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Heat stress in poultry houses, especially in warm areas, is one of the main
environmental factors that restrict the growth of broilers or laying performance
of layers, suppresses the immune system, and deteriorates egg quality and feed
conversion ratio. The molecular mechanisms underlying the response of chicken
to acute heat stress (AHS) have not been comprehensively elucidated. Therefore,
the main object of the current work was to investigate the liver gene expression
profile of chickens under AHS in comparison with their corresponding control
groups, using four RNA-seq datasets. The meta-analysis, GO and KEGG pathway
enrichment, WGCNA, machine-learning, and eGWAS analyses were performed.
The results revealed 77 meta-genes that were mainly related to protein
biosynthesis, protein folding, and protein transport between cellular organelles.
In other words, under AHS, the expression of genes involving in the structure of
rough reticulum membrane and in the process of protein folding was adversely
influenced. In addition, genes related to biological processes such as “response to
unfolded proteins,” “response to reticulum stress” and “ERAD pathway” were
differentially regulated. We introduce here a couple of genes such as HSPA5,
SSR1, SDF2L1, and SEC23B, as the most significantly differentiated under AHS,
which could be used as bio-signatures of AHS. Besides the mentioned genes, the
main findings of the current workmay shed light to the identification of the effects
of AHS on gene expression profiling of domestic chicken as well as the adaptive
response of chicken to environmental stresses.
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Introduction

Heat stress is one of the main concerns of the poultry industry, especially in warm areas,
as it causes major economic losses in both layer and broiler farms. Intensive genetic selection
in breeding programs has led to an increased growth rate and metabolism. However, the
development of the chicken thermoregulatory system cannot be matched with the growth
rate, making it difficult for industrial chickens to regulate their body heat as temperatures
fluctuate (Havenstein et al., 2003). In addition, chickens are sensitive to high temperatures
due to the absence of sweat glands (Loyau et al., 2013), feather cover, and high density in
commercial rearing facilities (Brugaletta et al., 2022). The most common negative effects of
heat stress (HS) on chickens are on growth performance, egg production and quality (Barrett
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et al., 2019; Awad et al., 2020), feed intake, appetite hormone
regulation (Mazzoni et al., 2022), oxidative properties (Altan
et al., 2003), intestinal health, immune response (Deng et al.,
2012), body temperature (Van Goor et al., 2015), and increased
mortality (Khosravinia, 2016). It is estimated that the HS could lead
to annual economic losses of $128 to $165 million in the
United States poultry industry (St-Pierre et al., 2003). Selective
breeding of HS-resistant chicken is a suitable scenario for
producing a well adaptable strains (Radwan, 2020). Therefore,
the characterization of genetic biomarkers associated with
resistance to HS will pave the way for selective breeding to
generate the HS-resistant chickens. Transcriptome comparison
may elucidate the genetic base of HS (Sun et al., 2015). The liver
has an important role in general metabolism, synthesis of bile and
proteins, and maintenance of homeostasis (Rui, 2014), and is more
vulnerable to HS than other organs as HS triggers oxidative stress
(Lin et al., 2006). The liver is also impacted by the increased
production of biochemical anti-oxidants (Mahmoud and Edens,
2003). Previous studies have shown that some genes in liver tissue
undergo significant expression modifications under HS as compared
to the normal condition. For example, HSP70, HSP90 (Radwan,
2020), HSP90B1, HSPA5 (Sánchez et al., 2022), MX1, TLX1, HSPB9
(Wang et al., 2020), HSP70, HSPA5 (Wang et al., 2021), ANGPTL4
(Lan et al., 2016) have been introduced as biomarkers for HS in
chickens. These genes have not been identified from a sole,
comprehensive research but from multiple similar studies, each
of which had identified only one or, at most, a couple of the
mentioned genes. In other words, there is little consensus on the
results of the studies that aim to address the same scientific question.
Therefore, there should be a statistical methodology to merge the
findings of multiple independent but similar studies. Meta-analysis
is a quantitative and systematic method for combining the p-values
obtained from the analysis of RNA-seq data from multiple related
studies. Meta-analysis could overcome the issues that arise from the
low number of biological replicates in the experiments, and could
result to an improved statistical power due to the larger sample size
that come from multiple datasets (Tseng et al., 2012; Rau et al., 2014).
By meta-analyzing, the results of multiple small but related studies
could be combined to attain a pooled estimate that is closest to the
common truth. By relieving the sources of disagreement among the
related results, meta-analysis of multiple studies makes interesting
relationships come to light. The Fisher approach, which is usually
implemented in the meta-analyses, has been proven to be an
appropriate method for the combining the p-values, and is useful
for the identification of differentially expressed genes (DEGs) and
novel biomarkers (Calduch-Giner et al., 2014; Landry and Sirard, 2018;
Lindholm-Perry et al., 2020). Because of the complex nature of the
biological systems in which many genes or biological agents interact
with each other, there is an increased request for researches that aim to
elucidate the complex interaction of genes that have been identified as
biologically important. The study of gene co-expression networks helps
to categorize genes with the same expression pattern. The interaction
of genes could more easily be predicted by analyzing the modules than
by analyzing the genes themselves (Cho et al., 2012). Therefore,
weighted gene co-expression network analysis (WGCNA) could be
used as a desirable approach for discovering the co-expressed genes
and nodes (Ramayo-Caldas et al., 2018; Wang et al., 2020; Sánchez
et al., 2022). In the present study, RNA-seq data from four different but

related datasets were assessed to identify the DEGs, meta-genes,
modules, and hub-genes in the chicken liver tissue under acute heat
stress (AHS). Finally, we introduced the major genes associated
with AHS.

