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Satellite DNAs (satDNAs) are one of the most abundant elements in genomes.
Characterized as tandemly organized sequences that can be amplified into
multiple copies, mainly in heterochromatic regions. The frog P. boiei (2n = 22,
ZZ_/ZW\) is found in the Brazilian Atlantic forest and has an atypical pattern of
heterochromatin distribution when compared to other anuran amphibians, with
large pericentromeric blocks on all chromosomes. In addition, females of
Proceratophrys boiei have a metacentric sex chromosome W showing
heterochromatin in all chromosomal extension. In this work, we performed
high-throughput genomic, bioinformatic, and cytogenetic analyses to
characterize the satellite DNA content (satellitome) in P. boiei, mainly due to
high amount of C-positive heterochromatin and the highly heterochromatic W
sex chromosome. After all the analyses, it is remarkable that the satellitome of P.
boiei is composed of a high number of satDNA families (226), making P. boiei the
frog species with the highest number of satellites described so far. Consistent with
the observation of large centromeric C-positive heterochromatin blocks, the
genome of P. boiei is enriched with high copy number of repetitive DNAs, with
total satDNA abundance comprising 16.87% of the genome. We successfully
mapped via Fluorescence in situ hybridization the two most abundant repeats
in the genome, PboSat01-176 and PboSat02-192, highlighting the presence of
certain satDNAs sequences in strategic chromosomal regions (e.g., centromere
and pericentromeric region), which leads to their participation in crucial processes
for genomic organization and maintenance. Our study reveals a great diversity of
satellite repeats that are driving genomic organization in this frog species. The
characterization and approaches regarding satDNAs in this species of frog allowed
the confirmation of some insights from satellite biology and a possible relationship
with the evolution of sex chromosomes, especially in anuran amphibians,
including P. boiei, for which data were not available.
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1 Introduction

Most eukaryotic genomes contain large blocks of
heterochromatin surrounding centromeres and telomeres (Plohl
et al., 2012; Garrido-Ramos, 2017; Sneideman and Meller, 2021),
which are regions mainly composed of satellite DNAs repeats
(satDNAs) and transposable elements (TEs). It is already known
that satellite repeats make up sizable portions of genomes. SatDNAs
participate in several processes, including gene regulation, stress
response, and nuclear organization in many different organisms,
making them prominent actors in the evolution of genomes, mainly
because of their high plasticity (Plohl et al., 2012; Garrido-Ramos,
2017; Sneideman and Meller, 2021; Thakur et al., 2021).

Among vertebrates, amphibians are the class with the greatest
variety of genome sizes (Liedtke et al., 2018; Gregory, 2022).
Analysis of genomic sequencing reads combined with computer
programs [e.g., RepeatExplorer (Novák et al., 2013)] have shown
potential in the characterization of repetitive sequences in different
organisms, including amphibians (Palacios-Gimenez et al., 2017;
Silva et al., 2017; Ruiz-Ruano et al., 2018; Utsunomia et al., 2019; Da
Silva et al., 2020; Ferretti et al., 2020; Crepaldi et al., 2021). Prior to
that, with limitations, genomic digestion by restriction
endonucleases was successfully used to characterize repetitive
sequences in amphibians, mainly satDNAs, such as the
PcP190 satellite in Hyloidea and Hylidae (Vittorazzi et al., 2011,
2014; Gatto et al., 2019, respectively) and more recently, the BamHI-
800 satellite, a new satDNA family in Bufonidae (Guzmán et al.,
2022).

The variability of satellite repeats is very interesting from an
evolutionary point of view, as repeats within the same satDNA
family evolve non-independently, showing low rates of divergence
between monomers, through a process known as “concerted
evolution” (Dover, 1982; Elder and Turner, 1995; reviewed by
Thakur et al. (2021)). The concerted evolution occurs via
“molecular drive”, an evolutionary process emerging from the
activities of a number of ubiquitous mechanisms of DNA
turnover, such as gene conversion, unequal crossing over,
replication slippage, rolling circle replication, and multiple TE
insertions (Dover, 1982; Dover, 1986; Elder and Turner, 1995;
Ugarković and Plohl, 2002; Thakur et al., 2021). However, there are
levels of variation in the rates of expansion, homogenization, and
fixation between sequences. These dynamics depend on several
factors, such as mutation rate, array size and structure,
chromosome structure, and recombination rates (López-Flores
and Garrido-Ramos, 2012; Plohl et al., 2012; Garrido-Ramos,
2017).

