and COVID-19. (A) Box plots of the average expression of the mitophagy signature score in CD8+ and
CD4+ T cells across each disease condition (top), Box plots of the average expression of CD8+ effector, CD4+ IFN-I and CD4+ cytotoxic mitophagy
signature score for each disease condition (bottom). p-values are computed with Wilcoxon signed-rank test with Holm-Bonferroni adjustment. (B) Box
plots of the average expression of the Rho GTPase signature score in CD8+ and CD4+ T cells across each disease condition (top), Box plots of the
average expression of CD8+ effector, CD4+ effector memory, and CD4+ naïve Rho GTPase signature score for each disease condition (bottom). p-values
are computed withWilcoxon signed-rank test with Holm-Bonferroni adjustment. (C) Box plots of the average expression of themTOR score in CD8+ and
CD4+ T cells across each disease condition (top), Box plots of the average expression of CD8+ effector memory, CD4+ IFN-I, and CD4+ cytotoxic mTOR
signature score for each disease condition (bottom). p-values are computed with Wilcoxon signed-rank test with Holm-Bonferroni adjustment. (D) Box

(Continued )
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COVID-19 and HIV-1+ patients, but we once again found distinct
genes that regulate either response. These findings motivated further
investigation into IFN-I signaling as detailed in following sections.

IFN-I response is correlated with distinct
signaling in COVID-19 versus HIV-1

IFN-I signaling plays pleiotropic roles during viral infection,
including stimulation of T-cell survival, proliferation, and memory
formation. Given the consistent observation of IFN-I signatures
across all cell subsets in both COVID-19 and HIV-1, we reasoned
that IFN-I may regulate the distinct immune responses against the
two diseases. Closer examination of specific IFN-I-associated genes
revealed stark disease-specific enrichment, as nearly all IFN-I-
associated genes were differentially upregulated in COVID-19 or
HIV-1 (Figure 6A). We categorized all IFN-I-associated genes into
three IFN-I modules: HIV-1-specific, COVID-19 specific, or shared
(Figure 6B). In HIV-1, monocytes and cDCs exhibited the highest
associated IFN-I score, suggesting that they may be primarily
responsible in driving the IFN-I response (Supplementary Figure
S7A). We examined the cell type-specific expression of IFN-I

associated genes and found that the effector molecule CCL5 was
jointly expressed in CD8+ T cells in both diseases. In addition,
IFI30 was specifically upregulated in monocytes during HIV-1
infection, whereas SLAMF7 and IFIT3 were upregulated in
plasmablasts and T cells from COVID-19 patients respectively
(Figure 6C). In the validation dataset, we found many HIV-1-
specific IFN-I genes (such as IFI30, IRF9, ISG15, and IFITM2) to
be upregulated by HIV-1+ individuals (Supplementary Figure S7B),
as well as many COVID-19-specific IFN-I genes (such as IRF4,MX1,
IFNAR1, and OAS3) to be upregulated by COVID-19 patients
(Supplementary Figure S47C)

Using bicorrelation analysis on disease-specific IFN-I genes, we
found a much higher number of IFN-I-correlated genes and
enriched pathways in patients with COVID-19 compared to
HIV-1 (main pathways shown in Figure 6D). Notably, COVID-
19 IFN-I-correlated genes showed enrichment for MAPK signaling
and interleukin signaling, which have been implicated in
inflammation, thrombosis, and pulmonary injury and cytokine
storms, respectively (Figure 6D, left). Proteasomal genes were
also enriched among the IFN-I-correlated genes in COVID-19
patients; the ubiquitin-proteasome system (UPS) facilitates the
production of viral proteins (including in SARS-CoV), and has

FIGURE 8
Summary of the major cellular shifts in COVID-19 compared to HIV-1.

