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Objective: To estimate the survival and prognosis of patients with thyroid
carcinoma (THCA) based on the Long non-coding RNA (lncRNA) traits linked
to cuproptosis and to investigate the connection between the immunological
spectrum of THCA and medication sensitivity.

Methods: RNA-Seq data and clinical information for THCA were obtained from
the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO)
databases. We built a risk prognosis model by identifying and excluding
lncRNAs associated with cuproptosis using Cox regression and LASSO
methods. Both possible biological and immune infiltration functions were
investigated using Principal Component Analysis (PCA), Gene Ontology (GO),
Kyoto Encyclopedia of Genes and Genomes (KEGG), and immunoassays. The
sensitivity of the immune response to possible THCA medicines was assessed
using ratings for tumor immune dysfunction and exclusion (TIDE) and tumor
mutational burden (TMB).

Results: Seven cuproptosis-related lncRNAs were used to construct our
prognostic prediction model: AC108704.1, DIO3OS, AL157388.1, AL138767.3,
STARD13-AS, AC008532.1, and PLBD1-AS1. Using data from TCGA’s training,
testing, and all groups, Kaplan-Meier and ROC curves demonstrated this
feature’s adequate predictive validity. Different clinical characteristics have
varying effects on cuproptosis-related lncRNA risk models. Further analysis of
immune cell infiltration and single sample Gene Set Enrichment Analysis (ssGSEA)
supported the possibility that cuproptosis-associated lncRNAs and THCA tumor
immunity were closely connected. Significantly, individuals with THCA showed a
considerable decline in survival owing to the superposition effect of patients in the
high-risk category and high TMB. Additionally, the low-risk group had a higher
TIDE score compared with the high-risk group, indicating that these patients had
suboptimal immune checkpoint blocking responses. To ensure the accuracy and
reliability of our results, we further verified them using several GEO databases.

Conclusion: The clinical and risk aspects of cuproptosis-related lncRNAs may aid
in determining the prognosis of patients with THCA and improving therapeutic
choices.
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1 Introduction

Thyroid carcinoma (THCA), a prevalent malignancy of the
endocrine system, can be classified based on its origin and degree
of differentiation. This includes papillary thyroid carcinoma,
follicular thyroid carcinoma, medullary thyroid carcinoma, poorly
differentiated thyroid carcinoma, and anaplastic thyroid cancer
(Haddad et al., 2022). Differentiated thyroid carcinomas
encompass papillary, follicular, medullary, and mixed carcinomas.
Papillary thyroid carcinoma is the most predominant subtype of
THCA, constituting over 90% of all cases (Cabanillas et al., 2016).
THCA is becoming more prevalent worldwide (La Vecchia et al.,
2015). An epidemiological study revealed that THCA has grown to
the ninth largest incidence of cancer in the population, the incidence
rate is rising at a rate of 3%, and the incidence in women is three
times higher than that in men (Bray et al., 2018).

Clinical manifestations of THCA may include the development
of abnormal thyroid tumors, varying degrees of dyspnea, dysphagia,
hoarseness, lymphadenopathy, and cervical pain. Treatment
modalities for THCA typically involve surgical intervention,
iodine radiation therapy, and thyroid hormone suppression
therapy (Cabanillas et al., 2016). The detection rate of THCA,
which has low invasion, slow growth, and low mortality, has
increased year by year with the advancement of medical
technology and social and economic development. Risk factors
linked to the development of THCA include exposure to
excessive radiation, abnormalities in glycolipid metabolism,
fluctuations in thyroid hormone levels, unhealthy lifestyle
choices, hereditary factors, and other variables (Fiore and Vitti,
2012; Borena et al., 2014; Albi et al., 2017). Studies have revealed an
increase in morbidity and mortality in advanced THCA, and long-
distance cancer cell dissemination can severely damage patients’
quality of life and health (Im et al., 2017). Biomarkers reflecting
genetic, protein, andmetabolomic alterations have been identified to
improve tumor detection, diagnosis, prognosis, and monitoring.
Despite this, there has been limited research focused on the
relationship between THCA and biomarkers. Investigating THCA
biomarkers is crucial for enabling personalized prognosis and
treatment.

The role of immunotherapy in the field of oncology is gaining
increasing attention from researchers due to its successful treatment
of a number of tumor types, leading to a change in the way patients
with advanced cancer are treated (Gong et al., 2021). However, due
to the high level of malignancy and resistance in THCA, patients
have poor prognoses, and viable treatment options are limited. The
identification of biomarkers has the ability to both predict the
outcome of pharmacological immunotherapy and, to a certain
extent, avoid the side effects associated with conventional
immunotherapy. Individualized therapy that incorporates
anticipated biomarkers and immunotherapy may be a promising
treatment approach for patients.