In genomes, sex chromosomes frequently accumulate satDNAs.
Due to their differentiated and highly heterochromatic nature, sex
chromosomes are a good example of genomic entities with
expansions and contractions of heterochromatin throughout
evolution. The gain of repetitive sequences, such as satDNA
families, contributes to gradually differentiate from their
homologs becoming heteromorphic sex chromosomes, which
carry rapid diversification (Chalopin et al., 2015; Palacios-
Gimenez et al., 2015; Wright et al., 2016; Yano et al., 2017;
Sember et al., 2018; Charlesworth, 2021; Kratochvíl et al., 2021).
Heteromorphic sex chromosomes show signs of degeneration such
as extensive accumulation of transposable elements and other

repeats, resulting in an enlargement of the sex-limited
chromosomes (Y or W). Increased heterochromatinization or a
diminishment of their size and gene loss are consequences of the
long-term recombination suppression between the sex
chromosomes (Charlesworth, 1991; Bergero and Charlesworth,
2009; Bachtrog et al., 2011; Schartl et al., 2016).

Sex chromosomes have independently evolved multiple times
and show varied levels of divergence from each other in the
heterogametic sex in XY males or ZW females (Bachtrog, 2008;
Bachtrog et al., 2014). Unlike other organisms, like mammalians,
birds, and insects, the majority of amphibian species (~75%) has
homomorphic sex chromosomes with both male and female
heterogamy cases (Graves, 2008; Schmid et al., 2015; Ma and
Veltsos, 2021), but a higher male heterogametic occurrence
(26.7%, XX/XY) than female (8.8%, ZW/ZZ) system. About
41.5% of these species have an unknown system [Reviewed by
Ma and Veltsos (2021)] and there are specific groups with
unique sex chromosome systems, such as Leptodactylus
pentadactylus (X1Y1X2Y2X3Y3X4Y4X5Y5X6Y6) and Leiopelma
hochstetteri (WO/OO) (Green et al., 1993; Gazoni et al., 2018).
These characteristics make frogs an interesting system to study sex
chromosome diversity and evolution, as they harbor multiple stages
of differentiation, with diverse sex determination system across
species, as well as between and within populations of the same
species (Nakamura, 2009; Malcom et al., 2014; Perrin, 2020; Ma and
Veltsos, 2021).

Surprisingly, the Brazilian frog P. boiei (2n = 22, ZZ_/ZW\)
has an atypical pattern of heterochromatin distribution, when
compared to other anuran amphibians, with large
pericentromeric blocks on all chromosomes. In addition,
Proceratophrys boiei females have a metacentric W chromosome
showing heterochromatin in all chromosomal extension defined by
the C-banding technique, e.g., C-positive blocks, being the W
chromosome smaller than Z in females (Ananias et al., 2007;
Amaro et al., 2012; Da Silva et al., 2020; Silva et al., 2021). So
far, it is the only specie of the genus with these atypical
chromosomal characteristics, even for amphibians. However, for
different populations of P. boiei, significant cytogenetic differences
have already been reported, mainly in relation to the number of
heterochromatic blocks in the chromosomes and the presence of
the differentiated sex chromosomeW (Amaro et al., 2012; Da Silva
et al., 2020).

Genomic and cytogenetics analyzes were performed for the first
time in a population of P. boiei from southern Brazil, which does not
have large blocks of heterochromatin and does not have a
differentiated W chromosome. We uncovered a large number of
repetitive sequences on its genome, especially satDNAs, possibly
involved in heterochromatin formation and maintenance in the
species (Da Silva et al., 2020). Now, intrigued by the high amount of
C-positive heterochromatin in P. boiei from populations of
southeastern Brazil and the highly heterochromatic W
chromosome in females, we performed here a high-throughput
genomic, bioinformatic and cytogenetic analyses to characterize
the entire satellite DNA content and complement the satellitome
for P. boiei, as well as its possible implications for heterochromatin
formation and sex chromosome differentiation, and thus carry out
the most complete quantification of the satellitome in a frog genome
so far.
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2 Materials and methods

