
Identification and verification of
m7G-Related genes as biomarkers
for prognosis of sarcoma

Haotian Qin1,2†, Weibei Sheng1,2†, Jian Weng1,2†, Guoqing Li1,2,
Yingqi Chen1,2, Yuanchao Zhu1,2, Qichang Wang1,2, Yixiao Chen1,2,
Qi Yang3, Fei Yu1,2*, Hui Zeng1,2* and Ao Xiong1,2*
1National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University
Shenzhen Hospital, Shenzhen, China, 2Department of Bone & Joint Surgery, Peking University Shenzhen
Hospital, Shenzhen, China, 3Department of Medical Ultrasound, Peking University Shenzhen Hospital,
Shenzhen, China

Background: Increasing evidence indicates a crucial role for N7-methylguanosine
(m7G) methylation modification in human disease development, particularly cancer,
and aberrant m7G levels are closely associated with tumorigenesis and progression
via regulation of the expression of multiple oncogenes and tumor suppressor genes.
However, the role of m7G in sarcomas (SARC) has not been adequately evaluated.

Materials and methods: Transcriptome and clinical data were gathered from the
TCGA database for this study. Normal and SARC groups were compared for the
expression ofm7G-related genes (m7GRGs). The expression of m7GRGswas verified
using real-time quantitative PCR (RT-qPCR) in SARC cell lines. Then, differentially
expressed genes (DEGs) were identified between high and low m7GRGs expression
groups in SARC samples, and GO enrichment and KEGG pathways were evaluated.
Next, prognostic values of m7GRGs were evaluated by Cox regression analysis.
Subsequently, a prognostic model was constructed using m7GRGs with good
prognostic values by Lasso regression analysis. Besides, the relationships between
prognostic m7GRGs and immune infiltration, clinical features, cuproptosis-related
genes, and antitumor drugs were investigated in patients with SARC. Finally, a ceRNA
regulatory network based on m7GRGs was constructed.

Results:The expressionof tenm7GRGswas higher in the SARCgroup than in the control
group. DEGs across groups with high and low m7GRGs expression were enriched for
adhesion sites and cGMP-PKG. Besides, we constructed a prognostic model that
consists of EIF4A1, EIF4G3, NCBP1, and WDR4 m7GRGs for predicting the survival
likelihood of sarcoma patients. And the elevated expression of these four prognostic
m7GRGs was substantially associated with poor prognosis and elevated expression in
SARC cell lines. Moreover, we discovered that these four m7GRGs expressions were
negatively correlated with CD4+ T cell levels, dendritic cell level and tumor purity, and
positively correlated with tumor mutational burden, microsatellite instability, drug
sensitivity and cuproptosis-related genes in patients with sarcomas. Then, a triple
regulatory network of mRNA, miRNA, and lncRNA was established.

Conclusion: The current study identified EIF4A1, EIF4G3, NCBP1, andWDR4 as prognostic
genes for SARC that are associatedwithm7G.Thesefindingsextendour knowledgeofm7G
methylation in SARC and may guide the development of innovative treatment options.
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Introduction

Sarcoma (SARC) is a very heterogeneous malignant solid tumor
with more than 100 subtypes (Fornaciari, 2018; Siegel et al., 2019).
Sarcomas can occur at any age, but are more prevalent among
teenagers and young adults (Reed et al., 2019). Standard therapies
for sarcomas include surgery, radiation, and chemotherapy;
nevertheless, these approaches had some limitations. Only a few
kinds, such as osteosarcoma, Ewing’s sarcoma, and
rhabdomyosarcoma were applicable to chemotherapy and targeted
therapy (Harwood et al., 2015; Hiniker and Donaldson, 2015; Paprcka
et al., 2022). The metastasis rate of sarcomas within 5 years is as high
as 50%, and only 5% of patients with sarcoma metastases survived for
5 years (Brennan et al., 2014; Zhu et al., 2020), despite the fact that
surgery and radiation can eliminate sarcomas. Therefore, there is an
immediate need to find novel sarcoma treatment strategies.

There are more than 160 kinds of chemical modification in RNA
(Boccaletto et al., 2018; Mathlin et al., 2020). In both eukaryotes and
prokaryotes, RNA methylation is a common post-transcriptional
alteration (Courtney et al., 2019; Chen et al., 2021). N6-
methyladenosine (m6A), C5-methylcytidine (m5C), N7-
methylguanosine (m7G) and 2′-O-methylation were included in
RNA methylation according to the different methylation sites
(Zhang et al., 2021). RNA splicing (Zhao et al., 2014; Xiao et al.,
2016), stability (Wang et al., 2014), translation (Meyer et al., 2015;
Wang et al., 2015), DNA damage repair (Xiang et al., 2017) were
regulated by RNA methylation, which then affected the occurrence
and development of cancer (Li et al., 2017a; Zhang et al., 2017; Wang
et al., 2019a). m7G is a kind of RNA methylation modification
involving the addition of a methyl group to the seventh N position
of RNA guanine (G) (Zhang et al., 2021). m7G modification is one of
the most common forms of base modification in post-transcriptional
regulation, which is broadly distributed in the 5’cap region of tRNA
(Guy and Phizicky, 2014), rRNA (Sloan et al., 2017), siRNA
(Pandolfini et al., 2019) and eukaryotic mRNA (Lin et al., 2018).
The methyltransferase-like 1 (METTL1) and WD repeat domain 4
(WDR4) complex, which was a member of m7GRGs, primarily
governed the processing, metabolism, and function of RNA
(Alexandrov et al., 2002; Malbec et al., 2019). m7G methylation of
tRNA and miRNA played a crucial role in the occurrence and
development of cancers, such as liver cancer (Li et al., 2022), lung
cancer (Ma et al., 2021), and colon cancer (Chen and Liu, 2021).
However, few investigations on m7GRGs in sarcomas have been
conducted.

The immune system has a considerable influence on sarcomas
progression. Immune checkpoints and their ligands are expressed on
the surface of various effector lymphocytes (Heinrich et al., 2018; Jiang
et al., 2018). Sarcomas with a greater number of mutations are
genetically heterogeneous and tend to have multiple neoantigens
that can be targets for T cells and thus represent promising
candidates for immune check-point inhibitors therapies. However,
sarcomas with less mutated yet expresses immunogenic self-antigens
(Nakata et al., 2021; Wang et al., 2021). Therefore, strategies to
improve antigen presentation and T -cell infiltration may allow for
successful immunotherapy. Therefore, the strategies of sarcoma and
antigen presentation, T cell infiltration, and immune checkpoints may
contribute to the success of immunotherapy.