In the human body, copper serves a variety of functions in cells that
help maintain cellular homeostasis at low concentrations (Tsvetkov
et al., 2022). Studies have demonstrated that the disturbance in the
equilibrium of copper homeostasis result in cellular toxicity
accumulation, leading to abnormal cell death (Kawahara et al., 2021).
Mitochondrial respiration may be necessary for the recently identified
copper-dependent regulation of cell death. Copper binds directly to

lipids in the tricarboxylic acid (TCA) cycle, causing acylated-protein
aggregation and loss of iron-sulfur cluster proteins, which leads to
proteinotoxic stress and cell death through various mechanisms,
including apoptosis, oxidative stress, and autophagy (Tsvetkov et al.,
2022). Tumor development is abnormally correlated with copper and
iron levels (Mou et al., 2019). Previous research has demonstrated that
ferroptosis is associated with immune cell infiltration in THCA patients,
indicating essential genes for developing prognostic models for genetic
traits and prognosis prediction (Lin et al., 2021). A novel type of cell
death known as cuproptosis has gradually risen to the attention of
academics as a potential future research focus due to its effects on cancer
and development. According to clinical research, imbalance in copper
homeostasis can play a significant role in the development of
endometrial cancer (Atakul et al., 2020). Breast cancer stem cells
may experience endoplasmic reticulum and oxidative stress, elicit
damage-related molecular patterns, and are more susceptible to
macrophage phagocytosis, all of which can be caused by the
endoplasmic reticulum targeting the copper (II) complex (Kaur et al.,
2020). Controlling the breakdown of the copper transport-related
protein ATP7A reduces intracellular copper accumulation, prevents
excessive oxidative stress and iron death, and decreases colorectal cancer
cell growth (Gao et al., 2021). The clinical potential of cuproptosis in
cancer is significant. Studies have revealed elevated serum copper levels
in THCA patients, indicating a possible link between copper level
alterations and the development of THCA (Shen et al., 2015).
Additionally, it has been demonstrated that the cuproptosis-related
gene FDX1 influences the survival prognosis of THCA patients
(Zhang et al., 2022). However, research on cuproptosis is in its early
stages, and its exact mechanism of action is not yet fully understood.

Abnormal copper buildup has the potential to hinder the expression
and production of epigenetic elements such as microRNA and lncRNA.
Research on cells exposed to copper has revealed that microRNA and
circRNA can modulate mitochondrial dysfunction and the TCA cycle,
regulate crucial proteins like FDX1, ATP7A, and LIPT1, and alter the
mitochondrial membrane potential, as illustrated in Figure 1A (Hsu
et al., 2019; Chen et al., 2022; Jin et al., 2022; Liao et al., 2022). Long non-
coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides that
originate from the genome and exhibit diverse biological activities. As a
ceRNA competitive binding microRNA that controls gene expression, it
also impacts critical physiological and pathological mechanisms, such as
autophagy, development, apoptosis, and cell cycle (Dykes and Emanueli,
2017).

LncRNAs have caught the attention of numerous researchers due to
their potential to act as biomarkers and play a multi-functional role in
malignancies. LncRNA remains a hot research topic since it is essential
for tumor cellular metabolism, apoptosis, invasion, and chemosensitivity
(Peng et al., 2017). Furthermore, LncRNAs have the ability to selectively
target and control critical proteins involved in immune responses. This
can indirectly or directly alter immune cell infiltration in the tumor
microenvironment. Overexpression of lncRNA AC003092.1 in
glioblastoma has been found to decrease miR-195 function, regulate
TFPI-2 expression, improve sensitivity to mortizolomide, and aid tumor
cell inhibition (Xu et al., 2018). Expression of lncRNA-NEAT1 predicts
prognosis and is an independent predictive factor for overall patient
survival in prostate cancer patients (Wen et al., 2020). LncRNA-
HOTAIR is extensively expressed in tissues, sera, and cell lines of
patients with THCA. Suppression of LncRNA-HOTAIR can prevent
tumor cell proliferation, migration, and invasion, ultimately improving
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patient prognosis (Liu et al., 2020). However, more research is needed to
fully understand how lncRNAs affect THCA.

Cuproptosis-related lncRNAs may play a significant role in clinical
diagnostic and therapeutic implications for THCA (Zhang et al., 2022).
To date, the precise mechanism through which cuproptosis-related
lncRNAs affect THCA and predictive models based on cuproptosis
genes and immune cells in the THCA’s immune infiltrated
microenvironment remain unexplored. To the best of our knowledge,
this is the first study to analyze the therapeutic targets linked to THCA
from lncRNAs connected to cuproptosis. In this study, we used
bioinformatic analysis to analyze cuproptosis-related lncRNAs of
THCA patients and their biological and immunological activity and
involvement in predicting the prognosis of patients with THCA.
Figure 1C depicts the precise operational procedures of this study.

The study thoroughly and methodically analyzes the probable link
between cuproptosis and lncRNAs in THCA, discusses the potential
relevance of cuproptosis-related lncRNAs as prognostic and
immunotherapeutic markers for THCA patients, and provides
guidance and evidence for the clinical treatment of THCA.

2 Materials and methods

2.1 Data collection and download for the
THCA and GEO transcriptome

The TCGA database (https://portal.gdc.cancer.gov/repository) was
utilized in this study to obtain RNA-seq data, clinical data, andmutation