2.1 Species sampling, biological materials,
and chromosome preparation

Chromosomal preparations and tissue samples from ten males
and five females from P. boiei were analyzed. The individuals were
collected in the wild under collection licenses issued by the Chico
Mendes Institute for Biodiversity Conservation (ICMBio) protocol
Nos. 70213–1, 70213–2 and 70213–3, in the Brazilian cities of Mogi
das Cruzes, state of São Paulo and Camanducaia, state of Minas
Gerais. The use of wild animals, as well as the biological tissues used,
were registered in the SisGen–National System for the Management
of Genetic Heritage and Associated Traditional Knowledge
(registration code: AEF54D5). In addition, we used cytogenetic
preparations of P. boiei already available at the Animal
Cytogenetics Laboratory in UNESP, Rio Claro, São Paulo, Brazil,
from previous studies (Da Silva et al., 2020; Silva et al., 2021).

Metaphasic chromosomes were obtained from intestinal
epithelial cells according to the protocol proposed by Schmid
(1978), and the bone marrow and liver were collected according
to Baldissera et al. (1993). All procedures for sampling, material
handling, and analysis were authorized and approved by the Animal
Ethics Committee (Comitê de Ética no Uso de Animais - CEUA -
permission 21/2019), Biosciences Institute, UNESP, Rio Claro, SP,
Brazil. Finally, the animals were deposited in the Célio F. B. Haddad
(CFBH) amphibian collection, housed in the Department of
Biodiversity, Biosciences Institute, UNESP, Rio Claro, SP, Brazil.

2.2 Genomic DNA extraction, genome
sequencing, and satellitome analysis

Genomic DNA (gDNA) extraction was obtained from liver or
muscle samples using the Wizard® Genomic DNA purification kit
(Promega, WI, United States), according to the manufacturer’s
recommendations. This gDNA was later used for genomic
sequencing and polymerase chain reaction (PCR) assays. One
individual of each sex was used for genome paired-end
sequencing (2 × 101 bp) through Illumina® Hiseq™ 2000 by
Macrogen Inc. (Seoul, Republic of Korea).

From sequenced libraries of both female and male individual,
satDNAs sequences were recovered using different approaches for a
complete search for the satellitome of the species. In addition, a
comparative approach was given, focusing on the possible
differences between the sexes, in search of satDNAs that could be
more representative in the female genome and probably enriched in
the heteromorphic sex chromosome W.

To perform a high-throughput analysis, the satMiner
bioinformatics protocol for satDNA prospection in both libraries
was used (Ruiz-Ruano et al., 2016), available at GitHub (https://
github.com/fjruizruano/satminer, accessed on 1 April 2021). The
satMiner protocol uses several rounds of clustering in
RepeatExplorer (RE) (Novák et al., 2013) and most recently
RepeatExplorer2 (Novák et al., 2020) to identify and extract
satDNA sequences, and each round includes filtering out reads
matching previously assembled contigs with deconseq 0.4.3
(Schmieder and Edwards, 2011), in order to identify and extract

as many repetitive sequences as possible, even with low abundance
in the genome. It started with a library sampling of 200,000 reads,
incrementing this number by two in each consequent round of RE
clustering.

RE clusters putatively containing satDNAs were selected for
each round by visual graph inspection to identify spherical or ring
shapes which are characteristic of this type of tandem DNA
sequence. Each cluster was manually analyzed for their internal
contigs structure and tandem repetitions were investigated using the
dotplot tool implemented in Geneious v4.8 (Drummond et al., 2015)
and Tandem Repeats Finder (TRF) (https://tandem.bu.edu/trf/trf.
html, accessed on 1 April 2021) (Benson, 1999). In addition, for each
run, the output generated by the TAREAN tool (Novák et al., 2017)
coupled to the RE for automatic identification of satDNAs was
analyzed, with the same parameters and definitions for each run in
the RE, and all possible satellite DNAs, with high or low reliability,
were considered and analyzed manually, integrating the final
satellitome. The clustering and filtering steps were repeated six
times for the female and male libraries, adding new filtered reads
in each iteration until we could no longer detect new satDNAs in
neither.