Materials and methods

RNA-seq data collection from databases

The Sequence Read Archive (SRA) repository of the National
Center for Biotechnology Information (https://www.ncbi.nlm.nih.
gov/sra) was screened precisely to find the appropriate RNA-seq
datasets that address the research question of the current work using
the keywords “Gallus gallus,” “chicken,” “liver” and “acute heat
stress”. We could find only four RNA-seq datasets in which the AHS
was the main treatment. Detailed information of the four selected
datasets can be found in Table 1. In addition, the accession numbers
of the used samples are reported in In Supplementary Table S1.

Analyses of individual datasets

After retrieving the RNA-seq datasets, fastq-dump tool of SRA-
Toolkit version 2.9.6 (Staff, 2011) was employed to convert the SRA
files into the FASTQ format. The data quality was assessed using the
fastQC tool version 0.12.1 (Andrews, 2010) (available at https://
www.bioinformatics.babraham.ac.uk/projects/fastqc/). The low
quality reads were eliminated using the Trimmomatic (version 0.
39) software (Bolger et al., 2014) (available at http://www.usadellab.
org/cms/?page=trimmomatic) with ILLUMINACLIP, SLIDING
WINDOW (3-5: 20-28), CROP (3-10), AVGQUAL (20-25) and
MINLEN (40-45) options. The implemented values varied among
the datasets according to their quality metrics. The trimmed reads
were mapped onto the reference genome Gallus_gallus.GRCg6a
(https://asia.ensembl.org/Gallus_gallus/info/index) using HISAT2
(version 2.2.1) software (Kim et al., 2019) (available at https://
daehwankimlab.github.io/hisat2). The expression count matrix
was generated using HTSeq-count (version 0.9.1) (Anders et al.,
2015). Then, the DESeq2 package (version 3.16) (Love et al., 2014)
was used to identify the DEGs using the default parameters. To
characterize the gene symbols, biotypes, and positions of each
transcript, we uploaded the DESeq2 results and the gtf file
(http://ftp.ensembl.org/pub/release-104/gtf/gallus_gallus/Gallus_
gallus.GRCg6a.104.gtf.gz) to galaxy (available at https://usegalaxy.
eu/) and we used the Annotate DESeq2/DEXSeq output tables
(version 1.1.0) for annotation.

Meta-analysis

The metaRNASeq package version 1.0.2 (Marot and Rau, 2013)
in R was used to identify the meta-genes. First, raw p-values and
log2-fold change values of all expressed genes of all four datasets
were gathered in a new file. Then, p-values were combined via the
fishcomb function. Comparing the sign (positive or negative) of the
log2-fold change of the genes across the four datasets revealed the
consistency or inconsistency of the expression of genes in all
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datasets. Finally, genes with consistent expression in all datasets,
with adjusted p-value ≤0.05 in at least one dataset, andmeta-analysis
p-value ≤0.05 were considered as meta-genes.

Gene ontology, KEGG pathway analysis, and
protein-protein interaction

Meta-genes were interpreted based on Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
Pathways by DAVID web base software (https://david.ncifcrf.
gov). Terms with p-value ≤0.05, FDR ≤0.2, and a fold
enrichment >2 were considered as significant. Furthermore,
protein-protein interaction (PPI) network was created using
the STRING database (https://string-db.org/) to construct the
network and identify the hub-genes. Cytoscape software (version
3.7.2) (Shannon et al., 2003) was used to visualize the retrieved
networks.

Weighted gene co-expression network
analysis

The R package Weighted Gene Co-expression Network
Analysis (WGCNA) (version 1.71) (Langfelder and Horvath,
2008) was used to identify the co-expressed networks, modules,
and hub-genes. To alleviate the influence of noise when
calculating the correlations based on the read counts, we
filtered out the genes with read counts less than 10 in more
than 90% of the samples, in order to reduce the sampling
differences. The variance-stabilizing transformations (VSTs)
output from Deseq2 were also used as input. However, in the
case of using VST data, the variations caused by batch effects or

other covariates could not be accounted for. Therefore, the
function “removeBatchEffect” was used to eliminate the batch
variations by package limma (version 3.50.3). In the first step,
excessive missing values and outlier samples were examined with
the options “goodSamplesGenes” and “hclust”. Soft threshold
power of 0.9 was selected based on the scale-free topology index
(R2) (Zhang and Horvath, 2005) and, thus, the
“pickSoftThreshold” option was used to calculate the
adjacency matrix. The Pearson correlation coefficients
between each pair of genes were calculated. The adjacency
matrix was converted to a Topological Overlap Matrix (TOM)
to minimize the effects of noise. Then, the corresponding
dissimilarity matrix (1-TOM) was generated. A dynamic tree
cut (DTC) algorithm was used to detect and construct the gene
co-expression modules with the following parameters; cut height
of 0.975, minimum module size of 30 genes, DeepSplit of 2, and
hybrid method.

To identify the hub-genes, the module eigengenes were
calculated using the “moduleEigengenes” function, and the
“intramodularConnectivity” process was used to calculate both
the intramodular connectivity (kwithin) and the total connectivity
(ktotal). Then, the “corPvalueStudent” process was used for the
identification of hub-genes based on the p-values (Degli Esposti
et al., 2019). In addition, the “chooseTopHubInEachModule” and
“chooseOneHubInEachModule” options were used to identify the
hub-genes within each module.

Functional analysis of meta-genes and co-
expressed modules

After identifying the meta-genes and significant modules, the
common genes between them were identified using venn diagram

TABLE 1 Information of the used datasets for the analyses.