FIGURE 7 (Continued)
plots of the average expression of the OXPHOS signature score in CD8+ and CD4+ T cells across each disease condition (top), Box plots of the
average expression of CD8+ effector, CD4+ IFN-I, and CD4+ cytotoxic OXPHOS signature score for each disease condition (bottom). p-values are
computed with Wilcoxon signed-rank test with Holm-Bonferroni adjustment. (E) Box plots of the average expression of the ribosome signature score in
CD8+ and CD4+ T cells across each disease condition (top), Box plots of the average expression of CD8+ Tex precursor, CD4+ effector memory, and
CD4+ IFN-I ribosome signature score for each disease condition (bottom). p-values are computed withWilcoxon signed-rank test with Holm-Bonferroni
adjustment.
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been proposed as a target for COVID-19 treatment (Longhitano
et al., 2020).

We also found an enrichment of the Rho GTPase metabolic
pathway in COVID-19 patients (Figure 6D, left). GTPase activation
contributes to immune cell activation and migration, as well as
coagulation, often resulting in severe lung injury (Abedi et al.,
2020a). Rho GTPases regulate a diversity of cellular processes,
including cell migration and cell cycling, as well as modulation of
cytoskeletal rearrangements (Hodge and Ridley, 2016). The overlap
between Rho GTPase and actin cytoskeleton genes in Figure 6D
confirms this relationship. The actin cytoskeleton signature was
significantly (adjusted p-values = 0.033 and 0.000309) upregulated
in COVID-19 patients compared to HIV-1+ individuals and healthy
donors (Figure 6E, left), and was especially pronounced in effector
CD8 T cells, proliferating T and NK cells, and precursor exhausted
CD8 T cells (Figure 6E, right and Supplementary Figure S8A). In
contrast, pathways correlated with IFN-I signaling in HIV-1+

patients were all related to immune activation, including TLR
signaling and CD28 co-stimulation (Figure 6D). Persistent viral
antigen presentation in HIV-1+ patients can induce chronic
inflammation and constitutive TLR signaling, partly via LPS
translocation which can lead to disease progression (Brenchley
et al., 2006; Meier and Altfeld, 2007). The TLR signaling
signature was significantly (adjusted p-value 0.000309)
upregulated in HIV + individuals compared to COVID-19
patients (Figure 6F, left), and was especially pronounced in
effector, effector memory, and naïve CD8 T cells (Figure 6F,
right and Supplementary Figure S8B). Overall, our analysis
demonstrates the differential IFN-I signaling following SARS-
CoV-2 and HIV-1 infections and suggests that IFN-I signaling
activates a greater diversity of immune cell functions in COVID-
19 compared to HIV-1 (Lee and Shin, 2020; Schreiber, 2020).

Metabolic differences between T cells in
COVID-19 and HIV-1

The strong correlation of COVID-19 IFN-I signaling with Rho
GTPase signaling suggested that enhanced IFN-I signaling in T cells
could give rise to divergent metabolic profiles. Supporting this, two
recent studies demonstrated that cellular metabolism is intimately
linked to Rho GTPase activation and actin cytoskeleton
organizations (Hu et al., 2016; Wu et al., 2021). Our analysis also
consistently revealed pathways associated with apoptosis and
impaired metabolic function (Figure 5F). We hypothesized that
SARS-CoV-2 and HIV-1 infections may also induce distinct
metabolic signatures in immune cells. We built gene modules
from the differentially enriched metabolism-associated pathways
(Figure 5F) and scored their expression in T cells. In addition to
uncovering consistent metabolic shifts in T cells overall, we also
found significant shifts in cytotoxic T cell subsets. We found that
T cells in COVID-19 patients exhibited significantly lower
mitophagy (Figure 7A, top), a process that maintains cellular
homeostasis by removing damaged or dysfunctional
mitochondria (Chen et al., 2020a) compared to immune cells in
HIV-1+ patients and healthy controls. This difference was especially
pronounced in more cytotoxic subsets (Figure 7A, bottom). We
confirmed the high expression of Rho GTPase activity in COVID-