The satDNAs consensus were compared to search for homology
using multiple sequence alignments with Muscle (Edgar, 2004)
implemented in Geneious v4.8 software (Drummond et al., 2015)
and running a homology test based on RepeatMasker (Smit et al.,
2013) with “rm_homology.py” (https://github.com/fjruizruano/ngs-
protocols, accessed on 1 April 2021). The results of these analyses
were used to classify the satDNA collection into superfamilies,
families and/or subfamilies, and all satDNA families were
numbered in order of decreasing abundance in the female
genome, following the identity criterion proposed by Ruiz-Ruano
et al. (2016).

Also, searches were performed for each satellite DNA family
using the Censor tool (http://www.girinst.org/, accessed on 1 April
2022) against Repbases. Furthermore, in satMiner analyses, the
RepeatMasker tool is already coupled, which automatically
searches for similarities with possible transposable elements and
other sequences deposited in this database. Then, we searched all
databases for any similarities to satDNAs consensus sequences using
the BLASTN tool (https://blast.ncbi.nlm.nih.gov/Blast.cgi, accessed
on 1 April 2022). We BLAST-searched specially for satDNAs
previously detected and deposited for P. boiei (Da Silva et al.,
2020), to check the presence of conserved satDNAs in different
populations for this species. All consensus sequences of the satDNAs
characterized in this work are deposited in GenBank (NCBI), under
accession numbers OP223503 - OP223728.

2.3 Estimation of SatDNAs sequence
abundances and divergences in the genome

RepeatMasker (Smit et al., 2013) with rmblast engine was used
to determine abundance and average nucleotide divergence
(Kimura-2- parameter, K2P) for each satDNA family in both
sexes. Genomic abundance for every satDNA in the male and
female libraries was estimated as the number of nucleotides
aligned to the reference consensus divided by the library size (in
bp). With this data repeat landscapes were generated for the relative
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abundance (Y-axis) at 1% intervals of K2P distance from the
consensus (X-axis), using the script calcDivergencFromAlign.pl
(from RepeatMasker utils). A subtractive landscape was
subsequently generated to evaluate which satDNA families differ
between both libraries to provide the first indications of which
satDNA are more prominent in one sex in comparison to the other.
All landscapes graphics were built using R programming (R Core
Team, 2021 - version 4.1.2).

The different enrichment of all satDNAs across the sexes was
determined by generating a female to male ratio as we calculated the
quotient between the abundance values of each satDNA family. This
data complemented the subtractive landscape by providing more
between-sexes differences, as satDNA families with Female/Male (F/
M) ratio higher than one was considered more abundant in females
(as the threshold to determine it as more prevalent in this sex). The
59 satDNA families that are most enriched in each sex considering
the F/M ratio were selected for profiling and we generated individual
landscapes for each selected female-biased satDNAs to confirm
different amplification and divergence between the sexes.

2.4 DNA amplification and chromosomal
mapping of repetitive DNAs

Primers were manually designed for the ten most abundant
satDNA families in P. boiei and manufactured by Exxtend
Biotechnology Ltd. (Paulínia, São Paulo, Brazil). The PCR
conditions for these sequences followed the same protocol
described in Da Silva et al. (2020). All amplified sequences were
sequenced by the Sangermethod to confirm their actual amplification.

Fluorescence in situ hybridization (FISH) was performed on
mitotic chromosome spreads from adults using one or two probes
simultaneously. With the exception of PboSat03-25, which was
labelled with biotin-14-dATP (Invitrogen®) at 5′end during its
synthesis, the sequences of each satDNA obtained through PCR
were labeled by nick-translation with digoxigenin-11-dUTP
(Roche®) and detected by antidigoxigenin-rhodamine (Roche);
PboSat03-25 sequences were detected by Alexa Fluor 488-
conjugated (Invitrogen), following the method previously
described by Pinkel et al. (1986), with adjustments described by
Da Silva et al. (2020) and Cabral-de-Mello and Marec (2021).