FIGURE 1
(A) Various types of RNAmay have different impactmechanisms on copper-induced cell death. (B)Venn diagram showing the distribution of lncRNA
amount in relation to cuproptosis. (C) Flowchart of the bioinformatic study of cuproptosis-related lncRNA on the prognostic function and risk of patients
with THCA.
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FIGURE 2
Identifying the predictive features of cuproptosis-related lncRNAs. (A) Sankey diagram of cuproptosis-related genes and lncRNAs. (B)Distribution of
cuproptosis-related lncRNAs’ LASSO coefficients. (C) The 10-fold cross-validation of variable selection in the LASSO algorithm. (D) Correlation between
lncRNAs and genes related to cuproptosis in risk models.
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data of THCA patients. The dataset contains 512 tumor samples and
59 normal tissue samples. The RNA-seq data were extracted in the
fragment per kilobase million (FPKM) format that has been normalized.
The log2 (FPKM + 1) transformation was used to normalize the
transcriptome data. Related RNA-seq transcriptome and clinical data
were extracted, screened, and preprocessed using Strawberry Perl version
5.30.0 (http://www.perl.org). The clinical data were sorted based on age,
gender, grade, stage, metastatic/non-metastatic, primary tumor site, and
particular tumor site. Eight Gene Expression Omnibus (GEO) datasets
(https://www.ncbi.nlm.nih.gov/geo/) were downloaded from GEO:
GSE82208 (n = 52), GSE76039 (n = 37), GSE33630 (n = 105),
GSE65144 (n = 25), GSE29265 (n = 49), GSE3678 (n = 14),
GSE33570 (n = 116) and GSE191288 (n = 7).

2.2 Identification and screening of lncRNAs
linked to cuproptosis

Previous studies have provided evidence supporting the role of
genes in cuproptosis development (Deigendesch et al., 2018;

Tsvetkov et al., 2022). To identify lncRNAs associated with
cuproptosis, Pearson correlation analysis was conducted to
determine the relationship between the expression levels of
cuproptosis-related genes and lncRNA expression, utilizing
software packages including “limma,” “dplyr,” “ggalluvial,” and
“ggplot2”. The threshold values used were |R|>0.4 and p < 0.001.
Sankey diagrams were created based on the results of the analysis,
illustrating the relationship between cuproptosis genes and their
associated lncRNAs.

2.3 Construction of prognostic risk
assessment model

To develop the best risk and prognosis models, the “glmnet,”
“caret,” “survival,” “survminer,” “pheatmap,” and “limma,”
packages were used. First, using univariate Cox regression
analysis with a threshold setting of p < 0.05, the prognostic-
associated lncRNA among the cuproptosis-related lncRNAs was
found. The results were output in forest plot form. Second,

FIGURE 3
Different groups of patients with THCA survival and progression-free survival under the Kaplan-Meier survival curve differ from one another. (A–C)
Kaplan-Meier survival curves of patients with THCA for overall, training and testing survival. (D)Differences in progression-free survival between high- and
low-risk groups.
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multivariate Cox regression analysis techniques and least
absolute shrinkage and selection operator (LASSO) analysis
were used to reduce overfitting during modeling. Using 10-
fold cross-validation, the best and minimum criteria for the
penalty (λ) were chosen. These tools will identify and analyze the
lncRNAs of cuproptosis linked to overall survival (OS). The risk
score for each patient with THCA was calculated using the
following formula:

Risk score � ∑
n

i�1
Coef i( ) × Exp i( )( )

In the multivariate Cox regression analysis, n represents the
number of prognostic cuproptosis-related lncRNAs in the risk
signature, Exp(i) relates to each lncRNA’s expression value, and
Coef(i) represents each lncRNA’s regression coefficient. The risk
score for each sample was computed once the dataset was
randomly split into the training and testing groups (Xu et al.,
2022). Based on the median risk score, we divided the samples
into low- and high-risk groups in TGCA and GEO verification
cohorts (GSE29265, GSE33630, GSE65144, GSE76039,
GSE82208, GSE3678, GSE33570). Utilizing the “survival” and
“survminer” packages, the independent prognostic value of risk
prediction variables was evaluated through Kaplan-Meier (KM)
curves, which examined the OS and progression-free survival
(PFS) of THCA patients across various groups. The “pheatmap”
package plots patient survival status and thermal mapping of
lncRNA expression depending on risk levels. The training and

testing sequence sets were calculated using the Receiver
Operating Characteristic (ROC) curve, the Area Under Curve
(AUC), and both group series sets under the 1-, 3-, and 5-year
areas to evaluate the correctness of the model using the C-index
index based on “survival,” “survminer,” “rms,” and “timeROC”
packages.

2.4 Nomo diagram construction

The risk score was compared across several clinical
characteristics. Furthermore, the risk score was integrated with
several clinicopathological parameters, and nomo and line plots
were constructed to investigate the 1-, 3-, and 5-year survival rates of
patients with THCA. The calibration curves were used to compare
the expected and actual survival rates.

2.5 PCA, GO, and KEGG analysis

PCA was utilized to classify the expression patterns of
lncRNAs associated with cuproptosis in THCA samples. The
resulting output demonstrated the spatial distribution of high-
and low-risk groups as a matrix, which was employed to evaluate
the accuracy of the model (Ringnér, 2008). To conduct
differential analysis of normalized THCA samples, the
“limma” package was used. Multiple test correction was
performed using Bayesian technique, and the screening

FIGURE 4
Evaluation of the prognostic signature of cuprotosis-related lncRNAs for accuracy in prognosis prediction. Heatmaps of cuprotosis-related lncRNA
expressions (A,D,G), survival time and survival status (B,E,H), and the distribution of overall survival risk scores for training, testing and overall
groups (C,F,I).
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threshold was set to |log2 FC|>1, p < 0.05 to identify
differentially expressed genes (DEGs). Subsequently,
“ggplot2,” “dplyr,” “enrichplot,” “org.Hs.e.g.,.db,” and other
packages were downloaded. GO and KEGG pathway
enrichment analysis of DEGs was conducted with a P-value
threshold of <0.05, and the results were illustrated in the form of
a bar graph.