19 T cells (Figure 7B, top), a trend that was consistent with both
effector CD8+ T cells and effector memory CD4+ T cells (Figure 7B,
bottom). We found that T cells in patients with COVID-19 showed
increased mTOR pathway activity, while T cells in HIV-1+ patients
showed downregulated mTOR activity, compared to healthy
controls, (Figure 7C, top). The mTOR pathway regulates cell
proliferation and survival, as well as CD4+ T cell and B cell
responses (Ye et al., 2017; Akbay et al., 2020). HIV-1 infection
has been shown to interfere with mTOR signaling, which usually
results in diminished mTOR expression levels in immune cells,
particularly in CD4+ T cells (Akbay et al., 2020). Cytotoxic CD4+

T cells from HIV-1+ patients had significantly downregulated
mTOR expression types (Figure 7C, bottom). These results
indicate that distinct IFN-I-signaling pathways give rise to
different virus-specific metabolic signatures in immune cells. In
the validation dataset, we found consistent metabolic trends in
T cells; namely, we found that COVID-19 T cells downregulate
key mitophagy genes FUNDC1, PINK1, and CSNK2B
(Supplementary Figure S9A) and upregulate key Rho GTPase
genes RHOA, RHOBTB1, and ARAP3 (Supplementary Figure
S9B) as well as MTOR (Supplementary Figure S9C) compared to
HIV-1+ individuals. Finally, we found shared HIV-1 and COVID-
19-associated downregulation of genes associated with ATP
biosynthesis, OXPHOS, and ribosome assembly, indicating a
common major metabolic shift in T cells from both diseases
(Figure 7D, E).

Discussion

Here, we sought to identify disease-specific viral pathways in two
inflammatory diseases with different pathophysiologies. We
designed a consensus annotation method to generate a high-
quality unified cellular atlas of the immune landscape of PBMCs
from COVID-19 and HIV-1+ patients. Our atlas highlights shared
and contrasting signatures of humoral immune responses,
inflammation, IFN-I signaling, and metabolism, demonstrating
how these processes are conserved or divergent between viruses
with distinct pathologies (summary in Figure 8). In addition to
shedding light on the divergence of disease-specific viral clearance
pathways, our strategy for integrating different sets of scRNA-seq
data (from different tissues, organs, or diseases) will yield a valuable
annotation resource for diseases less well studied at the single cell
level.

We found a consistent inflammatory signature in innate
immune cells, highlighted by IFN-I and cytokine-mediated
signaling, across patients with COVID-19 and HIV-1 (Bieberich
et al., 2021; Hasan et al., 2021; Liu N. et al., 2021). This is
corroborated by conclusions from Kazer et al. and Wilk et al.;
the former reported the enrichment of CXCL10+ inflammatory
monocytes in HIV-1+ individuals, while the latter reported the
enrichment of IFN-I-expressing inflammatory monocytes in
COVID-19 patients. Further analysis of the types and frequencies
of cellular communications among immune cells revealed the
disease-specific inflammatory and cytotoxic molecules that drive
the innate immune response in either disease. We hypothesize that
excess inflammation induced by SARS-CoV-2 infection may be
driving inhibitory and apoptotic programs. Namely, we found an
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enrichment of two COVID-19-unique inhibitory interactions
between APCs and CD8+ T cells, CTLA4/CD86 and HAVCR2/
LGALS9, which may be out of necessity to curb the heightened
inflammation present in severe COVID-19 (Figure 3I). We also
found the specific downregulation of NKG7 and NEAT1 in innate-
like T cells and NKs in COVID-19 patients. (Figure 5E). SinceNKG7
is important for cytotoxic degranulation and downstream
inflammation and NEAT1 is an activator of the
NLRP3 inflammasome, their downregulation may indicate an
induced shift away from an inflammatory state in COVID-19
patients (Chen et al., 2019; Malarkannan, 2020). The enrichment
of apoptotic T cells in both diseases may be a consequence of
heightened inflammation. Our findings are consistent with previous
studies demonstrating that HIV-1 infection leads to apoptosis of
uninfected bystander cells (Garg et al., 2012) as well as the
observation that severe COVID-19 patients frequently experience
lymphopenia (Chen et al., 2020b). Interestingly, we found a
significant (adjusted p-value = 0.003) increase in Tregs in
COVID-19 patients compared to HIV-1+ individuals. FOXP3+