Dataset
accession
number

Group Number
of runs

Raw
reads

Alignment
rate (%)

References Breed Sex Age at
sample

collection
(week)

Duration
of heat
stress

Sequence
length
(PE/SE)

SRP268422-A Heat
stress

4 35611146
-47290916

88.47-91.57 Wang et al.
(2020)

Leghorn not
collected

2 4 h 51-100 (PE)

Control 4 37009786-
52258461

89.45-90.94

SRP268422-B Heat
stress

4 40234382-
44711995

88.63-90.03 Wang et al.
(2020)

Fayoumi not
collected

2 4 h 54-100 (PE)

Control 4 22254064-
43734081

90.94-91.18

ERP014602-A Heat
stress

4 27335951-
33532021

92.86-94.88 Lan et al.
(2016)

Broiler male 3 3 h 35-100 (SE)

Control 4 20135467-
30196233

92.44-95.49

ERP014602-B Heat
stress

4 26448275-
31900734

91.43-93.87 Lan et al.
(2016)

Fayoumi male 3 3 h 42-100 (SE)

Control 4 26358318-
35802997

93.18-94.27
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(http://bioinformatics.psb.ugent.be/webtools/Venn/). The common
significant meta-genes were interpreted by enrichment analysis
methods based on the KEGG pathway and GO using the
ClueGO plugin of Cytoscape software (version 3.7.2) (Bindea
et al., 2009), and subsequently, only pathways with Bonferroni
Step Down corrected p-values <0.01 were considered as
significantly enriched.

Machine-learning

The identified meta-genes with their corresponding
expression values were submitted to Machine-Learning for the
selection of the most important HS-related genes. Additionally,
the chicken breed, age at sample collection, and duration of the
HS were used as three attributes. This was accomplished based on
seven weighting algorithms, including Uncertainty, Chi-Squared,
Relief, Gini index, Rule, Information Gain, and Gain Ratio. Meta-
genes with average weighting values above 0.7 across all seven
algorithms were analyzed via Rapid Miner software (version 9.9)
for 10-fold cross-validation using stratified sampling with
Decision Tree (Accuracy, Gain Ratio, Gini Index, and
Information Gain criterion), Random Forest (Accuracy and

Gain Ratio criterion), Deep Learning (Tanh and Rectifier
criterion), and Naive Bayes.

SNP calling and eGWAS analyses

For SNP calling, the Galaxy platform (available at https://
usegalaxy.eu/) was used with Genotype-variants outline (available
at https://github.com/cfarkas/Genotype-variants). After sorting the
BAM files with samtools sort (galaxy version 2.0.4) (https://
samtools.github.io/hts-specs/), we used FreeBayes (galaxy version
1.3.6+ galaxy0) (https://github.com/ekg/freebayes) for variant
calling. We then used VCFfilter (galaxy version 1.0.0_
rc3+galaxy3) (https://github.com/ekg/vcflib) to keep only the
SNPs with a depth of more than 25 reads and a quality of more
than 30. The transcript IDs harboring each variant were retrieved
using VCFannotate (galaxy version 1.0.0_rc1+galaxy0) (GitHub.
https://github.com/ekg/vcflib). For expression based genome wide
association study (eGWAS), we used 22,197 eSNPs located on all
analyzed transcripts. The expression values (read counts) of the
transcripts were required to be above 10 in at least 10% of the
samples to be included in the eGWAS. The quality assessment of the
SNP genotypes was carried out by PLINK software (version 1.9)

FIGURE 1
Overview of the steps gone for the data collection, preprocessing, analyzing and results combination. The collected datasets belonged to four
similar RNA-seq experiments that themain object of all of themwas to address the effect of acute heat stress on chicken liver gene expression profile. The
results that obtained commonly from all individual dataset analysis, meta-analysis, weighted gene-co-expression network analysis (WGCNA), machine
learning and expression-based genome wide association analysis (eGWAS) were the ultimate base of the identification of key genes related to the
response of chicken to acute heat stress.
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(Purcell et al., 2007). The nine significant modules that were output
by WGCNA software were considered as nine traits, and the
eigenvalues of the 32 samples for each of the significant modules
were considered as dependent variables (phenotypes). A linear
model was employed in the “assoc” analysis of PLINK. The
significant eSNPs were visualized using an R package called
CMplot (version 4.2.0) (Yin et al., 2021). Figure 1 illustrates the
flowchart of the analysis steps of the four RNA-seq datasets in the
present study. It should be mentioned that, all gene feature were
reported in the current manuscript and supplementary files were
according to the Gallus_gallus.GRCg6a genome assembly of
domestic chicken.

Validation of the results

Two additional RNA-seq datasets related to chicken livers under
chronic heat stress (CHS) were used to validate the identified 77 meta-
genes. The mentioned datasets were downloaded from the NCBI
website with accession numbers ERP014602 and SRP100368 with
8 and 16 samples, respectively. Half of the samples in each of the
mentioned datasets were from the chickens treated with 35 degrees of
Celsius for 7-8 h and for 7 days, whereas the next halves were
considered as control groups. The accession numbers of the used
runs for the validation analysis can be found in Supplementary
Table S2. The analysis pipeline was as same as mentioned above for
the analysis of the AHS datasets.

Results

Individual dataset analysis

We examined four selected RNA-seq datasets and identified 41,
115, 39, and 12 DEGs for SRP268422-A, SRP268422-B, ERP014602-A,
and ERP014602-B datasets, respectively. Of which, 24, 83, 10, and
5 were downregulated while 17, 32, 29, and 7 were upregulated DEGs,
respectively. In Supplementary File S1, detailed information about the
results of the four RNA-seq datasets analyses are provided. The primary
aim of analyzing four similar, related datasets was to discover the DEGs
that were commonly present in all of the studied datasets. Therefore, we
were most interested in the common DEGs across the results of four
individual datasets. We, found, however, a little number of common
DEGs. In Supplementary Figure S1, the Venn diagram of the DEGs
identified in the four individual experiments has been shown.