2.6 Immunoinvasive function and tumor
mutation load analysis

The “estimate” installation package was used to estimate
immune and stromal cells in both high- and low-risk groups.
The “GSVA,” “limma,” and “GSEABase” packages carried out
ssGSEA scoring of infiltrating immune cells and immune-related
functions in THCA, and the findings were output in box patterns
(Xiao et al., 2020). The CIBERSORT algorithm was utilized to
quantify the percentage of immune cells that infiltrate the
tumors. The maftools package was used to examine the genetic
variance between the two groups by reading the gene mutation file of
the high- and low-risk samples and visualizing the 15 genes with the
highest mutation frequency. Furthermore, the “ggpubr,” “survival,”
and “survminer” packages were utilized to compare the TMB and
survival rates between samples from the high- and low-risk groups.

2.7 Immunotherapy analysis and drug
screening

We analyzed the TIDE database (http://tide.dfci.harvard.edu/
login/), which provides information on immunological dysfunction
and exclusion caused by THCA. Immunological response has been
assessed using well-known immune checkpoints (ICPs). We
analyzed potential differences in ICPs responsed between the
low- and high-risk groups. (Jiang et al., 2018). Moreover, we
used the “pRRophetic” package to predict the IC50 values of
drugs that could potentially treat THCA in the high- and low-
risk groups (Geeleher et al., 2014).

2.8 Validation of GEO datasets

independent GEO validation cohorts, the expression levels of
various lncRNAs in THCA and non-tumor thyroid samples were
evaluated. The “Seurat” package was subsequently utilized and
standard downstream processing for scRNA-seq data was
conducted (GSE191288). Data normalization was carried out
using the NormalizeData function, followed by the extraction of
2,000 genes with high intercellular coefficients of variation. PCA was
then performed, with PCs selected for subsequent uniformmanifold
approximation and projection (UMAP) analysis. Cell types within

FIGURE 5
Kaplan-Meier and progression-free survival curves by age (A,B), gender (C,D), and M stage (E,F) for low- and high-risk groups.

Frontiers in Genetics frontiersin.org07

Shi et al. 10.3389/fgene.2023.1100909

http://tide.dfci.harvard.edu/login/
http://tide.dfci.harvard.edu/login/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1100909


the resulting clusters were annotated based on the reported cell
marker genes.

3 Results

3.1 Identification of co-expression and
predictive significance of cuproptosis-
related lncRNA in patients with THCA

From the TCGA database, 16,877 lncRNAs and 19 genes
connected to cuproptosis were retrieved, and co-expression
analysis screening was used to identify 2,578 lncRNAs with co-
expression relationships. The training (N = 252) and testing (N =
252) groups received 504 patients with THCA in total. Using
univariate Cox regression analysis, 368 lncRNAs were identified.
The Supplementary Figure S1 contained these data. 252 lncRNAs
were linked to cuproptosis using LASSO and Cox regression
analysis, and seven lncRNAs were found to be independent
prognostic factors using multivariate Cox analysis: AC108704.1,
DIO3OS, AL157388.1, AL138767.3, STARD13-AS, AC008532.1,
and PLBD1-AS1 (Figure 1B). According to the calculated risk
score = AC108704.1 × (−4.6479) + DIO3OS × (0.8558) +
AL157388.1 × (3.8603) + AL138767.3 × (0.9341) + STARD13-
AS × (4.8836) + AC008532.1 × (5.9321) + PLBD1-AS1 ×
(−2.1824) (Figure 2).

3.2 Establishment and validation of
cuproptosis-related lncRNA risk model

Patients were classified into high- and low-risk groups by
computing a risk score based on the median value. The survival
of the high-risk group significantly declined over time compared to
the low-risk group (p < 0.05) in both the training and test groups.
Survival analysis revealed that patients from the TCGA verification
cohort in the low-risk group had a better prognosis than those in the
high-risk group (Figures 3A–C). lncRNA AC108704.1 and PLBD1-
AS1 were expressed in the low-risk group, whereas lncRNAs
DIO3OS, AL157388.1, AL138767.3, STARD13-AS, and
AC008532.1 were expressed in the high-risk group (Figures 4A,
D, G). However, no significant difference in PFS was observed
between the high- and low-risk groups (p > 0.05) (Figure 3D).
Patients with THCA were categorized according to age, sex, stage, T
phase, M phase, and N-phase in order to ascertain whether the
survival rate and risk score were affected by clinical parameters. The
results indicated that in the male-female sex group, N0 and
N1 subgroups, age ≤70 years subgroup, M0, stage III-IV, and T
stage III-IV subgroups, the prognosis for the high-risk group was
worse than that of the low-risk group. No significant difference was
observed in progression-free survival between the high-risk and low-
risk groups with respect to age, sex, stage, TIII-IV, M, and N1 (p >
0.05). Nonetheless, a significant difference was identified in TI-II
and N0 (p < 0.05). The influence of gender on THCA pathogenesis

FIGURE 6
Kaplan-Meier and progression-free survival curves by N stage (A,B), stage (C,D), and T stage (E,F) for low- and high-risk groups.
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in the high-risk group was not apparent. However, factors such as
younger age, tumor metastases, and lymph node invasion were
found to affect the prognosis of patients. In the M1 phase subgroup,
no significant difference was observed between the high- and low-
risk groups. We hypothesize that the lack of significance could be
due to the small sample size and poor prognosis of patients with
advanced M1 stage THCA (Figures 5, 6).