Tregs have been reported to be expanded in severe COVID-19
infection (Chen X. et al., 2020) andmay contribute to poor outcomes
by suppressing antiviral T cell responses while also secreting
proinflammatory cytokines (Galván-Peña et al., 2021). On the
flip side, Tregs are susceptible to HIV infection, and decrease in
quantity over the course of infection (Eggena et al., 2005; Chevalier
and Weiss, 2013).

IFN-I plays a critical role in priming innate and adaptive
immune responses during both SARS-CoV-2 and HIV-1

infection, as well as limiting viral replication and promoting
effector cell function (Sugawara et al., 2019; Schreiber, 2020).
IFN-I signaling has been characterized as generally beneficial in
both acute SARS-COV-2 and HIV-I infection (Sandler et al., 2014;
Abraham et al., 2016; Lavender et al., 2016; Utay and Douek, 2016;
Wang et al., 2017; Lee et al., 2020; Galani et al., 2021). As a result,
IFN-I treatment has been used to treat both infections, with
moderate success (Lavender et al., 2016; Banday et al., 2022).
However, during the late stages of chronic viral infection, IFN-I
signaling shifts toward a pathogenic role by contributing to systemic
inflammation (Teijaro et al., 2013; Wilson et al., 2013; Utay and
Douek, 2016; Soper et al., 2017). The precise role of IFN-I at the
single-cell level in COVID-19 (which results in an acutely controlled
infection) and HIV-1 (which results in a chronic infection) is still
unclear.

While IFN-I signaling was upregulated in both COVID-19 and
HIV-1+ patients relative to healthy controls, our analysis suggests a
more polyfunctional role for IFN-I in COVID-19. IFN-I signaling
in COVID-19 was more intimately tied to important cellular
functions such as cell signaling, motility, and cytokine secretion.
In support of our findings, previous studies have found that
exposure to IFN-I results in upregulation of MAPK signaling
cascades (Zhao et al., 2011). While MAPK signaling regulates
important functions such as cellular proliferation and survival,
further studies are needed to investigate whether IFN-I-mediated
MAPK signaling in COVID-19 contributes to the antiviral immune
response or apoptosis (Zhang and Liu, 2002). Previous studies have
reported an antagonistic relationship between IFN-I and IL-1, the

TABLE 4 Treatment information for patients analyzed.