Meta-analysis

As mentioned above, the results obtained from the four RNA-seq
datasets did not support each other. Therefore, the implementation of
meta-analysis seemed necessary. As such, we combined the results of
the four abovementioned datasets and carried out a meta-analysis.
Finally, a total of 77 significant meta-genes were identified. Ten out of
the 77 meta-genes did not have gene symbols, while the remaining
67 meta-genes possessed known gene symbols. Supplementary File S2
includes the detailed results of the significant meta-genes from the
meta-analysis of four RNA-seq datasets.

Functional enrichment analysis

We used the DAVID database to perform KEGG pathway and
GO analyses on meta-genes to characterize their molecular function
(MF), biological process (BP), and cellular component (CC). The
results revealed 3, 1, and 3 significant GO terms for BPs, CCs, and
MFs, respectively. The terms “posttranslational protein targeting to
membrane translocation,” “endoplasmic reticulum unfolded protein
response” and “ubiquitin-dependent ERAD pathway” were three
significant BP terms. The “endoplasmic reticulum membrane” CC
and there MF terms “identical protein binding,” “ribosome
binding,” and “misfolded protein binding” were significantly
enriched by meta-genes. Through this process, four significant
KEGG pathways including “Protein processing in endoplasmic
reticulum,” “Protein export,” “Biosynthesis of nucleotide sugars,”
and “Amino sugar and nucleotide sugar metabolism” were revealed
to associate with AHS. A thorough information on the KEGG
pathways and GO terms have been provided in Table 2. The PPI
network of the meta-genes was also studied and the resulted network
was visualized using the Cytoscape. In Figure 2 the visualized PPI
network of the meta-genes is shown.

Weighted gene co-expression network
analysis and identification of the hub-genes

The expression values of 7829 genes were used as input data for
WGCNA (Supplementary File S3). In the first step, excessive
missing values and outlier samples were examined, and outlier
samples were removed (Supplementary Figure S2A), and a value
of 6 was determined as a soft threshold power (Supplementary
Figure S2B). We used the dynamic tree cut algorithm to construct
the modules. Input genes were grouped into 22 modules, ranging in
size from 49 to 492 genes, along with 3940 genes that could not be
grouped in any of the modules and therefore were called as
unassigned (Figures 3–A). The hierarchical clustering of genes
using the topological overlap matrix (TOM) is shown in Figures
3–B. Nine out of the 22 modules including green (r = −0.75,
p-value = 8e-7), pink (r = −0.43, p-value = 0.01), royal blue
(r = −0.43, p-value = 0.01), light cyan (r = −0.48, p-value =
0.006), purple (r = +0.36, p-value = 0.04), brown (r = +0.5,
p-value = 0.003), turquoise (r = +0.37, p-value = 0.04), tan (r =
+0.42, p-value = 0.02), and yellow (r = +0.44, p-value = 0.01)
modules were identified as particularly significant. In Figure 4
and (Supplementary File S4) the genes counts and names within
each of the 22 modules, and in Figure 5 the Pearson correlation
coefficient and p-values of the identified modules are reported.
Thereafter, hub-genes were identified per module based on the
p-values using the “corPvalueStudent” (Supplementary File S5).
In Table 3 the identified five hub-genes per module are reported.

Functional effects of the meta-genes and
co-expressed modules

Meta-analysis relieved the sample size limitation, while the
WGCNA identified genes with high expression correlation. For
functional enrichment analysis, we assigned significant common
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genes between the modules and meta-genes (Supplementary File S6)
using the ClueGO plugin of Cytoscape software. As a result of
pathway enrichment analysis, “Protein processing in endoplasmic
reticulum,” and “Protein export” were found to be significant KEEG
pathways, and “rough endoplasmic reticulum” and “rough
endoplasmic reticulum membrane” were two significant CC
terms. “Protein transmembrane transport,” “intracellular protein
transmembrane transport,” “response to endoplasmic reticulum
stress,” “response to unfolded protein,” “endoplasmic reticulum
to cytosol transport,” “endoplasmic reticulum unfolded protein
response,” “negative regulation of response to endoplasmic
reticulum stress,” “regulation of response to endoplasmic
reticulum stress,” “cellular response to unfolded protein,”
“negative regulation of cellular protein catabolic process,”
“protein exit from endoplasmic reticulum,” “ERAD pathway,”
“retrograde protein transport, ER to cytosol,” “negative regulation
of proteolysis involved in cellular protein catabolic process,”
“regulation of ERAD pathway,” “negative regulation of ERAD
pathway,” “negative regulation of proteasomal protein catabolic

process” and “ubiquitin-dependent ERAD pathway” were
significant terms for BP category. The connections among the
terms are illustrated in Figure 6. In addition, the detailed
information about the significantly enriched terms are reported
in Supplementary File S7.

Machine learning and validation of the
identified meta-genes

Seventeen meta-genes showed an average weighting values
greater than 0.7. For breed, age at sampling, and duration of HS,
however, the average weighting values were less than 0.7. In
Supplementary Table S3, the weights of the 17 meta-genes
obtained from the 7 different machine learning algorithms are
reported. Ten models were applied to the dataset. The
performances of the models are reported in Table 4. According
to the cross validation results, the Decision Tree with the Gain Ratio
criterion, the Random Forest with the Accuracy criterion, and Deep

TABLE 2 Gene ontology and KEGG pathway enrichment results of meta-genes in the comparison of chickens under acute heat stress and their corresponding
control groups.