3.3 Construction and analysis of
cuproptosis-related lncRNA prognostic
model

The association between patient prognosis and sex (HR, 1.936;
p = 0.203) was not statistically significant, while age (HR, 1.161; p =

0.001) and stage (HR, 2.426; p = 0.001) were found to be significant
based on the univariate Cox analysis. Multivariate Cox analysis
results demonstrated that age (HR, 1.155; p = 0.001) was
fundamentally related to OS (Figures 7A, B). Supplementary
Table S1 provided basic information on patients. Supplementary
Figures S2, S3 showed nomo plots and calibration curves to predict
1-, 3-, and 5-year OS of patients with THCA. We developed a line
map that precisely predicts 1-, 3-, and 5-year survival in patients
with THCA based on prognostic and clinicopathological
characteristics of lncRNAs related to cuproptosis. The risk model
demonstrated strong stability with AUC values of 0.746, 0.689, and
0.611 for 1-, 3-, and 5-year under the ROC curves, respectively
(Figure 7C). The clinical prediction model’s AUC values were 0.746,
0.948, and 0.839 for risk score, age, and stage, respectively,
demonstrating high predictive capacity and superior to the AUC

FIGURE 7
Validation of the cuproptosis-related lncRNAs signature for THCA in TCGA as an independent predictor of outcome. (A) Univariate Cox analysis of
cuproptosis-related lncRNA prognostic model. (B) Multivariate Cox analysis of cuproptosis-related lncRNA prognostic model. (C) The prognostic
signature’s ROC curve in the THCA sets. (D) Under the ROC curve, AUC index of various clinical prognostic characteristics. (E) The C-index curves for
evaluating the clinical parameters and risk score’s capacity to discriminate at each time point.
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values for sex (Figure 7D). Similarly, the C-index also supported the
above conclusions (Figure 7E). In summary, we discovered that
stage and risk score can be employed as significant clinical
prognostic indicators in patients with THCA, and the combined
models can be used to aid patient prognoses.

3.4 PCA, GO, and KEGG analysis

Using PCA, no appreciable changes were found in the
expression profiles of all genes, the cuproptosis-related genes, and
the lncRNAs associated with cuproptosis. It is easy to distinguish
between the low- and high-risk groups using risk models for the
expression profile classification of lncRNAs linked to cuproptosis
(Figure 8). Eighteen DEGs were identified between the high- and
low-risk groups using screening criteria: AC063926.1, TCL1A, NRK,
GDF6, AC103563.3, ABCC11, RGS4, FGF7, THRSP, CSMD1,
GLTS1, SST, TRIB3, MT3, GREM1, PNOC, TUNAR, TNNI2.
GO analysis results revealed that biological processes, including

protein synthesis, transport, angiogenesis, apoptosis, enzyme
regulation, copper ion binding, and immune response, were all
intimately associated with cuproptosis-related lncRNAs. KEGG
analysis demonstrated that the TGF-β signaling pathway, PI3K-
Akt signaling pathway, neuroactive ligand-receptor interaction, and
ATP-binding transporter were enriched in DEGs (Figures 9A, B).
These findings suggest that intracellular copper ion concentration
may alter the levels of TCA-related metabolites, modify protein
synthesis, and impact lipid acylation through signaling pathways
related to inflammation and immune function. This induces
proteotoxic stress, leading to in-cell death and influencing the
progression of the THCA disease.

3.5 Immune infiltration analysis

Based on the risk scoring algorithm of ssGSEA, we investigated
the association between THCA, immune cell infiltration, and
immune function, since the tumor immune microenvironment

FIGURE 8
PCA plots showed how samples were distributed according to the expression of (A) all genes, (B) genes associated to cuproptosis, (C) lncRNAs
connected to cuproptosis, and (D) lncRNAs that increase the risk of cuproptosis.
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plays a significant role in the formation of malignancies. The high-
risk group had significantly lower tumor purity scores but higher
ESTIMATE, immune, and stromal scores than the low-risk group
(p < 0.05) (Figures 10D–G). Inflammatory response, inflammation
promotion, ATC co-stimulation, T cell co-stimulation, and cytokine
and cytokine receptor (CCR) were significantly different between
the high- and low-risk groups in terms of immune-related activities
(p < 0.05) (Figure 10B). The ratio of B cells, dendritic, macrophages,
neutrophils, and T cells were increased in the high-risk group
(Figure 10A). Moreover, we analyzed the expression of
immunological checkpoint genes in the two groups and found
that, with the exception of CD44, genes tended to have higher
expression levels in the high-risk group (Figure 10C). Combining
the aforementioned findings leads to the conclusion that THCA
tumor immunity may be intimately associated with cuproptosis-
related lncRNAs.

3.6 TMB and TIDE analysis

Data on the top 15 mutant genes with significant differences
between the high- and low-risk groups were obtained from the
TCGA database. These genes include BRAF, NRAS, TG, HRAS,
TTN, MUC16, KMT2A, BDP1, SPTA1, ZFHX3, EIF1AX, PDZD2,
ATM, AKT1, and USP9X, and their analysis results are presented in
Figures 9C, D. The analysis of TMB data did not show any significant
difference between the high- and low-risk groups (p > 0.05)
(Figure 11A). However, patients with high TMB had significantly
shorter survival and poor prognosis (p < 0.05) (Figures 11B, C), and
the high-TMB and high-risk groups had the lowest survival prognosis.