A systematic bioinformatics investigation of m7GRGs in sarcomas
was conducted in this study. Gene expression and mutation rates in

sarcoma tissues were analyzed based on 27 m7GRGs. They were split
into two subtypes by consensus clustering, and the signaling pathways
of DEGs enrichment were analyzed. Prognostic m7GRGs in sarcomas
were also analyzed using logrank test and univariate regression
analysis. Cell experiment results revealed that prognostic m7GRGs
are abundantly expressed in sarcoma cell lines. A prognostic model for
predicting the overall survival (OS) and disease-specific survival (DSS)
of sarcoma patients was created. There was a significant correlation
between prognostic m7GRGs and immune cell infiltration, tumor
mutation burden (TMB), microsatellite instability (MSI), and drug
sensitivity. Moreover, there was a strong connection between
m7GRGs and cuproptosis-related genes. Finally, ceRNA regulatory
networks were constructed to screen the lncRNA-miRNA-mRNA
networks that might affect the prognosis of patients with sarcoma.
Our findings underscored the significance of m7GRGs in the
formation of sarcomas, laying the groundwork for the use of m7G
regulators in the treatment of sarcomas.

Materials and methods

Data sources and preprocessing

29 m7GRGs were identified based on published data in this study,
including AGO2, CYFIP1, DCP2, DCPS, EIF3D, EIF4A1, EIF4E,
EIF4E2, EIF4E3, EIF4G3, GEMIN5, IFIT5, LARP1, LSM1,
METTL1, NCBP1, NCBP2, NCBP2L, NCBP3, NSUN2, NUDT10,
NUDT11, NUDT16, NUDT3, NUDT4, SNUPN, and WDR4. In
contrast, neither NUDT4B nor EIF4E1B was expressed in sarcomas
within the TCGA dataset. Consequently, the remaining 27 m7GRGs
were used for further analysis. Clinical information regarding
sarcomas and m7GRGs expression was gathered from The Cancer
Genome Atlas (TCGA) database for this investigation. (https://portal.
gdc. cancer.gov//) (Tomczak et al., 2015). This study included
260 instances of sarcoma and two samples of non-cancerous tissue.
The data utilized in this study were standardized data per million
transcripts and their data distribution was close to the normal
distribution, which was realized by R software (v4.0.3) “ggplot2”.
Gene expression data were extracted to construct data matrices, which
were then analyzed using wilcox test.

Identification of molecular subgroups

Firstly, 27 m7GRGs were retrieved from the TCGA expression
matrix. Consistency analysis was performed using the R software
package Consensus Cluster Plus (v1.54.0), and the maximum number
of clusters based on the consistent grouping of the twenty-seven genes was
six (Wilkerson and Hayes, 2010). The cases of TCGA-SARCREAD
disease were divided into two clusters based on the expression profile
of m7GRGs. This procedure was repeated one hundred times to confirm
the stability and reproducibility of the classification.

Identification and functional enrichment
analysis of DEGs

The DEGs between C1 and C2 subtypes were obtained by using
the Limma package (version 3.40.2) in R software (Ritchie et al., 2015).
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The adjusted p-value was analyzed in the TCGA database to correct
the false positive results. “Adjusted p < 0.05 and log2 (multiple
changes) > 1.5 or log2 (multiple changes) <-1.5″was defined as the
criteria for screening differential expression of mRNA. Gene MANIA
(http://www.genemania.org) (Warde-Farley et al., 2010) is a software
that elucidates the relationship between genes and data sets by
building a network of gene interactions. In this study, Gene
MANIA software was used to visualize the gene network of
m7GRGs in terms of physical interaction, co-expression,
prediction, co-mapping, and genetic interaction, as well as to assess
its function. STRING database (https://string-db.org/) (version 11.0)
(Szklarczyk et al., 2019) is a search tool for analyzing biological gene or
protein interactions, including biological databases and networks for
identified and predictable protein-protein interactions. Four
differentially expressed m7GRGs were investigated using a PPI
network to determine their interaction. The GO function and the
enrichment of KEGG pathways were analyzed using “cluster Profiler”
R packet (Yu et al., 2012). In addition, other potential biological
pathways were identified using GSEA (http://software.broadinstitute.
org/gsea/index.jsp) (Powers et al., 2018). According to TCGA data,
DEGs were classified into upregulated and downregulated categories.
10000 gene combinations were performed to identify pathways with
significant changes in each analysis. The genes were regarded as
enriched to meaningful pathways when p. adjust <0.05 and FDR
(false discovery rate) < 0.25 (Ge et al., 2021). Statistical analysis and
graphing were performed using the R package cluster profile (3.18.0).

Immune infiltration, and immune checkpoint-
related genes expression in two subgroups

The R software package immunedeconv (Sturm et al., 2020) was
used for immune score assessment to compare the degree of immune
cell infiltration in C1 (N = 156) and C2 (N = 104) subgroups by
Wilcoxon test, by integrating six state-of-the-art algorithms, including
TIMER, xCell, MCP-counter, CIBERSORT, EPIC, and quantTIseq.
The expression of some immune checkpoint-related genes was also
analyzed. The results were visualized through the R (v4.0.3) packages
“ggplot2″ and “pheatmap.” The abundance of immunized cells
infiltrated was analyzed through TIMER (https://cistrome.
shinyapps. io/timer/) database (Li et al., 2017b) and TCGA
database. In addition, the infiltration level of immune cell types
was quantified by single sample GSEA (ssGSEA) in R packet
“GSVA” (Hanzelmann et al., 2013).

Expression of m7GRGs and survival analysis

The expression of m7GRGs in 260 sarcoma tissues and two
paracancerous tissues was examined using the TCGA database. In
addition, univariate Cox regression analysis was used to investigate the
effect of m7GRGs on the prognosis of sarcomas. The logrank test and
univariate Cox regression were used to derive Kaplan-Meier curves, p
values, and hazard ratios (HR) with 95% confidence intervals (CI).
Four m7GRGs (EIF4A1, EIF4G3, NCBP1, WDR4) with higher hazard
ratios were screened from the Cox regression analysis plot. In addition,
the relationship between the prognostic m7GRGs and the OS rate in
sarcoma patients was analyzed, and the Area Under Curve under the
receiver operator characteristic (ROC) curve was calculated.

Cell lines and culture conditions

Cell lines such as 143B, SW982, SW872, osteoblast cell line (hFOB1.19,
Punosai, Wuhan, China), synovial fibroblast (HFLS, Jennio Biotech,
Guangzhou, China) and human preadipocyte line (HPA-v, sciencell)
were used in this study. All cell lines were cultured in Dulbecco modified
Eagle medium (DMEM; Gibco, Grand Island, NY, United States)
supplemented containing 10% fetal bovine serum (Gibco, Grand Island,
NY, United States), 100 U/ml penicillin and 100 U/ml streptomycin
(Invitrogen, Carlsbad, CA, United States). The hFOB1.19 cell line was
cultured in an incubator containing 5% CO2 at 34°C. The remaining
cells were cultured in an incubator containing 5% CO2 at 37°C.