Category Term Count % p-value Genes List
total

Pop
Hits

Pop
total

Fold
enrichment

FDR

Biological
Process

GO:0031204~posttranslational
protein targeting to membrane,
translocation

3 4.5 3.1E-04 SEC61A1, HSPA5,
SEC61B

53 7 13,312 107.6 0.0589

GO:0030968~endoplasmic
reticulum unfolded protein
response

4 6.1 3.4E-04 SERP1, HSPA5,
DERL3, HERPUD1

53 35 13,312 28.7 0.0589

GO:0030433~ubiquitin-
dependent ERAD pathway

4 6.1 0.0013 HSPA5, DERL3,
SEC61B, HERPUD1

53 55 13,312 18.3 0.1491

Cellular
component

GO:0005789~endoplasmic
reticulum membrane

10 15.2 1.1E-05 SEC61A1, SERP1,
SDF2L1, DERL3,
CYP1A1, SSR1,
SELENOK, SEC22B,
SEC23B, HERPUD1

55 385 14,587 6.9 9.5E-04

Molecular
function

GO:0042802~identical protein
binding

12 18.2 2.9E-04 HDAC4, EMG1,
SALL1, PRDX1,
TAT, GNPNAT1,
UAP1, SELENOK,
NMRAL1, IGF2R,
PTPRG, JMJD6

53 811 13,048 3.6 0.0388

GO:0043022~ribosome binding 4 6.1 0.0011 SEC61A1, HSPA5,
SEC61B, EIF2A

53 51 13,048 19.3 0.0733

GO:0051787~misfolded protein
binding

3 4.5 0.0026 SDF2L1, HSPA5,
DERL3

53 19 13,048 38.9 0.1148

KEGG
pathway

gga04141:Protein processing in
endoplasmic reticulum

8 12.1 8.0E-06 SEC61A1, ERLEC1,
HSPA5, DERL3,
SSR1, SEC61B,
SEC23B, HERPUD1

27 151 5011 9.8 2.8E-04

gga03060:Protein export 3 4.5 0.0067 SEC61A1, HSPA5,
SEC61B

27 24 5011 23.2 0.1166

gga01250:Biosynthesis of
nucleotide sugars

3 4.5 0.0154 GMPPA,
GNPNAT1, UAP1

27 37 5011 15.0 0.1799

gga00520:Amino sugar and
nucleotide sugar metabolism

3 4.5 0.0252 GMPPA,
GNPNAT1, UAP1

27 48 5011 11.6 0.2207
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Learning with the Maxout parameter showed acceptably high
accuracy. The Decision Tree identified key meta-genes that
classify the chickens under AHS or control conditions based on
the expression values. Here, three genes including EIF5B, HSPA5,
and SEC23B are introduced as biomarkers for AHS as they were
included in all Decision Trees with the Gain Ratio, Accuracy, Gini
Index, and Information Gain criteria. The accuracy range of the
mentioned models were 67.50%+/-37.26%, 57.50%+/-40.64%,
65.00%+/-43.23%, and 55.00%+/-42.61%, respectively. Thus,
based on the Gain Ratio, if the expression value of EIF5B was
greater than 6.164, the samples would fell into the AHS, otherwise,
the expression value of HSPA5must be taken into account (Figure 7;
Supplementary Figure S3). The important role of these three genes
on AHS was also identified earlier in the WGCNA analysis, as all of
them included in the significant green module as hub-genes. The
rediscovery of the mentioned three genes by the Decision Tree
models confirms the important association of them with AHS.

eGWAS analyses

To identify significant SNPs associated with nine significant
modules, eGWAS was conducted. As a result, we identified
406 significant eSNPs (p-values ≤0.05). It is noteworthy to
mention that most of the significant eSNPs were associated with
two modules, including yellow and green. In Supplementary File S8
significant levels of all 406 eSNPs on all nine significant modules are
provided. A total of 134 significant eSNPs located on the genes that

included within the significant modules, and 52 of them were
significantly associated with all nine significant modules. In
Figure 8, a circular Manhattan plot illustrating the association of
eSNPs with nine modules (layers of circles) is shown. We identified
one eSNP on gene SERP1 (position chr9:23805255) and four eSNPs
on gene SESN1 (positions chr3:67138413, 67135835, 67137358,
67137810). The SERP1 was a meta-genes which consistently
downregulated in AHS, while SESN1 was a meta-genes which
consistently upregulated in AHS as compared with the control
group.

To summarize our results from the five employed approaches
and make relevant conclusions, we decided to focus on genes that
were commonly observed as meta-genes and included within the
significant terms, pathways, and modules, especially those that were
identified as hub-genes. Furthermore, the meta-genes with
significant eSNPs that highlighted by Machine Learning were
considered as more important. In Supplementary Figure S4 and
Supplementary File S9, the resulting Venn diagram has been
reported. Based on the summary of our results, we introduce
important genes associated with AHS including; HSPA5, SSR1,
SDF2L1, SEC23B, SERP1, and SESN1.

Validation of the results

Fifteen and two meta-genes out of the 77 meta-genes were
identified as differentially expressed (p-value <0.05) in the two
additional datasets (i.e., ERP014602 and SRP100368,

FIGURE 2
Protein-protein interaction (PPI) network analysis based on meta-genes. By definition, the meta-genes were those gene that were significantly
differentially expressed between the chickens under acute heat stress and their corresponding control group as well as those that were consistently
expressed across the four datasets (with the same direction of expression) and were significant in the meta-analysis. The PPI network was constructed
using the STRING website.
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respectively). Surprisingly, only one of the 17 genes showed no
match with the results of the current work. In other words, the log2-
fold change of the 16 meta-genes in all four AHS datasets were as in
the same direction as in the validation datasets (CHS). In
Supplementary File S10 the log2-fold change of the 77 meta-
genes in two validation datasets are provided. In Figure 9, the
expression concordance of the 17 identified meta-genes between
the AHS datasets and CHS datasets were shown. We also compared
the expression pattern of the six most associated meta-genes we
introduced above (i.e., HSPA5, SSR1, SDF2L1, SEC23B, SERP1, and
SESN1). The expression pattern of five of them were matched
between the AHS and CHS datasets.