Furthermore, the high-risk group exhibited a significantly higher TIDE
score than the low-risk group (p < 0.05) (Figure 11D).

3.7 Drug sensitivity analysis

Targeted drug therapy is another crucial method for treating
tumors in addition to immunotherapy. To investigate the
relationship between drug sensitivity and the high- and low-risk
groups, various anticancer medications were chosen. This research
serves as a guide for clinical targeted therapy and future prevention
of drug resistance in patients with THCA. The results demonstrated
that the sensitivity to WZ-1-84, WH-4-023, UNC1215, lapatinib,
GNF-2, dasatinib, and CGP-60474 was significantly higher in
patients in the high-risk group compared to those in the low-risk
group (p < 0.05). Conversely, patients in the low-risk group,
including TW37, OSU-03012, OSI-027, KIN001266, JW7241,
FH535, and BMS754807, were more sensitive than those in the
high-risk group (p < 0.05) (Figure 12). These findings can potentially
provide insights for future targeted therapy and drug resistance
prevention in patients with THCA.

3.8 Validate the cuproptosis-related
LncRNAs in the GEO dataset

The GEO datasets were additionally utilized to investigate the
relationship between cuproptosis-related LncRNA expression levels
and immunological responses. DIO3OS and STARD13-AS were
observed to be overexpressed in the tumor group (Figure 13A). GO

FIGURE 9
Analysis of GO and KEGG (A,B), as well as waterfall plots of somatic mutation characteristics in high- and low-groups (C,D).
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and KEGG analysis revealed potential mechanisms of DIO3OS and
STARD13-AS related to the immune response, protein creation,
inflammatory response, cell phagocytosis, and recognition (Figures
13B, C). The immune infiltration analysis revealed significant
differences in the inflammatory response, inflammation promotion,
ATC co-stimulation, T cell co-stimulation, and CCR between the
tumor and non-tumor groups (p < 0.05). Mast cells, DCs,
macrophages, neutrophils, and T helper cells all significantly increased
in the tumor group (p< 0.05). This is in accordancewith prior results that
these lncRNAs are linked to immunological responses (Figures 13D, E).
Furthermore, the scRNA-seq data in the GSE191288 dataset were
quality-controlled and preprocessed, and UMAP was used to show
the high-dimensional scRNA-seq data before Cellmarker was used to
identify the cell type. Single-cell gene expression profiles reveal seven
major cell types in the THCA: regulatory T cells, CD8+ T cells,
monocytes, B cells, dendritic cells, endothelial cells, and neutrophils.
Numerous cancer-related pathways were upregulated in the thyroid
tissue; including T cell activation, immune response activation, and
immune response-activating signal transduction, among others
(Figure 14).

4 Discussion

THCA is the most prevalent and rapidly increasing malignant
tumor of the endocrine system. Despite a higher overall survival rate

than other malignancies, there was a difference in the 5-year relative
survival rate of patients with THCA between China and the
United States (Miller et al., 2019). The pathophysiology of THCA
remains incompletely understood and requires a multimodal
treatment approach. Accurately predicting the prognosis and
survival of patients with THCA is crucial for preventing and
managing the disease. This requires the development of
trustworthy THCA risk profiles. The non-protein-coding RNA
family, known as lncRNA, has attracted much attention in recent
years (Tan et al., 2021). Numerous studies have revealed that
lncRNAs may play a significant role in tumorigenesis and
development, the immune system, and inflammatory gene
expression, making it one of the key targets for the treatment of
THCA. The emergence of modern genomics and bioinformatics has
made it possible to uncover the role of lncRNA in THCA, supported
by the gradual maturation of detection technologies (Kong et al.,
2019; Wang et al., 2019; Tang D et al., 2022). According to Pang
et al.’s study, lncRNA DUXAP8 was significantly expressed in
THCA, enabling it to serve as a target of miR-20b-5p. This
interaction regulated the expression of proteins such as SOS1,
c-myc, and CCND1, consequently inhibiting abnormal
proliferation of thyroid cancer cells (Pang and Yang, 2021).
Additionally, the knockdown of LINC00311 has been shown to
suppress the development, proliferation, migration, and invasion of
spheroids in THCA cells in vitro through the miR-330-5p/
TLR4 pathway (Gao et al., 2020). Cuproptosis is a distinct type

FIGURE 10
Differences between the low- and high-risk groups in the tumor immune microenvironment. (A) The ssGSEA scores of 16 immune cells. (B) The
ssGSEA scores of 13 immune-related functions. (C)Comparison of ICPs between the low- and high-risk groups. Additionally, the box plots comparing the
ESTIMATE Score, Immune Score, Stromal Score, Tumor Purity, and between the two risk groups. (D–G). nsP ≥ 0.05, *p < 0.05, **p < 0.01, ***p < 0.001.
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of cell death caused by excessive intracellular copper accumulation,
which results from FDX1-mediated mitochondrial protein toxicity
stress dependent on the mitochondrial TCA cycle (Duan and He,
2022; Tang R et al., 2022). Modulating intracellular copper levels and
oxidase activity can partially mitigate mitochondrial respiratory
deficits, but these solutions require further clinical testing (Ghosh
et al., 2014). Nevertheless, the precise mechanism of action of
cuproptosis-related lncRNAs and their relationship with THCA
requires further research.