RT-qPCR

Total RNA was extracted from cultured cells using high-purity RNA
separation kits (Roche Diagnostics, Mannheim, Germany) and DNase I
(Roche Diagnostics, Sigma-Aldrich) according to the manufacturer’s
instructions. RNA was immediately reverse-transcribed using HiScript

®II 1st Strand cDNASynthesis Kit (MR101-01MR101V azyme, Nanjing,
China) according to the manufacturer’s instructions. Then, AceTaq

®qPCR SYBR Green Master Mix (Q121-03 azyme V azyme, China)
was used for quantitative RT-PCR. The amplification conditions were:
pre-denaturation at 95°C for 30 s, denaturation at 95°C for 5 s, annealing
at 60°C for 30 s, and a total of 40 cycles according to 1 μmol primer, 10 ng
sample, 0.08 μmol ROX dye, and 2 × SYBR Green Pro TaqHS Premix Ⅱ
hybrid setting 20 μL Reaction system. Several specific primer sequences
(Gene Pharma, China) were designed. The primer sequences are listed in
Table 1. For PCR analysis, the mean cycle threshold (Ct) value of each
target gene was standardized to that of the housekeeping gene GAPDH.
The results were shown in a fold change using the 2−ΔΔCT method.

Construction and validation of the m7GRG
prognostic model

A prognostic model was constructed using LASSO-Cox regression
analysis based on the above prognostic m7GRGs. The prognostic

TABLE 1 Primer sequences of genes.

Real-time quantitative PCR primer sequence

Gene Sequence (5′- 3′ on minus strand)

GAPDH Fwd: GGAGCGAGATCCCTCCAAAAT

Rev: GGCTGTTGTCATACTTCTCATGG

EIF4A1 Fwd: ATGGCACTAGGAGACTACATGG

Rev: CCACGGCTTAACATTTCGTCA

EIF4G3 Fwd: CCTAGAGCTACCATCCCGAAC

Rev: GGGCCACTATGACGGTACTG

NCBP1 Fwd: GGAGAGCAACCTAGAAGGCTT

Rev: AGGTAATAGGCGTGCAACTGT

WDR4 Fwd: TAACCGATGACAGTAAGCGTCT

Rev: TCTCCTCCGAGGCTATGAAAG
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m7GRG risk score was calculated as follows: Risk score = ∑I
Coefficient (mRNAi) × Expression (mRNAi) according to the
results of multivariate Cox regression analysis. Next, TCGA-SARC
patients were divided into low-risk and high-risk subtypes according
to the average risk score. The OS rates of the two subgroups were
compared using Kaplan-Meier analysis, and time ROC research was
done to estimate the accuracy of the model. The optimal truncated
expression value is determined by the “surve_cutpoint” function of the
“surviver” R package. According to the threshold value, the GSE17674,
GSE71118, and GSE21050 data set patients downloaded from the
GEO database are divided into high expression and low expression
subgroups, further verifying the above results. The risk score of each
included patient was calculated using the same model based on the
characteristics of prognostic genes. Next, Kaplan-Meier and ROC
curve were used to verify the predictive value of prognostic gene
markers.

Building a predictive nomogram

Each variable (including the p-value, and HR with 95% CI) was
presented using univariate and multivariate cox regression analysis
and forest plots by the “forest plot” package. The “rms” package was
used to develop a Nomogrammodel for predicting 1, 3, and 5-year OS
and DSS based on the results of multivariate cox proportional hazards
analysis.

Mutation analysis

CBioPortal (The cBio Cancer Genomics Portal) (http://www.
cbioportal.org/index) provided a visual tool (Gao et al., 2013) for
analyzing cancer gene data. Based on the TCGA database, cBioPortal
was used to analyze the genomic map of m7GRGs to comprehend the
mutation frequency in sarcomas.

TMB, MSI, ESTIMATE score, and drug
sensitivity

The relationship between Prognostic m7GRGs in sarcomas and
TMB, MSI, and ESTIMATE score was analyzed using Spearman’s
method. The chemotherapeutic response was predicted for each
sample using the GDSC database (https://www.cancerrxgene.org/)
(Yang et al., 2013). The half-maximum inhibitory concentration
(IC50) of chemotherapeutic medicines was determined using ridge
regression using the R package pRRophetic. Drug sensitivity and gene
expression profiling data from cancer cell lines in the GDSC database
were integrated in this study.

Single cell analysis

The effect of prognostic m7GRGs on the expression of single cell
subsets in the tumor microenvironment (TME) was investigated using
TISCH (http://tisch.comp-genomics.org/) (Sun et al., 2021). TISCH is
a scRNA-seq database that focuses on the TME and provides thorough
annotation of single-cell cell types. Immune cells, stromal cells, and
malignant cells were presented in this dataset. The t-distributed

stochastic neighborhood embedding (t-SNE) map of SARC_
GSE119352_mouse_ aPD1aCTLA4 and the heatmap of SARC_
GSE119352_mouse_aPD1aCTLA4 were exhibited using the TISCH
database to illustrate the effect of m7GRGs on the TME of sarcoma.
The scatter diagrams of the correlation between immune infiltration
levels between m7GRGs and tumor-associated fibroblasts (CAFs)
were drawn by TIMER2.0 (http://timer.cistrome.org/) (Li et al., 2020).

Cuproptosis-related gene expression analysis

The correlation between prognostic m7GRGs and cuproptosis-
related gene expression in two hundred and sixty sarcoma samples was
analyzed, and the difference in cuproptosis-related gene expression
between the C1 group (N = 156) and C2 group (N = 104) was
investigated. The genes FDX1, LIAS, LIPT1, DLD, DLAT, PDHA1,
PDHB, MTF1, GLS, CDKN2A, SLC31A1, and ATP7B linked to
cuproptosis were examined.

Competing endogenous RNA network
construction

Potential miRNA targets of prognostic CRGs were predicted
using the ENCORI (http://starbase.sysu.edu.cn/) database (Li et al.,
2014) and RNA22 (https://cm.jefferson.edu/rna22/interactive)
database (Loher and Rigoutsos, 2012). The prognostic value of
these putative miRNA targets in sarcomas was also confirmed
using ENCORI, Kaplan-Meier Plotter, and TCGA-SARC cohort.
The probable binding of lncRNAs to prognostic miRNAs was then
predicted using the miRNet database (Chang et al., 2020) and
ENCORI database. A miRNA-lncRNA regulatory network was
established by Cytoscape (version 3.7.1; http://www.cytoscape.org/
) software (Shannon et al., 2003). The prognostic significance of
these possible lncRNA targets in sarcomas was investigated further.
Finally, a lncRNA-miRNA-mRNA regulatory network was
established.

