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Background: The basement membranes (BMs) are involved in tumor progression,
while few comprehensive analyses to date are performed on the role of BM-
related gene signatures in lung adenocarcinoma (LUAD). Thus, we aimed to
develop a novel prognostic model in LUAD based on BMs-related gene profiling.

Methods: The LUAD BMs-related gene profiling and corresponding
clinicopathological data were obtained from the basement membrane BASE, The
Cancer Genome Atlas (TCGA) and gene expression omnibus (GEO) databases. The
Cox regression and least absolute shrinkage and selection operator (LASSO)methods
were used to construct a BMs-based risk signature. The concordance index (C-index),
receiver operating characteristic (ROC), and calibration curves were generated to
evaluate the nomogram. TheGSE72094datasetwas used to validate prediction of the
signature. The differences in functional enrichment, immune infiltration, and drug
sensitivity analyses were compared based on risk score.

Results: In TCGA training cohort, 10 BMs-related genes were found, (e.g., ACAN,
ADAMTS15, ADAMTS8, BCAN, etc). The signal signature based on these 10 genes
was categorized into high- and low-risk groups regarding survival differences (p <
0.001). Multivariable analysis showed that the signature of combined 10 BMs-
related genes was an independent prognostic predictor. Such a prognostic value
of BMs-based signature in validation cohort of theGSE72094were further verified.
The GEO verification, C-index, and ROC curve showed that the nomogram had
accurate prediction performance. The functional analysis suggested that BMs
were mainly enriched in extracellular matrix-receptor (ECM-receptor) interaction.
Moreover, the BMs-based model was correlated with immune checkpoint.
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Conclusion: This study identified BMs-based risk signature genes and
demonstrated their ability to predict prognosis and guide personalized
treatment of patients with LUAD.
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Introduction

Lung cancer is the second most common cancer and causes a high
mortality in the world (Abe and Tanaka, 2016). Lung adenocarcinoma
(LUAD) was the predominant type of lung cancer, consisted of
approximately 40% cases of lung cancer (Sung et al., 2021).
Although great progress has been made in diagnosis and treatment
of LUAD, especially in targeting and immunotherapy, the 5-year overall
survival (OS) of patients with LUAD remains poor, with approximately
15% only (Wang et al., 2021). LUAD had high molecular heterogeneity
and a tendency of early metastasis (Devarakonda et al., 2015). Current
methods are still difficult to accurately predict the occurrence and
prognosis of LUAD (Calvayrac et al., 2017). Therefore, there is an
urgent need to develop more effective and reliable prognostic
biomarkers to identify beneficiary patients.

The basement membranes (BMs) are the oldest animal extracellular
matrix (ECM), forming a flaky structure that lies under the epithelial cells
and surrounds most tissues (Pozzi et al., 2017). The respective planar
networks of laminin and type IV collagen molecules are associated with
cell surface interactions, providing a scaffold structure for building BMs
along the tissue (Yurchenco, 2011). The BMs can not only be used to
resist mechanical stress, determine tissue shape and create diffusion
barriers, but also provide clues to guide cell polarity, differentiation,
migration and survival (Jayadev et al., 2022). The variation of more than
20 BMs genes emphasizes the diversity and basic function of the BM
(Nyström et al., 2017). BM protein expression and turnover defects are
related to the occurrence of cancer (Naba et al., 2014).

The altered expression of ECM macromolecules in tumor
microenvironment (TME) affects the growth, survival, adhesion
and migration of cancer cells (Fares et al., 2020). Recently, the study
has found that BMs play a critical role in the development of human
diseases (Jayadev et al., 2022). For example, In the early development
of breast cancer, cancer cells invade through the BM foramen, which
is one of the key steps of metastasis (Sikic et al., 2022). At present, the
research of BMs in LUAD is relatively few, and thus further research
in this filed is needed.

Because the prediction of multi-gene model is better than that of
single-gene one, we carried out this study (Srivastava and Gopal-
Srivastava, 2002). In this study, we downloaded data from The
Cancer Genome Atlas (TCGA) to build a BMs-related genes
signature in order to predict the clinical outcome in LUAD
patients. The predictive ability of the signature is then verified
using data from the Gene Expression Omnibus (GEO). Finally, a
risk prognosis model based on the BMs-related genes signature was
established, which offered a more accurate prediction of LUAD
prognosis than simple clinicopathologic nomograms.

Materials and methods

Data collection and determination of BMs
differential expression

The RNA-seq data expression and clinical information of
59 normal lung and 539 LUAD tissues were obtained from
TCGA database (https://portal.gdc.cancer.gov). The LUAD RNA-
seq data of 398 cases were downloaded from GEO database (https://
www.ncbi.nlm.nih.gov/geo/). After the data were integrated,
449 cases in TCGA database were used as training cohort, while
398 cases in GSE72094 database were used as validation cohort. BMs
were downloaded from hallmark gene sets in the basement
membrane BASE database (https://bmbase.manchester.ac.uk)
(Jayadev et al., 2022). Different gene expression data sets were
normalized by R software. The differentially expressed BMs were
identified by “limma” package based on R software according to the
criteria of | logFC | > 1 and false discovery rate (FDR) < 0.05.

Construction and validation of a predictive
model based on BMs

In the training cohort, univariate Cox regression analysis was
used to analyze the differentially expressed BMs-related genes (p <
0.05). Then, the regression analysis of least absolute shrinkage and
selection operator (LASSO) was used, and the candidate BMs-
related genes with predictive significance were screened by
“glmnet” R package. Next, the optimal weighting coefficient of
each prognostic candidate BM gene was determined by
multivariable Cox regression analysis. All differentially expressed
and prognostically significant BM-related genes were included by
BM features. This specific risk score is calculated by the following
formula: (Coef1 expression *mRNA1) + (Coef2 expression
*mRNA2) + (Coef n expression *mRNAn), where Coef is the
corresponding coefficient of mRNA in the LASSO regression model.