Discussion

High temperatures negatively impact the production efficiency
of commercial chicken via injurious physiological (Mujahid et al.,
2007; Sandner et al., 2020), biochemical (Xie et al., 2015), and
immune capacity (Park et al., 2019). Unlike the commercial
chicken breeds, AHS does not adversely affect the local chicken
breeds (Lawrence and Wall, 2014; Porto-Neto et al., 2014). Because,
in commercial chicken breeds the thermoregulatory system is not
compatible with the metabolism rate. Additionally, the commercial
strains do not have the genetic potential to develop heat tolerance,
and are not able to regulate their body temperature during ambient
temperature fluctuations (Havenstein et al., 2003; Coble et al., 2014;
Lan et al., 2016; Fleming et al., 2017). We studied the RNA-seq data
that originated from both broilers and layers (Leghorn and
Fayoumi), which all of them were commercially important, in
order to conduct a comprehensive study that encompassed both
major chicken types and three different breeds. As such, the
obtained results might be generalized for other commercial breeds.

Selective breeding with the aim of generating HS-tolerant
chicken might be the best choice to produce a well adaptable
strains (Mack et al., 2013; Misztal, 2017; Radwan and Mahrous,
2019; Radwan, 2020). Accordingly, the identifying key genes and
variants related to AHS is essential in genetic selection. Therefore,
we investigated four RNA-seq datasets, all of which aimed to
elucidate the effect of AHS on chicken whole transcriptase gene
expression profile, in order to gain deep insights into the key
regulatory and hub-genes associated with AHS. To this end, we
carried out multiple approaches including meta-analysis, GO and
KEGG pathway enrichment analysis, WGCNA, machine learning,
and eGWAS. The obtained results from the individual datasets
analyses did not support each other, and there were only few
common DEGs across the four experiments (Supplementary
Figure S1). Therefore, the identification of meta-genes through
meta-analysis was critically necessary as it is an efficient
statistical method that diminishes the limitations that arise from
the small sample size within each of the individual datasets and, by
increasing the statistical power, identifies the key genes with small
effects (Farhadian et al., 2018; Keel et al., 2018; Benny et al., 2019;
Jiang et al., 2022; Yuan et al., 2022). Both WGCNA and eGWAS are
also efficient approaches for identifying hub-genes and significantly
associated alleles. As such, we found 77 meta-genes in the current
work. These meta-genes were included within the significant
modules, and showed commonness with the hub-genes that were
identified by WGCNA, and jointly were observed as important
genes within the Decision Trees and eGWAS (Supplementary Figure
S4). The overall consequence of the used approaches led to the
identifying a couple of significant meta-genes including HSPA5,
SSR1, SDF2L1, SEC23B, SERP1, and SESN1 that could be
considered as bio-signatures of AHS. The mentioned meta-genes
were within the green module (the module with the highest negative
correlation with AHS; r = −0.75, p-value = 8e-7) and were confirmed
by GO analysis, as well. HSPA5 is an endoplasmic reticulum
chaperone complexes and located in the “endoplasmic reticulum
lumen” which plays important roles in the KEGG pathways “protein
processing in endoplasmic reticulum,” and “protein export”. Based
on the GO analysis, it can be postulated that all significant terms
related with the functions of meta-genes were associated with the

FIGURE 3
Gene co-expression modules which grouped the reliably
expressed genes (with read count > 10 in more than 10% of the
samples) into 22 modules. (A) The height (y-axis) indicates the co-
expression distance and the x-axis corresponds to genes. Colors
represent the 22 modules. The gray module represent genes that
assigned to neither of the 22modules. (B)Heatmap plot of topological
overlap in the gene network. Each row and column corresponds to a
gene, light color denotes low topological overlap, and progressively
darker red denotes higher topological overlap. Darker squares along
the diagonal correspond to modules. The gene dendrogram and
module assignment are shown along the left and top.
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protein folding and complementation of the final structure of the
proteins. In other words, the results indicate that in the presence of
AHS the three-dimension structure of the proteins are adversely

affected, or misfolded. In accordance with the present study, the
results of the previous studies show that the HSPA5 gene is
suppressed under AHS in the liver of commercial chicken breeds
(Schmidt et al., 2015; Wang et al., 2020; 2021). On the contrary,
HSPA5 did not show differential expression under HS in the native
chickens (Sánchez et al., 2022). HSPA5 has been shown to be
differentially expressed in other tissues, for example, upregulated
in the testis (Wang et al., 2014; 2015) and small yellow follicles
(Cheng et al., 2018) and downregulated in the spleen under HS
(Zhang et al., 2019). It has been reported that a decrease in the
transcription of HSPA5 in response to endoplasmic reticulum stress
leads to a decrease in translation, protein folding, protein assembly,
and protein transport through the cell (Lee, 2005; Wang et al., 2019)
and suppresses the immunity (Zhang et al., 2019) and homeostasis
(Kim et al., 2021) in chickens. The suppression of the expression of
SSR1 under AHS was observed in the current study. SSR1 locate on
the “endoplasmic reticulum membrane” and involve in “protein
processing in endoplasmic reticulum”. The protein encoded by the
SSR1 gene acts as a glycosylated membrane of the endoplasmic
reticulum and involve in the translocation of proteins across the
endoplasmic reticulum membrane. In a similar way, the
SDF2L1 gene also plays an important role in the structure of the
endoplasmic reticulum membrane, and acts as a binding agent on
the misfolded protein. The expression of the SDF2L1 gene was
suppressed under the AHS via “unfolded protein response”.
Previous studies have shown that SDF2L1 interacts with folding
enzymes and endoplasmic reticulum chaperones (Meunier et al.,
2002; Bies et al., 2004; Tongaonkar and Selsted, 2009). It interacts
with HSPA5 to regulate the activity of chaperones (Wang et al.,
2017; Hanafusa et al., 2019; Conner et al., 2020). Furthermore, the
SEC23B meta-gene, which was downregulated by AHS and resides
within the green module, was found to be a bio-signature of AHS in
the Decision Tree. It locates on the “endoplasmic reticulum
membrane” and plays a significant role in the “protein processing