3 Results

RNA-seq transcriptional group data of
m7GRGs in sarcomas

The flowchart of the study is illustrated in Figure 1. TCGA
dataset was used to investigate the expression of twenty-seven
m7GRGs in sarcomas and para-cancerous tissues. In cancer
tissues, the expression of WDR4, NUDT3, NCBP1, DCP2,
EIF4A1, NSUN2, CYFIP1, EIF4G3, GEMIN5, and AGO2 was
upregulated compared with para-cancerous tissues (Figure 2A).
In addition, the cBioPortal database was used to investigate the
genetic variations of prognostic m7G in order to comprehend the
etiology of m7GRG diseases. Eighty percent of the 255 sarcoma
patients exhibited m7G regulatory gene alterations indicating a
high frequency of somatic mutations in the m7GRGs of
sarcomas. Figure 2B compares the mRNA expression z-scores
of m7GRGs in sarcoma tissues with para-cancerous tissues.
These findings demonstrated that m7GRGs are closely
associated with sarcomas.
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Identification and analysis of m7GRG clusters
in sarcomas

The interaction between 27 m7GRGs was analyzed in order to
comprehensively study the role of m7Gmodification in sarcomas. The
protein-protein interaction network result showed a close relationship
between m7G-related proteins (Figure 3A). In addition, Pearson
correlation analysis was conducted to explore the correlation
between the expression patterns of 27 m7GRGs in TCGA data sets.
These results showed that most of the 27 m7GRGs were positively
correlated (Figure 3B). Therefore, the biological function of these
27 m7GRGs and sarcomas were intimately related. 260 sarcoma
samples were clustered in the TCGA database using consensus
clustering to identify potential m7GRG clusters. All tumor samples
were classified into k (k = 2–6) distinct clusters based on the
expression of 27 m7GRGs in sarcomas. Subsequently, according to
the cluster analysis findings, the number of clusters was set at two,
suggesting that the sarcoma patients were properly split into two
clusters (C1 and C2 clusters) (Figures 3C–F).

DEGs and functional enrichment analysis

4,266 upregulated and 573 downregulated genes were included in
the DEGs identified between C1 and C2 subtypes. Then, a volcano

map (Figure 4A) and a heat map (Figure 4B) were constructed based
on these DEGs. RNA cap binding, translation regulatory activity,
translation initiation, nucleotide diphosphatase activity, translation
factor activity, RNA binding, and nucleic acid binding were among the
processes associated with the functions of the significantly co-
expressed genes in this network, as determined by GeneMANIA.
(Figure 4C). The identified up-and-down-regulated DEGs were
further subjected to GO and KEGG enrichment analysis. Biological
process (BP) analysis showed that the DEGs were mainly concentrated
in myofibril assembly, cell junction assembly, DNA replication, cell
cycle phase transition regulation, and extracellular matrix tissue. The
Cell Composition (CC) analysis revealed that the majority of DEGs
were found in contractile fibers, myofibril, sarcomere, extracellular
matrix containing collagen, cell-matrix junction, adhesion plaque.
Molecular Function (MF) analysis showed that the DEGs were
mainly concentrated in actin binding, extracellular matrix
structural components, adenylate cyclase binding, tubulin binding,
and collagen binding. The DEGs were most abundant in adhesion
plaque, cGMP-PKG signal route, cAMP signal pathway, ECM-
receptor interaction, and cell cycle, as determined by KEGG
analysis (Figure 4D; Supplementary Table S1). The results of Gene
Set Enrichment Analysis (GESA) showed that m7GRGs were tightly
associated with adhesion plaque, cell cycle checkpoint, DNA repair,
TP53 transcriptional regulation, and EGFEGFR signal pathway. Due
to the activation of these pathways, the likelihood of tumor

FIGURE 1
The flowchart of the present study.
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development and progression was raised (Figure 4E; Supplementary
Table S2).

Analysis of the correlation between immune
infiltration and immune checkpoints

The results showed that the expression of m7GRGs was closely
related to tumor-infiltrating immune cells, which included CD4+

T cells, CD8+ T cells, B cells, NK cells, macrophages, myeloid
dendritic cells, monocytes, endothelial cells, and neutrophils
(Figures 5A, B; Supplementary Figures S1A–E). Finally, the results
of immune checkpoints’ expression showed significant differences in
CD274, HAVCR2, PDCD1, and TIGIT between the two subtypes
(Figure 5C), and m7GRGs might be a predictive marker for the
treatment of sarcomas by targeting immune checkpoints.

DEGs clinicopathological characteristics and
prognostic models

Clinical characteristics of patients with sarcoma from TCGA
cohort (Supplementary Table S3). To determine the clinical
importance of m7GRGs in sarcoma tissues, the connection between
the expression of C1 and C2 subtypes and various clinicopathological
characteristics was examined using the TCGA database. The research
revealed substantial differences between group C1 and group C2 in
gender, race, and new tumor type (Supplementary Figure S3).
Univariate Cox regression analysis was performed to identify
prognostic m7GRGs. Survival analysis suggested that EIF4A1,
EIF4G3, METTL1, NCBP1, NCBP3, and WDR4 were potential risk
factors for OS (Figure 6A). Moreover, AGO2, EIF4G3, NCBP1, and

WDR4 were potential risk factors for DSS in sarcomas. The mRNA
expression of EIF4A1, EIF4G3, NCBP1, and WDR4 in sarcomatous
cell lines (143B, SW982, and SW872) was considerably upregulated
compared to their equivalent normal cell lines (Figure 6B). Based on
the above prognostic analysis, Kaplan-Meier survival curve revealed
that the OS rate of sarcoma patients with high expression of EIF4A1
(HR = 1.64, p = 0.016), EIF4G3 (HR = 2.52, p = 0), NCBP1 (HR = 1.74,
p = 0.007) and WDR4 (HR = 1.98, p = 0.001) was lower. (Figures 6C,
D). Consequently, four genes with prognostic values (EIF4A1,
EIF4G3, NCBP1, and WDR4) were identified.

Construction and validation of the m7GRG
prognostic model by TCGA dataset and
external databases

A prognostic gene model was constructed using LASSO Cox
regression analysis based on prognostic m7GRGs (Figure 7;
Supplementary Figures S3A, B). Risk score = (0.1472) *EIF4A1 +
(0.4087)*EIF4G3 (−0.2538)*NCBP1 + (0.6578)*WDR4 was applied to
the calculation of OS in sarcoma patients. Sarcoma patients were
divided into two groups according to the risk scores, survival status,
and the expression of EIF4A1, EIF4G3, NCBP1, and WDR4 (Figures
7C, D). The risk of mortality rose and survival duration reduced with
the rise of risk score (Figure 7C). Sarcoma patients with high-risk
scores had a decreased likelihood of OS (median time = 4 years, p = 6e-
5) according the result of the Kaplan-Meier curve (Figure 7D). The
area under the ROC curve (AUC) for the 1-year, 3-year and 5-year
ROC curves were 0.724, 0.638, and 0.718 respectively (Figure 7E). The
same analysis was carried out on the analysis of DSS. Sarcoma patients
were divided into two groups based on the distribution of risk scores,
survival status, and expression of EIF4G3 andWDR4 (Supplementary