ID Disease Treatment

C1 Severe COVID-19 Azithromycin

C2 Severe COVID-19 None

C3 Severe COVID-19 Azithromycin

C4 Severe COVID-19 Azithromycin

C5 Severe COVID-19 None

C6 Severe COVID-19 None

C7 Severe COVID-19 None

P1 HIV None

P2 HIV None

P3 HIV None

P4 HIV None

Q1 HIV GENVOYA

Q2 HIV DESCOVY + TRUVADA + PREZISTA + PREZCOBIX + NORVIR

Q3 HIV Triumeq

Q4 HIV ODEFSEY + TIVICAY

Q5 HIV None

Q7 HIV JULUCA

Frontiers in Genetics frontiersin.org18

Pan et al. 10.3389/fgene.2023.1105673

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1105673


prototypical proinflammatory cytokine (Guarda et al., 2011;
Mayer-Barber and Yan, 2017). Interestingly, we found that IFN-
I signaling in COVID-19 patients is highly correlated with
immune-activating cytokine signaling pathways such as IL-2,
IL-16, and IL-17, which could provide novel insights on the
coregulatory relationship of IFN-I with other effector cytokines.
In contrast, we found a much narrower scope of highly correlated
genes and pathways in HIV-1+ patients, which could suggest an
inflammation-specific role for IFN-I. Overall, our findings show
that while the IFN-I response is robust in both diseases, the
responses are tied to drastically different biological functions in
HIV-1 compared to COVID-19, with the latter featuring a much
more diverse spectrum of cellular responses. In agreement with our
findings, recent analyses integrating a genome-wide association
study (GWAS) and a transcriptome-wide association study
(TWAS) suggested that the IFN response could determine
COVID-19 severity (Pairo-Castineira et al., 2021). Our findings
are also consistent with those from the data source publications:
Kazer et al. found a core module of interferon-associated genes in
HIV-1+ individuals that were highly expressed in multiple cell
types; Wang et al. found a subset of CD8+ T cells expressing high
levels of IFN-I associated-genes to be enriched in HIV-1+

individuals; Wilk et al. found a wide range of IFN-I-associated
genes that were highly expressed by COVID-19 patients across
nearly all cell types.

Notably, our analysis also revealed disease-specific altered
metabolism profiles, specifically that enhanced IFN-I signaling
in T cells gave rise to divergent metabolic profiles. We
characterized a decrease in OXPHOS and ribosome biogenesis
in response to both SARS-CoV-2 and HIV-1 infection. Virus-
induced reduction of OXPHOS has been previously characterized
in other diseases and could be a result of oxidative stress triggered
by mitochondrial clustering (Khan et al., 2015). Viral hijacking of
ribosomal function is also crucial to viral replication and survival
in the host (Li, 2019). Prior studies have suggested that SARS-CoV-
2 may hijack the host cell’s mitochondria, resulting in a reduction
of ATP biosynthesis (Ganji and Reddy, 2021). Disruption of these
viral interactions could be advantageous for COVID-19 and HIV-1
treatment.

Previous studies have reported that SARS-CoV-2 can activate
the coagulation cascade in the blood, which could lead to a reduction
in mitophagy (Ganji and Reddy, 2021). This altered rate of
mitophagy forces cells to adopt apoptosis as an alternative, which
could explain the elevated levels of apoptosis as well as apoptotic
T cells seen in COVID-19. General and specific mitophagy were
both reported to be important for T-cell homeostasis, function, and
differentiation. Deficiency in this process can lead to cell death,
which may also explain the cell apoptosis and lymphopenia
experienced by severe COVID-19 patients (Pua et al., 2009;
Kovacs et al., 2012; Watanabe et al., 2014; Botbol et al., 2016;
Gassen et al., 2021).

Our observation of upregulated Rho GTPase signaling in
COVID-19 patients is in line with the potential use of Rho
kinase inhibitors to treat COVID-19; Rho kinase inhibitors can
restore the activity and level of ACE2 which is inhibited by
SARS-CoV-2 without increasing the risk of infection (Abedi
et al., 2020b). A recent study demonstrated that small GTPase
RhoA activation drives increased cellular glycolytic capacity

(Wu et al., 2021) which is typically associated with reduced
mitochondrial metabolism; this result is also in agreement with
the upregulation of Rho GTPase and disrupted mitochondrial
function in COVID-19 patients. Moreover, Rho GTPases have
been linked to additional key metabolic controls such as mTOR
signaling pathways, which are specifically upregulated in
COVID-19 patients (Senoo et al., 2019; Mutvei et al., 2020).
Targeting mTOR may help to regulate T cells by induction of
autophagy without apoptosis, reduce viral replication, restore
T-cell function, and decrease cytokine storms (Mashayekhi-
Sardoo and Hosseinjani, 2021).