The chromosomes were counterstained using 4′,6-diamidine-20-
phenylindole dihydrochloride (DAPI) and slides were mounted in
VECTASHIELD (Vector, Burlingame, CA, United States). The
resulting slides were visualized under an Olympus® BX51 fluorescence
microscope, with a digital camera Olympus® DP71 attached, and the
images were captured using the DPController camera software. For each
slide, a minimum of 10 metaphases were analyzed and photographed to
confirm the FISH results.

3 Results

3.1 High-throughput analysis of the
satellitome

The female library sequencing provided about 2.0 Gb of
sequence data (1,957,610,886 reads), yielded 19,382,286 paired-

end trimmed reads and for the male library, about 1.4 Gb of
sequence data (1,446,983,166 reads) and 14,326,566 paired-end
trimmed reads. The six iterations performed by the satMiner
protocol on male and female genome of P. boiei uncovered
226 different satDNA families for both sexes. The predominance
of repeat unit lengths (RUL) ranging from 20 to 986 bp (average of
69 bp) and the total satDNA abundance comprised 16.87% of P.
boiei genome, with abundance per family ranging from 0.00002% to
10.49%.

The A+ T content of consensus satDNA sequences varied
between 29.3% and 76.9% (55% on average), which indicated a
slight bias towards A+ T rich satellites (Supplementary Table S1).
Homology tests between all satDNA families revealed the
occurrence of 15 superfamilies (SFs), with homologies between
50.2% and 80%, and as expected, the families belonging to each
SF showed highly similar sequence properties (RUL and A+ T
content), as the superfamilies 03, 08, 09, 10, 11, 12, and 15, in
which they have sequences with similar characteristics
(Supplementary Figure S1).

Interestingly, PboSat01-176 comprises 93.62%of the total amount
of satDNAs families, being the most abundant satDNA in the genome
of P. boiei, comprising 10.49% of genomic abundance. The second
most abundant satDNA corresponds only to 0.97% of total satDNA
content and all other satDNAs are in very low abundances. The values
determined by RepeatMasker for divergence were relatively variable
for the species as a whole, ranging from 1.93% to 24.01% (average
divergence for the species was 10.96%).

For PboSat01-176 and PboSat02-192, the genomic abundance in
the present work refers to the values determined by the
RepeatMasker which applied a substantial number of reads
compared to the set of randomly selected reads previously
analyzed for another population of P. boiei (and only via the
RepeatExplorer output) by Da Silva et al. (2020). Thus,
PboSat01-176 remained the most abundant satDNA family, also,
PboSat02-192 (formerly PboSat03-189) came in second in
abundance after this thorough analysis, and the previously
described satDNA PboSat02-173 was discarded, as it was highly
similar to PboSat01-176, redescribed in the present work.

As expected, GenBank searches resulted in similarities with some
families of satDNAs previously deposited for P. boiei by Da Silva et al.
(2020). BLAST results and subsequent alignments for other satDNAs
showed high and low similarities to other repetitive sequences, mainly
microsatellites, from other related organisms. The search in Censor
Repbase showed that some consensus sequences of satDNA families
share a certain degree of similarity with transposable elements, among
other sequences; however, all with non-significant sequence identity.
Also, most satDNA families, 144 in total, does not show any similarity
with transposable elements. However, surprisingly, 82 families show
some similarity, low or high, with retrotransposons, mainly Ty3/Gypsy
and Tc/Mariner (Supplementary Table S1). Similarities with other types
of retrotransposons were also found, as well as DNA transposons.

3.2 Satellitome differences between the
sexes

Bioinformatic analysis revealed that all 226 satDNA families
found in the P. boiei genome are shared between both sexes. These,
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however, are differently enriched between them, 59 satDNAs had a
F/M ratio greater than 1, suggesting an enrichment in the female
library, while 159 were considered male (F/M ratio less than 1), and,
eight of them had an F/M ratio equal to 1, having the same

abundance on both genomes. To show differences in satellitome
between the sexes, individual repeat landscapes for male and female
were generated (Figures 1A, B, respectively), in addition to a
subtractive landscape (Figure 1C), comparing the two genomes.