FIGURE 2
The variation and prognostic value of m7GRGs in sarcomas. (A) The expression of twenty-seven m7GRGs in sarcomas and paracancerous tissues. The
upper and lower ends of the box represent the quartile range of values; the lines in the box represent the median; (B) the copy number of twenty-seven
m7GRGs in the TCGA-SARC queue.
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Figures S3C, D) and the risk score = (0.1036)*EIF4G3 + (0.5255)
*WDR4 was applied to the calculation of DSS. The DSS is shorter the
higher the patient’s risk score (HR = 1.974 95% CI = 1.259–3.095, log-
rank p = 0.00302) (Supplementary Figures S3D). The area under the
ROC curve (AUC) in the 1-year, 3-year, and 5-year ROC curves was
0.696, 0.621, and 0.693, respectively (Supplementary Figure S3E). The
prognostic m7GRG model showed a substantial correlation between
sarcoma patient survival rate and m7GRGs. In order to verify the
predictive value of the four gene characteristics, we calculated the
patient’s risk score GEO data set (GSE17674, GSE71118 and
GSE21050) using the same formula, which was consistent with the

results of the TCGA cohort. Distribution of risk score, survival time
and m7GRGs expression in each SARC patient (Supplementary
Figures S4A, S5A, S6A). The OS of patients in the high-risk group
was significantly lower than those in the low-risk group (p = 0.00137,
p = 0.000474 and p = 0.00107) (Supplementary Figures S4B, S5B, S6B).
The AUC of 1-year, 3-year and 5-year OS is 0.703, 0.637 and
0.709 respectively (Supplementary Figutre S4C), 0.521, 0.55, and
0.528 respectively (Supplementary Figure S5C) and 0.509, 0.54 and
0.53 respectively (Supplementary Figure S6C). To sum up, these
results confirm the effectiveness of our risk scoring model. The
four gene characteristics can predict OS in SARC.

FIGURE 3
Identification of common clusters based on the expression of m7GRGs. (A) Protein-protein interaction of twenty-seven m7GRGs; (B) Pearson
correlation analysis of twenty-seven m7GRGs expressions in sarcomas; (C) cumulative distribution function (CDF) (k = 2–6); (D) relative change of area under
CDF curve (k = 2–6); (E) consensus clusteringmatrix (k = 2). (F) The heatmap ofm7GRG expression in different subgroups; red for high expression and blue for
low expression.
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Building of a predictive nomogram

A predictive nomogram was built to predict the survival
probability of sarcoma patients. The results of the univariate and
multivariate analyses revealed that WDR4 expression and race were
independent factors affecting the prognosis of sarcoma patients
(Figures 8A, B; Supplementary Figures S7A, B). The predictive
nomogram suggested that the 3-year and 5-year OS rates and
DSS rates were accurately predicted compared with an ideal
model in the entire cohort (Figures 8C, D; Supplementary Figures
S7C, D).

Prognostic m7GRGs interfere with immune
cell infiltration in sarcomas

The correlation between the expression of prognostic m7GRGs
(EIF4A1, EIF4G3, NCBP1, WDR4) and immune infiltration in
sarcomas was investigated using the TIMER database and TCGA
database. According to TIMER data, EIF4G3, and NCBP1 were
negatively connected with CD4+ T cells and dendritic cells,
however, EIF4A1 and WDR4 were not substantially correlated with
immune cell infiltration in sarcomas (Figure 9A). Higher amounts of
CD4+ T cells and neutrophils were associated with a better prognosis,

FIGURE 4
DEGs and functional enrichment analysis. (A) DEGs’ volcano plot between C1 and C2 subtypes. (B) DEGs’ heat map between C1 and C2 subtypes. (C)
Gene Interaction Network. (D) Enriched item in GO analysis and KEGG analysis. (E) Enrichment plots from GSEA. BP, biological process; CC, cellular
composition; MF, molecular function.
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as determined by immune survival testing. In addition, the prognosis
was worse the greater the expression of EIF4G3 and NCBP1
(Figure 9B). Then, the infiltration of twenty-four immune cell types
in sarcomas was determined using ssGSEA method, and the
relationship between prognostic m7GRGs and immune cell
infiltration was studied by Spearman analysis. The results showed

that the high expression levels of prognostic m7GRGs were
significantly negatively correlated with most immune cells.
EIF4G3 and NCBP1 were positively correlated with T helper cells,
Th2 cells, but negatively correlated with pDC, Cytotoxic cells, DC,
T cells. In addition, EIF4A1 andWDR4 were positively correlated with
T helper cells, and Th2 cells and negatively correlated with Mast cells,

FIGURE 5
Immune infiltration estimated by QUANTISEQ algorithm and the expression distributions of eight immune checkpoint-related genes in sarcoma
subgroups. (A) Immune cell score heat map. (B) Proportions of eleven types of immune cells shown for each sarcomatous patient by a histogram. (C) The
expression distributions of eight immune checkpoint-related genes in sarcomatous subgroups. *p < 0.05; **p < 0.01; ***p < 0.001.
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pDC, DC, NK cells, and Cytotoxic cells (Supplementary Figure S8A).
Furthermore, EIF4G3, NCBP1, and WDR4 were negatively correlated
with the ESTIMATE score (Supplementary Figure S8B). The findings
demonstrated a correlation between m7GRGs and immune
infiltration of tumors.

TMB, MSI, and drug sensitivity analysis

The correlation between prognostic m7GRGs and TMB, MSI was
analyzed in sarcomas to determine whether m7GRGs can be used as
biomarkers for screening chemotherapeutic medications. MSI and
TMB may be utilized as predictors of the immunotherapy response of
certain cancers (Rizzo et al., 2021). The results showed that EIF4G3
(p = 0.032), NCBP1 (p = 0.003), andWDR4 (p = 0.031) were positively
correlated with TMB (Figure 10A). EIF4A1 (p = 1.35e−04), EIF4G3
(p = 0.019), NCBP1 (p = 0.030), and WDR4 (p = 7.96e−05) were

strongly positively associated with MSI (Figure 10B). Finally, the gene
expression patterns of cancer cell lines from the Genomics of Drug
Sensitivity in Cancer database were combined in order to
comprehensively investigate the potential therapeutic benefit of the
EIF4A1, EIF4G4, NCBP1, and WDR4 genes. The result of Pearson
correlation analysis showed that the expression of EIF4A1, EIF4G3,
NCBP1 and WDR4 was favorably correlated with Selumetinib,
Roscovitine, Lapatinib, Gefitinib, Erlotinib and Avagacestat, but
negatively correlated with Vismodegib, Tretinoin, JNK inhibitor
VIII, Etoposide, Embelin, Doramapimod, CCT018159 and Axitinib
(Figure 10C).