FIGURE 4
The result of weighted gene co-expression network analysis (WGCNA) that detected 22modules in which the co-expressed genes were grouped in
the same modules. The nine significant modules (p-value <0.05) were specified from the non-significant modules.

FIGURE 5
Module-trait relationships between the identified modules and
treatment groups (acute heat treated versus non-treated control
groups). The correlation between the traits and the module
eigengenes was used for the calculation of the relationship. The
red color indicate strong positive correlation while the blue color
indicate strong negative correlation. Rows represent module
eigengene and columns represent the treatment groups. The first row
within each cell represent the correlation and the second one
represent the significance level (p-value).
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TABLE 3 Top five hub genes, Top hub, and One hub genes in significant modules for acute heat stress.

Significant modules Five top hub genes (p-value) One hub gene Top hub gene

Brown KDR (2.9E-14) KDR KDR

ITPRIP (1.3E-12)

DGKD (1.3E-12)

FLT4 (5.0E-12)

CCDC50 (7.9E-12)

Green HSPA5 (1.3E-15) HSPA5 BET1

SSR1 (3.8E-15)

BET1 (5.3E-13)

SDF2L1 (1.3E-12)

HYOU1 (3.8E-12)

light cyan ITPR2 (5.9E-13) ITPR2 ITPR2

AREL1 (2.7E-11)

SNRNP27 (3.6E-11)

PPIB (9.9E-11)

TRIP12 (1.6E-10)

Pink LRRC34 (1.8E-16) LRRC34 METTL23

METTL23 (1.0E-15)

CEP68 (2.1E-15)

MRPS7 (2.6E-15)

METTL5 (5.9E-15)

Purple OGT (1.7E-14) OGT CCNL2

SRSF11 (7.1E-14)

CCNL2 (1.3E-13)

RBM3 (3.9E-12)

AP2M1 (2.2E-11)

royal blue NDUFB1 (1.2E-14) NDUFB1 NDUFB1

DBI (1.2E-13)

ATP5MC1 (1.4E-12)

IQGAP1 (4.3E-12)

UQCRHL (8.6E-12)

tan KIF1B (1.4E-13) KIF1B KIF1B

FEM1A (1.7E-12)

TMEM94 (2.9E-12)

ANGEL1 (3.2E-11)

DOCK4 (1.2E-10)

(Continued on following page)
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in endoplasmic reticulum” pathway. SEC23B involves in protein
secretion (Saito et al., 2009) by activating the formation of transport
vesicles from the endoplasmic reticulum (Fromme et al., 2008) and,
therefore, can activate the genes related to the innate immune system
(Fox et al., 2010). Along with the above mentioned meta-genes, the
expression of other important meta-genes (e.g., EIF5B, USP14,
GMPPA, SEC61A1, HDAC4, PTPRG, IGF2R, SEC61B, DERL3,
PRDX1, EMG1, ERLEC1, NMRAL1, SELENOK, HERPUD1,
JMJD6, TAT, EIF2A, PEX10, and UAP1) which also involve in the

process of protein synthesis, were modified significantly under the
AHS and need to be further investigated. For example, EIF5B catalyzes
the joining of the ribosome 40S and 60S subunits and plays an
important role in translation initiation (Lee et al., 1999). USP14 is
an associated subunit of the proteasome and is a physiological
inhibitor of the ERAD pathway and plays a critical role in the
innate immune defense (Puente et al., 2003). SEC61 has
cooperated with protein SEC62, SEC63, and HSPA5 to enable
post-translational transport of small proteins (Haßdenteufel et al.,

TABLE 3 (Continued) Top five hub genes, Top hub, and One hub genes in significant modules for acute heat stress.

Significant modules Five top hub genes (p-value) One hub gene Top hub gene

turquoise PDGFRB (2.1E-14) PDGFRB GFRA1

DUSP16 (3.9E-14)

MYH11 (1.9E-12)

LIFR (8.6E-12)

DNAJC12 (1.27E-11)

yellow CDC42BPB (1.9E-14) CDC42BPB VPS13C

CPT1A (7.8E-14)

VPS13C (1.3E-12)

PIKFYVE (1.4E-12)

ABCA10 (1.5E-11)

FIGURE 6
The association of the identified significant terms which enriched by the meta-genes.
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2018) and has a role in cellular calcium homeostasis (Schubert et al.,
2018). HDAC4 is Responsible for histone deacetylation for epigenetic
repression and therefore have role in cell cycle progression,
transcriptional regulation, and developmental events (Wang et al.,
2022). SEC61 channel mediates transport of polypeptides across the
endoplasmic reticulum (Meacock et al., 2002) and involve in the
biogenesis of proteins (McGilvray et al., 2020).
DERL3 retrotranslocate the misfolded glycoproteins into the
cytosol (Lilley and Ploegh, 2004).