The identification of various molecular pathways known to
regulate COVID-19 pathophysiology, many of which are under
consideration for COVID-19 treatment, supports our analysis
and results. For instance, we found enrichment of JAK-STAT
signaling, IL-4 signaling, and IL-6 signaling in COVID-19
patients. Three JAK inhibitors that reduce excessive inflammation
(Baricitinib, Tofacitinib, and Ruxolitinib) have been used to treat
COVID-19 patients, among which Baricitinib and Tofacitinib are
recommended for hospitalized patients who require high-flow
oxygen or non-invasive ventilation according to NIH COVID-19
Treatment Guidelines (Satarker et al., 2021). In addition,
Dupilumab, an IL-4Rα inhibitor, was also reported useful for
treating COVID-19 patients (Thangaraju et al., 2020).
Furthermore, IL-6R inhibitors Sarilumab and Tocilizumab were
also shown to be beneficial for COVID-19 patients and were
recommended for use in hospitalized patients who require
supplemental oxygen, high-flow oxygen, non-invasive ventilation,
or invasive mechanical ventilation by NIH COVID-19 Treatment
Guidelines. Several COVID-19 patients in our data were treated with
Azithromycin (Table 4), which induces an immunomodulatory
effect intended to decrease pro-inflammatory cytokine
production. Despite this, we found consistent inflammatory
signatures in COVID-19 PBMCs (Figures 2E, F). We did not
find a significant (p-values = 0.4, 0.857, and 1) difference
between expression of stress-associated genes FOSB, JUND, or
NEAT1 as a result of treatment (Supplementary Figures S10A,
S10B). Several HIV-1+ patients were treated with various
antiretroviral therapies (ART) (Table 4). ART inhibits HIV-1
replication and slows the elimination of memory CD4+ T cells
and memory B cells (Quiros-Roldan et al., 2012), which may
explain the similar frequencies of memory CD4+ T cells and
memory B cells in HIV-1+ individuals when compared to
COVID-19 patients and healthy donors, respectively (Figures
3D, 4D).

In conclusion, our study provides a comprehensive
comparison of the immunological landscape of SARS-CoV-
2 and HIV-1 infections in humans. The high resolution of
single-cell RNA sequencing, diversity of patient samples, and
diverse datasets allowed us to dissect important shared and
disease-specific features that may inform the next-generation
of antiviral treatments. Through cell type-specific analysis, we
found a common enrichment of activated B cells and
plasmablasts, inflammatory monocyte and effector T cell
subsets, and cytokine signaling that appear to drive the
antiviral response to SARS-CoV-2 and HIV-1. We also found
that DCs and monocytes were highly interactive with adaptive
immune cells in both diseases, but that innate cells in COVID-19
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appear to be more capable of immunosuppressive function
through CTLA-4 and TIM-3-mediated interactions. We also
report that the cytokine response was more diverse in COVID-
19 patients, which is highlighted by IL-2, IL-4, and IL-20
signaling, while HIV-1+ individuals primarily exhibited high
levels of NF-kB signaling.

Limitations

While our analysis revealed new insights into both COVID-
19 and HIV-1, our study is limited by the availability and
clinical annotation of relevant datasets, particularly the
scarcity of publicly available peripheral immune data of
HIV-1 infection. As a result, the HIV-1+ individuals in this
study have varied clinical and demographic backgrounds
(Tables 2, 3). Despite these factors, the data analyzed from
HIV-1+ individuals span both acute and chronic stages of
infection and various levels of viral load (since data were
collected from HIV-1+ individuals from Kazer et al. at
multiple timepoints during both early and late infection),
thus providing a holistic representation of the peripheral
response to HIV-1 infection. To address the possible
transcriptomic variances due to differences in patient
background and sample collection batch, we applied rigorous
and sensitive integration and explicitly supplied patient identity
and sample batch as variables to regress out their effects
(Korsunsky et al., 2019). While there are undoubtedly
differences between stages of HIV infection, we consistently
found more drastic changes in gene signatures and cellular
interactions when specifically contrasting COVID-19 and
HIV-1 compared to contrasting the state of HIV-1 infection
(Supplementary Figs 10C, D), indicating that our results are in
fact representative of the biological differences between the two
diseases. We further validated our findings in external COVID-
19 and HIV-1 scRNA-seq datasets. Finally, our study
emphasizes the in silico reanalysis of previously published
data using different methods to uncover novel disease
biology. While we suggest that numerous cellular subsets,
genes, and signaling pathways may be critical in regulating
either or both diseases, further experiments to validate such
findings are necessary.
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SUPPLEMENTARY FIGURE S1
Assessment of scANVI training and consensus clustering. (A) Hierarchical
clustering of original labels derived from Ren Cell 2021. (B) Table depicting
the merging of labels from Ren Cell 2021 that were used for scANVI
training. (C) Balanced accuracies of scANVI-derived labels compared against
their original label from Ren Cell 2021. (D) ROGUE scores of final consensus
labels. Error bars denote variation across patients. (E) Confusion matrix
comparing the observed labels provided by scANVI (X axis) and predicted
labels (Y axis).