Single-cell RNA data analysis

Extracellular matrix (ECM), CAF, muscle fibroblasts, and immune
cells comprise the majority of TME. CD4Tconv, Tprolif, CD8T, NK,

FIGURE 6
DEGs and prognostic models. (A) Analysis of four prognostic m7GRGs from univariate Cox regression analysis plots; (B)mRNA expression of prognostic
m7GRGs in sarcoma cell lines and the corresponding normal cell lines; (C, D) Prognostic value of four m7GRGs (EIF4A1, EIF4G3, NCBP1, and WDR4) in
sarcoma patients (OS curve of high/low expression group).
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DC, Mono/Macro, Fibroblasts were annotated by single-cell RNA
sequencing analysis (Figure 11A). The results showed that EIF4A1,
EIF4G3, NCBP1, and WDR4 were considerably expressed in
fibroblasts and were strongly connected with immune cells, stromal
cells, and malignant cells (Figures 11B, C). Consequently, the
relationship between m7GRGs expression and CAFs related
biomarkers was explored further. The correlation between m7GRGs
and CAF markers such as PDGFRA, PDGFRB, and S100A4 was
extensive (as shown in Figure 11D). Meanwhile, immune
infiltration analysis was used to determine the correlation between
the prognostic m7GRGs and CAFs infiltration. The results showed
that EIF4A1 (n = 260, Rho = 0.263, p = 3.08e−05), EIF4G3 (n = 260,
Rho = 0.371, p = 2.23e−09), NCBP1 (n = 260, Rho = 0.293, p =
3.14e−06) and WDR4 (n = 260, Rho = 0.172, p = 7.18e−03) were
positively correlated with CAFs infiltration (Figure 11E).

Correlation between m7GRGs and
cuproptosis-related genes in sarcomas

Cuproptosis is a novel method of programmed cell death in which
copper may directly join with fatty acylation components in the
tricarboxylic acid cycle (Tsvetkov et al., 2022). Cuproptosis is
intimately associated with the progression of cancers such as

kidney cancer, liver cancer, bladder cancer, etcetera (Zhang et al.,
2022a; Bian et al., 2022; Song et al., 2022). The correlation between
m7GRGs and cuproptosis-related genes was analyzed using the
Spearman correlation coefficient in order to explore the novel
mechanism of the occurrence and development of sarcomas. The
result demonstrated that prognostic m7GRGs were tightly associated
with cuproptosis-related genes (Figure 12A). EIF4G3 and
MTF1 exhibited a substantial positive connection (R = 0.535; p <
0.01), as did NCBP1 and MTF1 (R = 0.524; p < 0.01), NCBP1 and
SLC31A1 (R = 0.539; p < 0.01), and WDR4 and SLC31A1 (R = 0.427;
p < 0.01). A scatter plot of the correlation between prognostic
m7GRGs and cuproptosis-related genes was created based on these
results (Figure 12B). In addition, most cuproptosis-related genes were
differentially expressed in the two sarcoma subtypes (Figure 12C). The
association between m7GRGs and cuproptosis-related genes was
validated by the aforementioned findings.

Prediction and validation of upstream key
miRNAs

The intersection of ENCOR1 and the RNA22 database yielded
50 pairs of EIF4A1-miRNAs, 83 pairs of EIF4G3-miRNAs, 47 pairs of
NCBP1-miRNAs, and 71 pairs ofWDR4-miRNAs. Using Cytoscape, a

FIGURE 7
Construction of a prognostic m7GRGmodel. (A) LASSO coefficient profiles of prognostic m7GRGs, (B) Plots of the ten-fold cross-validation error rates.
(C)Distribution of the risk score, survival status, and the expression of prognostic m7GRGs in sarcomas. (D, E)OS curves of sarcoma patients in the high-/low-
risk group and the ROC curve for measuring the predictive value.
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possible miRNAs gene network was created. (Supplementary Figure
S9A). A negative correlation between the predicted mRNA and the
predicted miRNA was expected according to traditional mechanism of
miRNA in negative regulation of gene expression. One pair of
miRNA-EIF4A1, 1 pair of miRNA-EIF4G3, 1 pair of miRNA-
NCBP1 and two pairs of miRNAs-WDR4 were substantially
negatively correlated among these miRNA-mRNA interactions
(Supplementary Figure S9B). Theoretically, miRNAs that bind to
high expression EIF4A1, EIF4G3, NCBP1, and WDR4 should be
down regulated in sarcomas and show poor prognosis. The
prognostic role and expression of these potential miRNAs in
sarcomas were further verified using the ENCOR1 database. The
findings revealed that only the low expression of hsa-miR-195-5p
had a substantial unfavorable prognosis (Supplementary Figure S9C).
WDR4-hsa-miR-195-5p might represent a critical pathway that
mediated the incidence and development of sarcomas,
incorporating the findings of correlation and survival study.

Prediction and validation of key lncRNAs
binding to potential miRNAs

LncRNAs bind to miRNAs, which provide a biological purpose by
modulating the expression of target genes. The lncRNAs potentially
binding to hsa-miR-195-5p were predicted by the intersection of
ENCORI and miRNet databases, yielding a total of 121 lncRNAs
targeting hsa-miR-195-5p (Figure 13A). A miRNA-lncRNA

regulatory network was established using Cytoscape software for
better visualization (Figure 13B). According to the ceRNA
hypothesis (Salmena et al., 2011), lncRNAs enhance mRNA
expression by binding competitively to miRNAs. Consequently,
lncRNAs were negatively correlated with miRNAs or positively
correlated with mRNAs. The ENCORI database identified the
association between lncRNAs and hsa-miR-195-5p, and the
findings indicated that 10 lncRNAs were substantially associated
with hsa-miR-195-5p and WDR4 (Supplementary Table S4).
Subsequently, the prognostic value of lncRNAs in sarcomas was
assessed by the Kaplan-Meier plotter. CASC9, LINC00922,
LINC00511, MEG3, MEG8, and SNHG16 were significantly related
to the poor prognosis of sarcoma patients (Figure 13C). Finally, a
critical mRNA-miRNA-lncRNA regulation network related to the
prognosis of sarcoma patients was identified (Figure 13D).