FIGURE 1
Repeat landscape (abundance vs divergence) for satDNAs identified in Proceratophrys boiei. The graphs show, for each color-coded element, the
sequence divergence according to Kimura distance (x-axis) in relation to their copies in the genome (y-axis). (A) male genome; (B) female genome; (C)
Subtractive repetitive landscape. The graphs show, for each color-coded element, the sequence divergence according to Kimura distance (x-axis) in
relation to their copies in the genome (y-axis). Copies clustered to the left (lower divergence) potentially correspond to recent copies occurring in
the genome. In the subtractive graphic, abundance values show the difference between the male minus the female genomes, thus, positive values
indicate overabundance in the male, and negative values indicate overabundance in the female genome.
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In order to verify families of satDNAs that could be highly biased
towards females, the F/M ratio revealed 59 satDNAs biased for the
female library and, consequently, putatively clustered on the W sex

chromosome. To demonstrate the abundance and divergence for the
ten most abundant satDNA families identified in the genome of
Proceratophrys boiei, individual landscapes were constructed,

FIGURE 2
Individual satDNA landscapes of male (blue) and female (orange) repeats for ten more abundant satDNAs families identified in the Proceratophrys
boiei genome.
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showing an evolutionary dynamic for each satDNA repeat analyzed
(Figure 2). However, the total composition of the satellitome in P.
boiei corresponded to 16.87% and 14.91% of the female and male
genomes, respectively. Almost all satDNAs showed very similar
divergence values for both males and females, with exception of
PboSat221-28 (23.86% and 17.88%, for female and male
respectively), PboSat223-28 (19.54% and 16.16%), PboSat224-38
(30.32% and 21.89%), PboSat225-31 (13.86% and 16.76%), and
PboSat226-20 (14.52% and 18.4%), interestingly, the least
abundant satDNAs (Supplementary Table S1).

3.3 Chromosome mapping of the most
abundant SatDNAs families

The physical mapping by FISH on female and male
chromosomes of P. boiei for the ten most abundant satDNAs
families was performed to study the organization of those
families in the genome and analyze whether the genomic results
reflect at the cytogenetic level. FISH was performed for ten most
abundant satellites; however, satisfactory hybridization results were
only found for the satellites PboSat01-176 and PboSat02-192, with
visible signs of clustering on chromosomes (Figure 3).

The chromosomal locations for these satDNAs families indicate
that the FISH bands found in the female and male P. boiei
chromosomes were located in pericentromeric regions
surrounding the centromeres. It is evident that the pericentric

heterochromatic regions are enriched in satDNA in P. boiei, as
they contained the most abundant first families, representing 81% of
all satDNA content in the species genome (Supplementary Table
S1). It was expected that the most abundant satellites in the female
genome would be found by FISH on the W sex chromosome;
however, none of them was found exclusively on this chromosome.

4 Discussion

The complete satellitome of P. boiei provided in this work is
composed of a high number of satellite families. The in-depth
characterization of 226 satDNAs makes P. boiei the frog species
with the highest number of satellites described so far. Similarity
analyzes showed that 67 of the satDNAs found can be grouped into
15 superfamilies. Notably, satDNA sequences are considered crucial
factors in genomic and karyotypic evolution, perhaps most
importantly, they may constitute rapidly evolving genome
sequences (Garrido-Ramos, 2017; Ahmad et al., 2020).

By performing several successive filtering steps and searches
with satMiner and RepeatExplorer, in each step subtracting those
repetitive elements found in previous steps, the chance of finding
other poorly represented satDNAs is substantially increased (Ruiz-
Ruano et al., 2016). This genomic mining approach has been used
efficiently for the analysis of TEs and satDNA content in distinct
species in the last few years, e.g., plants, insects and fish, providing an
opportunity to uncover satDNA families whose isolation was elusive

FIGURE 3
FISH mapping of two more abundant satDNAs (red) and in mitotic metaphase of Proceratophrys boiei female individual. (A,D) chromosomes
counterstained with DAPI; (B) PboSat01-176; (E) PboSat02-192; (C,F) merge. Note that both satDNAs showed a high clustering in centromeric and
pericentromeric region of chromosomes. Sex chromosome W is highlighting in C and F (arrows).
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by other methods (Ruiz-Ruano et al., 2018; Utsunomia et al., 2019;
Crepaldi et al., 2021; Camacho et al., 2022). In this sense, the
discovery of a large number of satellite families, with several of
them grouped into superfamilies, draws attention to an expansion of
satDNAs through duplications of existing repeats, followed by
substitutions/deletions/insertion events in the genome of P. boiei
(Ruiz-Ruano et al., 2016; Utsunomia et al., 2019). In previous
analyzes by Da Silva et al. (2020), using the methodology
available at the time, the authors found a large amount of
satDNAs from another population for P. boiei. However, in the
more accurate analyzes carried out in this work, the previous data
are contrasted and complemented, revealing the need to update the
genomic content data of satDNAs for P. boiei.