Seven lncRNAs associated with cuproptosis were identified as
prognostic factors for THCA in this study, including AC108704.1,
DIO3OS, AL157388.1, AL138767.3, STARD13-AS, AC008532.1,
and PLBD1-AS1. By applying co-expression, univariate, and
multivariate Cox analyses, the study found that these prognostic
features were independent of other typical clinical features. Using
ROC curves, survival analysis, and line maps, the high- and low-risk
groups of THCA patients could be accurately predicted based on
their risk scores, demonstrating that these lncRNAs were reliable
prognostic factors. Moreover, the study showed that the prediction

model based on cuproptosis-related lncRNAs can accurately predict
the prognosis of THCA patients, considering factors such as age,
stage, and risk score.

The possibility of DIO3OS as a biomarker for hepatocellular,
lung, and pancreatic malignancies has been demonstrated (Cui et al.,
2019; Wang et al., 2020; Zhang M et al., 2021). Inhibiting DIO3OS
expression by blocking the DIO3OS/let-7d/NF-B2 axis, which
lowers the expression of ki-67 and PCNA and reduces cancer cell
viability (Wang et al., 2021). Triiodothyronine (T3) insufficiency
results from increased deiodinase 3 (D3) activity caused by DIO3OS
inactivation, which affects metabolic function by altering thyroid
hormone signaling pathway (Chen et al., 2021). DIO3OS, as a cis-
transcription element, can influence the expression of nearby genes
at the transcription site. Additionally, it can target miR-18a-3p,
miR-1913, and miR-266-3p to exert chromatin localization function
and obstruct protein binding in the DNA region (Chen et al., 2021).
AL138767.3 has been identified as a prognostic biomarker for
glioma instability (Maimaiti et al., 2021). A 645 bp non-coding
RNA (ncRNA) named STARD13-AS found on chromosome

FIGURE 11
TMB and TIDE analysis. (A)TMB between the low- and high-risk groups. (B) Kaplan-Meier survival curves for high- and low-TMB groups. (C) Kaplan-
Meier survival curves by TMB and risk for 4 groups. (D) TIDE scores between the low- and high-risk groups. *p < 0.05, **p < 0.01, ***p < 0.001.
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13q13.1 was connected to numerous tumor progressions. RNA
binding proteins such as NANOG, OTX2, POU5F1, SOX17,
TBXT, and others can directly interact with STARD13-AS, which
is highly expressed in enterocyte progenitor cells. It may also
facilitate the interaction of the cohesins or the enhancer and
mediator complex (Zhang and Chambers, 2019; Zhang et al.,

2021). When STARD13-AS expression was controlled, LoVo and
SW620 cells expressed higher levels of E-cadherin and N-cadherin,
which reduced the growth and spread of colorectal cancer cells
(Nasrallah et al., 2014; Yang et al., 2019). By blocking miR-9-5p,
STARD13-AS inhibits the proliferation and migration of prostate
cancer cells, thereby slowing tumor growth (Chen et al., 2019).

FIGURE 12
(A–H) Drug sensitivity analysis of FH535, Lapatinib, WH-4-023, Dasatinib, BMS-754807, jw-7-24-1, OSI-027, UNC1215.

FIGURE 13
Validate the LncRNAs associated with cuproptosis in GEO databases in the tumor and non-tumor groups. (A) DIO3OS and STARD13-AS expression
levels in tumor and non-tumor groups. (B) GO and KEGG analysis of DIO3OS. (C) GO and KEGG analysis of STARD13-AS. (D) The ssGSEA scores of
immune cells (E) The ssGSEA scores of immune-related functions.
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STARD13-AS may engage in the TCA cycle to regulate proteins
involved in mitochondrial activity and energy substrate oxidation
through a process similar to cuproptosis by inhibiting miR-19a-3p
(Pinto et al., 2017). As an autophagy-related lncRNA, PLBD1-AS1
has been demonstrated to be significantly correlated with the
prognosis of hepatocellular carcinoma and may be linked to
TP53BP1 and CHMP4B (Deng et al., 2021). PLBD1-AS is
overexpressed in breast and liver cancer cells, which is mostly
accomplished by physiological and pathological processes, such
as cell metabolism, cell proliferation, apoptosis, and immune
response (Luo et al., 2022; Safarzadeh et al., 2022). While these
lncRNAs have been demonstrated to impact the development of
various cancers, further research is necessary to determine their
specific effects on THCA. There is no evidence to suggest that
AC108704.1, AL157388.1, and AC008532.1 have any involvement
in cancer.

According to the PCA results, seven cuproptosis-related lncRNAs
could discriminate between groups at high and low risk. Additionally,
GO and KEGG analyses revealed that, based on biological processes,
such as protein synthesis, transport, angiogenesis, apoptosis, enzyme
regulation, and immune response, cuproptosis-related lncRNAsmay be
directly related to THCA formation through the TGF-β and PISK-Akt
signaling pathways. By verifying GEO databases, the relationship
between lncRNA and THCA was further confirmed. Several studies
have highlighted the significance of GDF6, RGS4, FGF7, GLIS1, SST,

andMT3 in predicting patient prognosis (MacDonald et al., 2020; Puig-
Domingo et al., 2014; Nikiforova et al., 2019; Ji et al., 2020; Fan et al.,
2022; Li et al., 2022). DPP4 facilitates epithelial-to-mesenchymal
transformation and thyroid cancer cell metastasis by interacting with
α4 and β1 integrin subunits to activate the transcription of the
TGFB1 protein via the FAK/AKT/C-JUN/TGF-β signaling pathway
(He et al., 2022). Moreover, the regulation of thyroid cancer cell
proliferation and tumor growth can be achieved through the
competition for miR-34a binding via the PI3K/AKT signaling
pathway by downregulating miR-34a levels downstream of the
hepatocyte growth factor receptor proteins by reducing lncRNA
XIST expression (Liu et al., 2018).