SUPPLEMENTARY FIGURE S2
Differential abundance of major PBMC subsets across sex. Box plots of the
proportions of major PBMC subsets across sex. Proportions are computed
for each patient by dividing their number of cells in each subset by their
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total number of PBMCs. P-values are computed with Wilcoxon signed-
rank test.

SUPPLEMENTARY FIGURE S3
Gene expression heatmaps across COVID-19, HIV-1+, and healthy patients.
(A) Heatmap of selected genes found to be upregulated in COVID-19
patients from Zhu Immunity 2020 (Zhu et al., 2020) plotted across cell
types and patient conditions. (B) Heatmaps of selected genes found to be
upregulated in COVID-19 patients from Xu Cell Discovery 2020 (Xu et al.,
2020) plotted across cell types and patient conditions. (C) Heatmaps of
selected genes found to be downregulated in COVID-19 patients from Xu
Cell Discovery 2020 (Xu et al., 2020) plotted across cell types and patient
conditions.

SUPPLEMENTARY FIGURE S4
Differential abundance, gene expression, and signature enrichment of
monocytes. (A) Box plots of the proportions of myeloid cell subsets across
sex. Proportions are computed for each patient by dividing their number of
cells in each DC/monocyte subset by their total number of DCs +
monocytes. p-values are computed with Wilcoxon signed-rank test. (B) Box
plots of the proportions of myeloid cell subsets across acutely and
chronically infected HIV-1+ individuals. Proportions are computed for each
patient by dividing their number of cells in each DC/monocyte subset by
their total number of DCs + monocytes. p-values are computed with
Wilcoxon signed-rank test with Holm-Bonferroni adjustment. (C) Box plots
of the proportion of myeloid cell subsets across sex for HIV-1+ individuals.
Proportions are computed for each patient by dividing their number of cells
in each DC/monocyte subset by their total number of DCs + monocytes.
P-values are computed with Wilcoxon signed-rank test. (D) Box plots of
average gene expression for key monocyte genes, plotted for monocytes.
p-values are computed withWilcoxon signed-rank test. (E)GSEA enrichment
plot of DEGs found to be upregulated by HIV-1 monocytes compared to
COVID-19 monocytes from the validation dataset, scored on DEGs found
to be upregulated by HIV-1 monocytes compared to COVID-19 monocytes
from analysis. p-values are adjusted with Benjamini-Hochberg method.
NES: Normalized Enrichment Score. (F) GSEA enrichment plot of DEGs
found to be upregulated by COVID-19 monocytes compared to HIV-1
monocytes from the validation dataset, scored on DEGs found to be
upregulated by COVID-19monocytes compared toHIV-1monocytes from
analysis. p-values are adjusted with Benjamini-Hochberg method. NES:
Normalized Enrichment Score.

SUPPLEMENTARY FIGURE S5
Differential abundance and gene expression of plasmablasts and B cells. (A)
Box plots of plasmablast subset proportions in COVID-19 patients from
validation dataset. Proportions are computed for each patient by dividing
their number of plasmablasts by their total number of B cells + plasmablasts.
p-values are computed with Wilcoxon signed-rank test with Holm-
Bonferroni adjustment. (B) Box plots of the proportions of B cell and
plasmablast subsets across sex. Proportions are computed for each patient
by dividing their number of cells in each B cell/plasmablast subset by their
total number of B cells + plasmablasts. p-values are computed with
Wilcoxon signed-rank test. (C) Box plots of the proportions of B cell and
plasmablast subsets across acutely and chronically infected HIV-1+ patients.
Proportions are computed for each patient by dividing their number of cells
in each B cell/plasmablast subset by their total number of B cells +
plasmablasts. p-values are computed with Wilcoxon signed-rank test with
Holm-Bonferroni adjustment. (D) Box plots of average gene expression for
key plasmablast genes, plotted for plasmablasts. p-values are computed with
Wilcoxon signed-rank test. (E) Box plots of average gene expression for