Studies on repetitive DNA, and particularly on satDNA, are of
high interest to better understand genome structure and dynamics
(Ruiz-Ruano et al., 2018). In this work, valuable information was
retrieved regarding the evolutionary dynamics of these sequences
and their genomic organization in P. boiei frog. The fact that the
satellitome presents as mostly small and highly diversified
sequences, with low divergence, suggests that recent amplification
and diversification events occurred in the P. boiei genome, which
may have followed the heterochromatinization events as evidenced
by C-banding (Ananias et al., 2007; Amaro et al., 2012; Da Silva et al.,
2020). In terms of recent diversification of satDNA sequences, this is
well shown for fish, such as Astyanax (Silva et al., 2017),
Megaleporinus macrocephalus (Utsunomia et al., 2019),
Characidium gomesi (Serrano-Freitas et al., 2020) and
Megaleporinus elongatus (Crepaldi et al., 2021), making it clear
that evolutionary mechanisms for these repetitive sequences behave
similarly in distinct groups of organisms.

It is well known that novel families of satDNAs can arise from
the independent duplication of different genomic sequences such as
intergenic spacers, portions of transposable elements, or even those
derived from other satellite DNAs (Ruiz-Ruano et al., 2016; Garrido-
Ramos, 2017; Ahmad et al., 2020; Thakur et al., 2021). About
satDNAs grouped into superfamilies in the P. boiei genome, it is
remarkable that these satellites actually belong to sequence groups
andmay be subject to similar genome duplication and amplification,
as they have common characteristics, such as monomer size and low
genomic abundance. More studies are needed to understand the
evolutive dynamics specifically of these repetitions.

Consistent with its richness of centromeric C heterochromatin,
it became apparent that the genome of P. boiei is enriched in high
copy repetitive DNAs. However, in relation to the highly
heterochromatic W sex chromosome, unlike expected, specific
satDNAs to this chromosome were not evidenced, leading to the
belief that there was still no clustering of repeats directly related to
the differentiation of sex chromosomes in this species. We suggest
that this W chromosome in females of P. boiei may be a young
element currently in the initial phase of heterochromatinization and
differentiation. Our bioinformatics/FISH analyzes showed that the
absence of sex-specific signals may be due to negligible absence, loss
or gain, or due to non-differentiation of the DNA content of the sex
chromosomes in P. boiei. Although the FISH technique has
limitations for detecting less abundant sequences, this may still
suggest an early stage of differentiation of the content of the ZZ/ZW
sex chromosome system in P. boiei, with no evident molecular
differentiation between the heteromorphic sex chromosomes.

As expected, strategic mapping by FISH for certain sequences
revealed that most satDNAs were not detectable by the technique in
either sex, since in previous analyzes it was also not detectable,
especially those satDNAs with very low abundance. In high-
throughput analysis, it has been easy to characterize a large
amount of satDNAs; however, to show positive signals in FISH,
there is some difficulty, mainly due to the low abundance and the
difficulty in performing the technique (Ruiz-Ruano et al., 2016; Silva
et al., 2017; Cabral-de-Mello and Marec, 2021; Crepaldi et al., 2021).
Also, the majority of the satellitome already described is arranged in
small arrays below the detection threshold of FISH, and for the P.
boiei satellitome analyzed here it is no different (Ruiz-Ruano et al.,
2016; Bardella et al., 2020; Ferretti et al., 2020; Crepaldi et al., 2021).
Thus, in this work we can suggest that the detection of low-abundant
satDNAs signals in amphibian genomes should be improved with
adaptations of FISH protocols and more specific experiments, which
could lead to a more accurate knowledge of these less abundant
genomic repeats.