During tumor development, immune cell infiltration in the
tumor microenvironment changes. The relationship between
immune-related functions, TMB, and risk ratings in patients with
THCA was investigated. Various studies have linked T-cell follicular
helper cells, T-cell regulation, and B-cell memory to adverse effects
in THCA (Koida et al., 2007; Xie et al., 2020; Wang et al., 2022).
Single-cell analysis of GEO databases has revealed that regulatory
T cells, CD8+ T cells, monocytes, B cells, dendritic cells, and
neutrophils are crucial components of THCA tissue. Additionally,
tumor metastasis frequently occurs in lymph nodes. By controlling
the invasion and response of immune cells, the interaction between
tumor invasion-related cells and the host immune system is
achieved (Garnier et al., 2019).

FIGURE 14
Validate the LncRNAs associated with cuproptosis in GSE191288. (A) UMAP plot of the analysed single cells. (B,C) GO and KEGG analysis of cell
marker genes.
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The high-risk group exhibited higher expression levels of B cells,
dendritic cells, T helper cells, Th1 helper cells, and tumor-infiltrating
lymphocytes, as indicated by the results of immune infiltration
analysis. Given that this result is highly consistent with previous
findings, it is likely that the high-risk group will have a poorer
prognosis than the low-risk group. These results suggest that
cuproptosis, especially macrophages and T cells, may have a
significant role in regulating the tumor microenvironment. In
addition, the ssGSEA score revealed that patients in the high-risk
group exhibited more pronounced immunological traits, including
antigen presentation, immune response, para-inflammatory
response, and T cell response, all of which are associated with
the THCA tumor immune microenvironment and immune
response suppression. The high-risk group had higher
immunoscores and lower tumor purity scores compared to the
low-risk group, as indicated by the estimated, immune, and
stromal scores.

By preventing T cell expression, LAG3 and CTLA4 play crucial
roles in the immunological escape mechanism of THCA cells (Park
et al., 2022). CD80, CD86, and CD28 can elicit immunosuppression
by preventing B and T cell activation and proliferation. Nevertheless,
this requires the cooperative action of TNFRSF18, TNFRSF8, and
BTLA (Wu et al., 2021). Interestingly, the ICOS, LAG3, IDO2,
TNFRSF18, CTLA4, CD80, and BTLA groups exhibited superior
performance in the low-risk group than in the high-risk
group. Using the TIDE algorithm to assess the clinical response

of THCA patients to immune checkpoint inhibitor (ICI) treatment,
we found that the TIDE score of the high-risk group was
significantly higher than that of the low-risk group. This higher
score indicated a higher probability of immune escape and limited
response to ICI treatment, leading to a shorter survival time for
patients in this group. Based on the aforementioned results, we
suggest that cuproptosis-related lncRNAs are involved in several
crucial physiological processes, dependent on multiple targets and
pathways, and closely related to THCA tumor immunity, as shown
in Figure 15. A follow-up experimental study is required to
comprehend better the connection between cuproptosis-related
lncRNAs and immunological performance.

Finally, we investigated the drugs’ sensitivity and used the
pRRophetic package to identify effective drugs for THCA
immunotherapy. Clinical trials have demonstrated that the EGFR
inhibitor, lapatinib, can modestly increase the survival time of breast
cancer patients and exhibit antitumor efficacy (Goss et al., 2013).
Lapatinib can reduce THCA cell proliferation and improve
medication sensitivity by controlling the phosphorylation of ERK
and AKT (Ohno et al., 2022). Dasatinib, by activating Src signaling,
c-Src, and Lyn proteins, causes cell cycle arrest and cell death in
THCA fractions and acts as an anti-THCA equilibrium agent (Chan
et al., 2012). However, there is insufficient evidence in the current
study to determine whether these anticancer drugs are more
beneficial for the low- or high-risk groups, and further research
is required to identify their precise mechanisms.

FIGURE 15
Based on a bioinformatics analysis that the possible mechanism of cuproptosis-related lncRNAs influence THCA.
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5 Conclusion

The study successfully identified clinical characteristics that
affect THCA patients’ prognosis and established a predictive risk
model that categorizes patients into low- and high-risk groups
based on cuproptosis-related lncRNA. The prognostic model
showed a strong association with THCA prognosis. The
correlation between THCA and immunological response,
inflammatory response, cell proliferation, etc., was shown by
immune infiltration, GO, and KEGG assays based on
cuproptosis-related lncRNAs. However, this study has some
limitations, although it contributes new theoretical research
approaches to investigating the process of cuproptosis and
gaining new insights into clinical practice for THCA patients.
The lack of survival prognosis information on cuproptosis-
related lncRNAs in the GEO dataset made it challenging to
gather additional data to support the prognostic model. The
validity of cuproptosis-related lncRNAs needs to be confirmed
through comprehensive clinical trials since the study’s findings
are based on publicly available databases, and there was a lack of
data on clinical samples, leaving the subject still unclear.
Nonetheless, we discovered a potential link between
cuproptosis-related lncRNA and THCA that could serve as a
basis for further in vitro and clinical experiments to validate the
association.
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