4 Discussion

RNA methylation is a prevalent method of RNA modification in
prokaryotic and eukaryotic cells. Theymay be divided into m6A, m5C,
and m7C according to distinct locations of methylation modification
(Zhang et al., 2021). m7G is the modification of RNA guanine (G) by
adding methyl group at the 7th N position (Zhang et al., 2021), mostly
in tRNA, rRNA, and mRNA 5’cap, which plays a crucial role in
maintaining RNA processing, metabolism, stability, protein
translation (Ramanathan et al., 2016). Through m7G alteration of

FIGURE 8
Construction of a predictive nomogram. (A, B) Hazard ratios and p-value of the constituents involved in univariate and multivariate Cox regression
analysis considering the clinical information and prognostic m7GRGs in sarcomas. (C) Nomogram to predict the 1-year, 3-year and 5-year OS rate of SARC
patients. (D) Calibration curve for the OS nomogram model in the discovery group. The dashed diagonal line represents the ideal nomogram.
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tRNA or miRNA, the METTL1/WDR4 complex influences the course
of several malignancies, such as liver cancer (Li et al., 2022), lung
cancer (Ma et al., 2021), and colon cancer (Chen and Liu, 2021).
However, the role of m7G methylation modification in sarcomas
remains unclear. To guide future investigation of m7GRGs in
sarcomas, a bioinformatics analysis was performed on publicly
available sequencing data, and RT-qPCR was employed for
experimental validation.

Firstly, 27 m7GRGs were retrieved from the TCGA expression
matrix and separated into subgroups C1 and C2. m7G regulatory
genes showed high expression mainly in the C1 clusters. Subsequently,
The DEGs across C1 and C2 subtypes were evaluated, yielding
4,266 upregulated and 573 downregulated genes. The results of
GO, KEGG enrichment analysis showed that m7GRGs were mainly
involved in the biological functions of myofibril, collagen-containing

extracellular matrix, adhesive plaque, DNA replication, as well as the
signaling pathways of adhesive plaque, cGMP PKG, cAMP, ECM
receptor interaction, cell cycle in sarcomas. The findings of the GSEA
enrichment study indicated that adhesion plaque, cell cycle
checkpoint, DNA repair, TP53 transcriptional regulation, and
EGFEGFR were among the probable biological processes and
pathways implicated in sarcoma by m7GRGs. These biological
functions and signaling pathways are intimately related to
tumorigenesis and progression (Tang et al., 2017; Mai et al., 2021).
Collagen subtype and modification may be used to predict the
metastatic potential of these sarcomas (Eisinger-Mathason et al.,
2013). Elevated cAMP signal transduction can be considered
carcinogenic in osteosarcoma (Naviglio et al., 2006; Danieau et al.,
2021). Further investigations are required to elucidate the signaling
pathway of m7GRGs in sarcomas.

FIGURE 9
Prognostic m7GRGs intervene in immune infiltration in sarcomas. (A) Correlation between the abundance of immune cells and the expression of
prognostic m7GRGs in sarcomas; (B) The relationship between the expression of EIF4A1, EIF4G3, NCBP1, WDR4, B cells, CD8+ T cells, CD4+ T cells,
macrophages, neutrophils, dendritic cells and the cumulative survival rate in sarcomas.
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The correlation between the expression of C1 and C2 subtypes and
various clinicopathological parameters was analyzed using TCGA
database. There were significant differences between C1 group and
C2 group in gender, race, and new tumor type. Prognostic m7GRGs
(EIF4A1, EIF4G3, NCBP1, and WDR4) were identified based on the
aforementioned expression level and prognosis analysis. Patients with
sarcoma who had high levels of EIF4A1, EIF4G3, NCBP1, and
WDR4 exhibited a lower OS rate. Eukaryotic initiation factor (eIF)
4F is a cytoplasmic complex consisting of three subunits: (i) eIF4E, a
cap-binding protein that interacts with the m7G mRNA cap structure,
(ii) eIF4G, as a protein scaffold, and (iii) eIF4A, an RNA helicase,
utilized to remodel mRNA templates to facilitate ribosome recruitment
(Pelletier and Sonenberg, 2019). EIF4A1 is the starting factor in the
chromosome 17p13 gene map. It is also known as EIF4A (Pelletier and
Sonenberg, 2019). EIF4A1 is associated with cancer cell malignancy,
tumor-specific survival, and drug sensitivity (Xu et al., 2013; Liang et al.,
2014; Modelska et al., 2015). circEIF4G3 is a novel form of circRNA that
may be generated by reverse splicing of the EIF4G3 transcript (Zang
et al., 2022). Circ-EIF4G3 is a closed loop structure, without 5‘end cap
and 3′end of poly (A) tail, and is more stable (Wang et al., 2019b). Circ-
EIF4G3may contribute to the progression of gastric cancer, lung cancer,
and other malignancies (Wang et al., 2019b; Huang et al., 2021).
NCPB1 is a nuclear cap binding protein capable of heterodimerizing
with NCPB2 and NCPB3 to produce a nuclear cap-binding complex
(Gebhardt et al., 2015). Cap binding complex was discovered in HeLa

cells for the first time. It may combine with the N7 methylguanine
(m7G) “cap structure” of freshly transcribed mRNA and coordinate
downstream RNA biogenesis, such as nuclear-cytoplasmic transport
and recruitment of translation factors in the cytoplasm (Izaurralde et al.,
1994; E Izaurralde et al., 1995; Calero et al., 2002). Huijun Zhang et al.
found that NCBP1 may also accelerate lung cancer progression (Zhang
et al., 2019a). WD repeat domain 4 (WDR4) is a member of the WD
repeat protein family, which is associated with several aspects of cell
development, such as cell cycle evolution, signal transduction, gene
regulation, and apoptosis (Michaud et al., 2000; Rastegari et al., 2020;
Ma et al., 2021). WDR4 performs a crucial part in a number of
malignant cancers (Zeng et al., 2021).

The four distinctive genes were evaluated using univariate,
multivariate, and LASSO Cox regression analysis (EIF4A1, EIF4G3,
NCBP1, and WDR4). Then, the risk distribution analysis, ROC curve
analysis and survival analysis were conducted. The results showed that
high expression of EIF4A1, EIF4G3, NCBP1, and WDR4 elevated the
risk score, and the high-risk group had a considerably shorter OS rate
than the low-risk group. WDR4 and race were also identified as
independent risk factors for sarcomas. An effective nomogram was
constructed to predict the 1-year, 3-year, and 5-year survival rates of
patients with sarcoma, indicating that WDR4 and race\ have a
significant influence on the prevalence and prognosis of sarcomas.

As a vital part of the tumor microenvironment, immune cells
played a crucial role in tumor progression (Thakkar et al., 2020).

FIGURE 10
TMB, MSI and drug sensitivity. (A) Correlation between the expression of prognostic m7GRGs and TMB in sarcomas; (B) Correlation between prognostic
m7GRGs and TMB in sarcomas; (C) Correlation between prognostic m7GRGs and antitumor drugs in sarcomas.
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Previous studies found m7GRGs expression in ovarian cancer (OC) is
significantly correlated with immune cells (involving CD4+ memory
resting T cells, plasma cells, and Macrophages M1) (Zheng et al.,
2022). In Hepatocellular carcinoma high m7G risk led to a decreased
infiltration level of CD8+ T cells, whereas it increased the infiltration
levels of Tregs and macrophages (Zhou et al., 2022).
METTL1 expression was enhanced in HCC, accompanied by
increased CD11b CD15 polymorphonuclear-myeloid-derived
suppressor cells (PMN-MDSCs) and decreased CD8 T cells.
Mechanistically, heat-mediated METTL1 upregulation enhanced
TGF-β2 translation to form the immunosuppressive environment
by induction of myeloid-derived suppressor cell (Zeng et al., 2022).