For the highly abundant PboSat01-176 and PboSat02-192
satellites, the successful mapping by FISH highlights the presence
of certain satDNAs in strategic regions of the chromosomes of P.
boiei (e.g., centromere and pericentromeric regions), which leads to
their supposedly part in crucial processes for genomic organization
and maintenance in this species. It is well highlighted that the
abundance of satDNAs is prone to change rapidly due to
evolutionary molecular mechanisms such as scattering and
amplification, and can result in rapid repatterning as they expand
or shrink their arrays (Plohl et al., 2008; Garrido-Ramos, 2017;
Palacios-Gimenez et al., 2020; Sproul et al., 2020; Thakur et al.,
2021); this rapid evolution is probably also occurring in P. boiei. In
amphibians, abundant repeats of satDNAs seem not to be dispersed
in the karyotype, and even in specific chromosomes, but rather
clustered in peri/centromeric regions, and possibly playing a role in
the organization, regulation andmaintenance of these chromosomal
regions. In summary, this feature was detailed for the anuran genera
Physalaemus, Proceratophrys, and Bufo (Vittorazzi et al., 2011; Da
Silva et al., 2020; Guzmán et al., 2022, respectively), and, for all cases,
the chromosomal location of abundant satDNAs indicates a role in
centromere function or in the formation and maintenance of
heterochromatin in these regions.

Previously, our selection of satDNAs via analysis of relative
abundance values (female/male) revealed the presence of
58 satDNAs that possible had differentially accumulated within
the heteromorphic sex chromosomes of P. boiei. We show here a
great diversity of satellites in the genome of P. boiei; however, this
high amplification does not seem to be the main factor that leads to
the heterochromatic expansion of theW chromosome, since none of
the satDNAs was mapped exclusively on this chromosome, being
always shared equally between the both chromosomes pairs. Unlike
the fish M. elongatus, in which high rates of amplification and
homogenization of some satDNAs particularly abundant in the
female genome effectively contributed to the heterogametic
differentiation of the sex chromosomes of this species (Crepaldi
et al., 2021).

Different studies have already shown that TEs are abundant in
sex chromosomes. TEs may play a significant role in sex
chromosome differentiation by allowing W/Y chromosomes to
achieve a state of beneficial non-homology/non-recombination
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via TE insertions in a brief time (McDonald, 1993; Charlesworth and
Charlesworth, 2000; Hua-Van et al., 2005; Bachtrog, 2008). Here,
surprisingly, it was found that of the 226 satellite families found for
P. boiei, 82 of them show some similarity, low or high, with
retrotransposons, mainly Ty3/Gypsy and Tc/Mariner, being an
indication of plasticity and mobility of these repetitive elements
for the organization, regulation, and enlargement of P. boiei genome.
As mobile elements, TEs can replicate and spread within genomes
through transposition, leading to an increase in copy number by
intrinsic replication, as in the case of retrotransposons, or the repair
of double-strand breaks generated during transposition (Eickbush
and Malik, 2002).

The insertion of TEs has been postulated to be one of the earliest
triggers causing recombination suppression (Kent et al., 2017; Drost
and Sanchez, 2019). Although a more in-depth analysis of this
relationship in P. boiei has not been done, it is notable that TEs are
driving genomic functions in this species. Whether plant and animal
sex chromosomes preferentially accumulate specific TEs compared
to the other chromosomes remains unclear. This suggests that the
non-random distribution of Ty3/Gypsy in the genomemay drive sex
chromosome differentiation. However, investigating the possible
existence of Ty3/Gypsy elements in other organisms, using
fluorescence in situ hybridization mapping, bioinformatics
analysis, and whole-genome sequencing may further substantiate
this hypothesis, particularly in P. boiei.

In summary, our study reveals the complete satellitome of P.
boiei, showing a great diversity of repeats that are driving genomic
organization in this frog species. The characterization and
approaches regarding satDNAs in this species of frog allowed the
confirmation of some insights from satellite biology and a possible
relationship about the evolution of sex chromosomes, especially in
anuran amphibians, which did not yet have complete data from this
species so far. When combined with future analyses, these data will
be useful for the accurate characterization of specific satellites, as
well as transposable elements, their relationship with centromeric
functions, and their possible influence on sex chromosome
differentiation in Proceratophrys.
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