B cell activation genes, plotted for B cells. p-values are computed with
Wilcoxon signed-rank test.

SUPPLEMENTARY FIGURE S6
HIV and COVID-19 signature enrichment of T cell DEGs. (A) GSEA
enrichment plot of DEGs found to be upregulated by HIV-1 T cells
compared to COVID-19 T cells from the validation dataset, scored onDEGs
found to be upregulated by HIV T cells compared to COVID-19 T cells from
analysis. P-values are adjusted with Benjamini-Hochberg method. NES:
Normalized Enrichment Score. (B)GSEA enrichment plot of DEGs found to
be upregulated by COVID-19 T cells compared to HIV-1 T cells from the
validation dataset, scored on DEGs found to be upregulated by COVID-19
T cells compared to HIV-1 T cells from analysis. p-values are adjusted with
Benjamini-Hochberg method. NES: Normalized Enrichment Score.

SUPPLEMENTARY FIGURE S7
Comparison of IFN-I gene expression across cell types and disease. (A) Violin
plots of the normalized gene expression of the three IFN-I signatures, split
across and major cell populations. (B) Heatmaps of HIV-1 IFN-I gene
expression, plotted for severe COVID-19 patients and HIV-1+ individuals in
the validation dataset. Expression is scaled across columns. (C)Heatmaps of
COVID-19 IFN-I gene expression, plotted for severe COVID-19 patients
and HIV+ individuals in the validation dataset. Expression is scaled across
columns.

SUPPLEMENTARY FIGURE S8
Expression of actin polymerization and TLR signature scores across cell
subtypes. (A) Box plots of average actin polymerizationmodule score across
all cell subtypes, split by disease status. p-values are computed with
Wilcoxon signed-rank test with Holm-Bonferroni adjustment. (B) Box plots
of average TLR signaling module score across all cell subtypes, split by
disease status. p-values are computed with Wilcoxon signed-rank test with
Holm-Bonferroni adjustment.

SUPPLEMENTARY FIGURE S9
Expression of metabolic genes across disease. (A) Expression heatmaps of
key mitophagy genes plotted in T cells from validation dataset. Expression is
scaled across columns. Columns are clustered based on Euclidean
distance using complete clustering. (B) Expression heatmaps of key Rho
GTPase genes plotted in T cells from validation dataset. Expression is scaled
across columns. Columns are clustered based on Euclidean distance using
complete clustering. (C) Expression heatmaps of key mTOR genes plotted in
T cells from validation dataset. Expression is scaled across columns.
Columns are clustered based on Euclidean distance using complete
clustering.

SUPPLEMENTARY FIGURE S10
Comparison of expression of stress-associated genes across treatment
and IFN-associated genes across disease status. (A) Box plots of average
expression of FOSB, JUND, and NEAT1 genes across COVID-19 patients
and healthy donors. p-values are computed with Wilcoxon signed-rank
test. (B) Box plots of average expression of FOSB, JUND, and NEAT1 genes
across Azithromycin-treated and untreated COVID-19 patients. p-values
are computed with Wilcoxon signed-rank test. (C) Expression heatmaps of
HIV-1 IFN-I genes plotted across disease condition. Expression is scaled
across columns. Columns are clustered based on Euclidean distance
using complete clustering. (D) Expression heatmaps of HIV-1 IFN-I genes
plotted across disease status. Expression is scaled across columns.
Columns are clustered based on Euclidean distance using complete
clustering.
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