In genetically engineered mouse models, the WDR4/Promyelocytic
leukemia (PML) axis elevates intratumoral Tregs and M2-like
macrophages and reduces CD8+ T cells to promote lung tumor
growth. Our study identifies WDR4 as an oncoprotein that
negatively regulates PML via ubiquitination to promote lung
cancer progression by fostering an immunosuppressive and
prometastatic tumor microenvironment, suggesting the potential of
immune-modulatory approaches for treating lung cancer with
aberrant PML degradation (Wang et al., 2017). The expression of
eIF4E acts onmouse dendritic cells, resulting in increased activation of
cytotoxic CD8 T cells ex vitro (Li et al., 2017c). In this study m7GRGs
were associated with the degree of immune infiltration in sarcomas,

FIGURE 11
The expression of m7GRGs in different immune cell types in sarcomas. (A) Cluster diagram of cell types in scRNA seq data. t-SNE diagram showing the
expression of different immune cells (SARC_GSE119352_mouse_APD1aCTLA4) in sarcoma tissues; (B, C) Characteristic maps of prognostic m7GRGs
obtained from scRNA seq data; (D) Correlation between m7GRGs and CAF-related markers; (E) Correlation between prognostic m7GRGs and CAFs
infiltration; Correlation analysis was completed by TIMER2.0; **p < 0.01; Cancer associated fibroblasts (CAFs).
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which is another major conclusion of this study. EIF4G3 and
NCBP1 were substantially negatively correlated with CD4+ T cells
and dendritic cells. However, EIF4A1 and WDR4 were not
significantly correlated with immune cell infiltration in sarcomas. A
spearman analysis revealed that a high level of m7GRGs expression
was negatively correlated with the majority of immune cells.

TMB and MSI were suggested as potential biomarkers for predicting
the response of immunosuppressive agents at immune checkpoints
(Dudley et al., 2016; Ritterhouse, 2019). In several tumor types,
increased TMB was associated with the response to immunosuppressive
agents (Ritterhouse, 2019). TMB and MSI scores of sarcomas were
dramatically enhanced with the increase of EIF4G3, NCBP1, and
WDR4 expression according to our findings. EIF4A1 improved the MSI
score while having little impact on the TMB score. In addition, prognostic
m7GRGs were positively or negatively correlated with a variety of
chemotherapy drugs through the CDSC database. These findings may
provide a novel potential therapeutic target for sarcomas.

Matrix components, such as CAFs and macrophages associated
with tumors, plays a significant role in the onset and progression of
cancer (Hanahan and Coussens, 2012). m7GRGs may upregulate
prognostic CD4Tconv, Tprolif, CD8T, NK, DC, macrophages, and

fibroblasts in sarcomas. In addition, prognostic m7GRGs are positively
correlated with many markers of CAFs. The expression of prognostic
m7GRGs is positively correlated with the infiltration of CAFs.
Previous studies have shown that CAFs are highly invasive in
recurrent osteosarcoma (Huang et al., 2022). Therefore, prognostic
m7GRGs may influence the progression of sarcoma patients by
altering the expression of CAFs, tumor-associated macrophages,
and other immune cells in the TME.

Cuproptosis is a novel copper-dependent and regulated form of
cell death that differs from the known way of cell death, in that copper
may directly interact with the fatty acylation component of the TCA,
resulting in protein toxicity stress and eventually cell death (Tsvetkov
et al., 2022). Cuproptosis-related genes play an important role in the
occurrence and development of various cancers, such as sarcoma and
liver cancer (Zhang et al., 2022b; Han et al., 2022). This study revealed
a tight association betweenm7GRGs and cuproptosis-associated genes
in sarcomas. These two kinds of genes might jointly influence the
occurrence and development of sarcomas, but further research is
required to confirm this theory.

Four miRNA-mRNA regulatory axes and six lncRNA-miRNA-
mRNA regulatory axes were also constructed, including has-miR-28-

FIGURE 12
Significant correlation between m7GRGs and cuproptosis-related genes. (A) Heat map showing correlation between m7GRGs and cuproptosis-related
genes; (B) Scatter plot of correlation between prognotic m7GRGs and cuproptosis-related genes; (C) Differential expression of cuproptosis-related genes
between C1 and C2 subtypes.
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5p/EIF4A1, has-miR-145-5p/EIF4G3, has-miR-489-3p/NCBP1, and
has-miR-28-5p/WDR4, CSA 9-has-miR-195-5p-WDR4, LINC00511-
has-miR-195-5p-WDR4, LINC00922-has-miR-195-5p-WDR4,
MEG3-has-miR-195-5p-WDR4, MEG8-has-miR-195-5p-WDR4,
and SNHG16-has-miR-195-5p-WDR4. The miR-185-3p/E2F1 axis
was regulated by LINC00511 to promote the occurrence and
progression of osteosarcoma (Xu et al., 2020). The prognosis of
many cancers was predicted by SNHG16 (Zhang et al., 2019b).

MiR-128-5p participated in the progression of colorectal cancer (Si
et al., 2021). Our study revealed that these miRNAs and lncRNAs were
related to the prognosis of sarcoma patients. All these pieces of
evidence suggested that these regulatory axes might play an
important role in the progression of sarcomas. Our study also has
certain limitations. First, the sample size of the control group was
small. In addition, further research should be conducted to
corroborate this conclusion.

FIGURE 13
Screening of the regulatory axis of lncRNA-miRNA-CRGs in sarcomas. (A) Potential lncRNAs associated with hsa-miR-195-5p predicted by ENCORI and
miRNet databases. (B) Potential miRNA-lncRNA network constructed using Cytoscape software. (C) Expression and prognostic value of six potential lncRNAs
in sarcomas. (D) LncRNA-miRNA-mRNA triple regulatory network affecting the prognosis of sarcomas.
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5 Conclusion

In conclusion, dataset analysis revealed that the expression of
m7GRGs (EIF4A1, EIF4G4, NCBP1, and WDR4) was strongly
associated with clinicopathological characteristics of SARC. In
addition, the relationships between the m7GRGs and tumor
immune microenvironment, immunotherapy and chemotherapy
response were preliminarily ascertained. Four miRNA-mRNA
regulatory axes and six lncRNA-miRNA-mRNA regulatory axes
were also identified, which may play an important role in the
progress of sarcomas and may serve as potential diagnostic
biomarkers and therapeutic targets for sarcomas. It is plausible to
hypothesize that our study may provide valuable insights into clinical
decision-making and individualized therapy regimens as a foundation
for future research.
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