We identified one significant eSNP on the SERP1 and four
significant eSNPs on the SESN1. The SESN1 gene was one of the
meta-genes of the brown module, which has a positive correlation
with AHS (r = +0.5, p-value = 0.003). SESN1 has been associated
with HS in cardiac and skeletal muscle and has a role in MAP
Kinase signaling pathway (Srikanth et al., 2019). SESN1 also acts in
hyperthermia resistance and antioxidant firewall (Budanov et al.,
2004). SESN1 involve in the regulation of metabolism, energy
homeostasis, cell growth, and viability under various cellular
stresses (Velasco-Miguel et al., 1999; Budanov et al., 2002).

SERP1 is induced under the presence of stressors and interacts
with the molecular chaperone calnexin, which can control early
membrane protein biogenesis (Faria et al., 2012). SERP1 is one of
the unfolded protein response genes (Vickers et al., 2017). It seems
that the overexpression of SERP1 can alleviate the acute injury of
liver (Cai et al., 2022). SERP1 plays a significant role in
“endoplasmic reticulum unfolded protein response,” and
“endoplasmic reticulum membrane” based on BP and CC,
respectively. It seems that the identified eSNPs cause allele-
specific gene expression and are associated with the AHS.
Overall, our results support the previous findings on AHS in
chickens. For example, ANGPTL4 was also identified in the
study by Coble et al. (2014), which was one of the meta-genes
within the yellow modules of the current study which harbor three
significant eSNPs. HSPA5, HSPA8, TTC7A, CMPK2, TTC7A,
HSPH1, CEMIP, ADAMTS15, TMEM255A, FAMM222A, and
JMJD6 genes were identified as important related genes in the
study by Kim et al. (2021). HSPA5, TTC7A, HSPH1, HSPA8,
TTC7A, and FAMM222A were within the genes of the green
module, and CEMIP, ADAMTS15, TMEM255A, MBOAT2 were
within the genes of brown, turquoise, and light cyan modules,
respectively. CMPK2 and JMJD6 were two meta-genes that the
second was a member of the green module and involved in the
MF term “ribosome binding”. Both HSPA5 and ANKRD9 were
identified as related key genes in the study by Wang et al. (2021).
ANKRD9, which harbored three significant eSNPs, was a
member of the turquoise module in the current study. Barreto
Sánchez et al. (2022) identified CPT1A and ANGPTL4 as
potential candidate genes related with AHS, and we identified
both of them as either hub-gene (CPT1A) or a member of the
yellow module (ANGPTL4). Although we discovered the
introduced genes via multiple bioinformatics approaches and
the accuracy of the identification of them seems great, we strongly
suggest further detailed wet-lab experiments to elucidate the
effects of AHS on the introduced genes. Moreover, further
research into the regulatory effects of the identified key genes
is also recommended.

TABLE 4 The performance of machine learning models in acute heat stress in chickens with ten-fold cross validation.

Model Accuracy Sensitivity Specificity F_measure (%) Precision AUC

Random Forest with Accuracy criterion 60.00%+/-47.57% 56.25% 68.75% 60.00 64.29% 0.600±0.384

Random Forest with Gain Ratio criterion 60.00%+/-41.68% 50.00% 75.00% 57.14 66.67% 0.500±0.397

Decision Tree with Gain Ratio criterion 67.50%+/-37.26% 62.50% 75.00% 66.67 71.43% 0.725±0.302

Decision Tree with Accuracy criterion 57.50%+/-40.64% 50.00% 56.25% 51.61 53.33% 0.625±0.358

Decision Tree with Gini Index criterion 65.00%+/-43.23% 56.25% 75.00% 62.07 69.23% 0.700±0.299

Decision Tree with Information Gain criterion 55.00%+/-42.61% 50.00% 56.25% 51.61 53.33% 0.525±0.380

Deep Learning with Tanh parameter 27.50%+/-37.96% 56.25% 0.00% 43.90 36.00% 0.200±0.251

Deep Learning with Rectifier parameter 40.00%+/-34.79% 75.00% 12.50% 57.14 46.15% 0.450±0.394

Deep Learning with Maxout parameter 47.50%+/-41.28% 56.25% 31.25% 50.00 45.00% 0.400±0.384

Naive Bayes 21.90%+/-20.37% 15.00%+/-22.36% 31.67%+/-33.54% 13.79 15.00%+/-22.36% 0.239±0.237

FIGURE 7
Decision Tree that identified the most important biomarkers for
the differentiation of chickens under cute heat stress from those under
normal rearing condition. Only the Decision Tree of themost accurate
criterion (i.e., Gain Ratio) was shown here.
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FIGURE 8
Circular Manhattan plot that visualized the association of eSNPs with the eigenvalues of ninemodules (layers of circles). The eSNPs were called from
the RNA-seq data of 32 chickens. Four eSNPs in SESN1 meta-gene (positions chr3:67138413, 67135835, 67137358, 67137810) and one eSNP on the
SERP1 meta-gene (position chr9:23805255) were found to be associated with all nine modules.

FIGURE 9
Validation of the expression modification of 17 meta-genes by two additional RNA-seq datasets. The expression fold changes of the 17 meta-genes
were strongly in agreement with those in the two validation experiments. Since we could not find other datasets from the acute heat stress experiments,
we used two datasets that belonged to chronic heat stress.
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Conclusion

In the present study, DEGs, meta-genes, genes co-expression
networks, hub-genes, and alleles associated with AHS were
identified. We found that under AHS, some components of the
endoplasmic reticulum chaperone complexes (HSPA5, SDF2L1)
were suppressed, which may result to the disruption of non-
covalent folding and unfolding of the proteins. The translocation
of proteins across the endoplasmic reticulum membrane and protein
secretion also seem to be disrupted by the downregulation of SSR1 and
SEC23B genes. In general, we postulate that the AHS leads to the
disruption of protein structure, protein binding, protein translocation,
protein formation, and degradation of the misfolded proteins.
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