According to the median of risk score, patients with LUAD were
divided into high-risk group and low-risk group. To assess the
prognosis of both groups, the OS was performed by the Kaplan-
Meier curve. The prognostic ability of the risk model was evaluated
by time-dependent ROC analysis using the “survival ROC” software
package (Janssens and Martens. 2020). To verify the BM signature,
use the risk score of LUAD cases in the GSE72094 dataset to verify
the accuracy of the model. In order to verify the BM signature, the
risk score of LUAD cases in the GSE72094 data set was used by the
same method to verify the accuracy of the model.
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Establishment of a prognostic nomogram in
LUAD

In TCGA training set, the association between BMs-related
genes signature and clinical variables was performed. In addition,
both univariate and multivariable Cox regression analysis were
conducted to explore whether the risk score had an independent
prognostic value in patients with LUAD. The probability of 1-year,
3-year and 5-year OS in LUAD patients were assessed by clinical
variables and risk score. The accuracy of nomogram was performed
to evaluated by concordance index (C-index) and calibration curve.

Analysis of prognosis and immune value of
BMs-related genes signature

The prognostic survival value of BMs-related genes signature
mRNAs in LUAD was analyzed by Kaplan-Meier survival analyses.
Then, mRNAs with high prognostic potential were chosen for the
next stage of evaluation. The correlation between the immune
function and immune cells of prognostic signature genes was
analyzed and scored by ssGESA algorithm.

Functional enrichment analyses and
protein-protein interaction (PPI)

Gene ontology (GO) analysis, including molecular function (MF),
biological processes (BP), and cellular components (CC), and the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analysis was
performed by the “clusterProfiler” package (Kanehisa and Goto, 2000).
FDR and p-value< 0.05 were considered to be significantly enriched. By
submitting the differentially expressed BMs information to the STRING
database (http://www.string-db.org/), the protein-protein interaction
information was obtained (Szklarczyk et al., 2019). The construction
and visualization of PPI network was realized by the Cytoscape software
(Otasek et al., 2019). According to theMCODE plug-in, we selected the
MCODE score > 10 to filter out the most significant module in the PPI
network.

Immune cell infiltration analysis

We utlized a series of algorithms, including CIBERSORT,
CIBERSORT-ABS, QUANTISEQ, MCP-counter, XCELL, TIMER,
and EPIC algorithms, to evaluate the level of immune cell
permeability between the high-risk group and the low-risk group
according to the differentially expressed BMs-based signature
(Newman et al., 2015). We explored the expression of several
immune checkpoints, such as CD276, TNFSF9, CD200R1, CD28,
CD80, CD48, TNFS18, TNFS15 and CD40LG, for immune
checkpoint blockade therapy.

Statistics analysis

All statistical analyses were performed using R software (version
4.1.3). Continuous variables are tested by the student T test, while

classified variables are tested by chi-square test. A p-value < 0.05 was
considered significant.

Results

Identification of a BM-related genes
signature

In 539 tumor and 59 normal tissues, we found
81 differentially expressed BMs genes (p < 0.05, and logFC | >
1), including 47 up-regulated and 34 down-regulated differential
expression ones (Figure 1A). The differential expression of each
sample was shown in the heatmap (Figure 1B). After excluding
72 patients without appropriate follow-up or lack of important
clinical information, 449 patients were included in the TCGA
training set to identify the prognosis-related BMs genes for
constructing a BMs-based signature. The clinicopathological
information of LUAD in the TCGA database was shown in
Table 1.

We used the univariate Cox regression to analyze individually
the differentially expressed BMs gene profile, 20 BMs genes were
found from TCGA training cohort (Figure 1C). Lasso regression
analysis was carried out among 20 BMs genes, of which 10 BMs
genes were found to be significant and selected as the BM signature
candidates genes (Figures 1D, E). The multivariate Cox regression
analysis was used to determine the corresponding regression
coefficients of each candidate in this BM-related risk gene
signature (Table 2). Finally, according to 449 LUAD cases in
TCGA training cohort, the 10 BM-related risk gene signature was
constructed, and the risk score was calculated based on the linear
combination of gene expression levels and corresponding regression
coefficients. Among them, the calculation formula of correlation
coefficient among 10 BM-related genes was as following (Table 2):
risk score= (0.1021 × ACAN expression) +(0.0162 ×
ADAMTS15 expression) + (−0.010 × ADAMTS8 expression) +
(0.0058 × BCAN expression) + (−0.0070 × COL4A3 expression)
+ (−0.0405 × ITGA8 expression) + (0.0017 × ITGB4 expression) +
(0.0043 ×LAD1expression) + (−0.0891 × TENM3 expression) +
(0.0003 × TIMP1 expression).

Prognostic value of BM-related risk gene
signature in the training cohort

According to the median of risk score, the patients with
LUAD were divided into high- and low-risk groups. The
LUAD patients in the low-risk group had significantly longer
OS time than those in the high-risk group (p < 0.001) (Figure 2A).
From the distribution of risk score (Figure 2B), the number of
deaths in the high-risk group was significantly higher than that in
the low-risk group. The heatmap showed the differential
expression of these 10 BM-related risk genes between the low-
risk group and the high-risk group (Figure 2C). The area under
the time-dependent ROC curve at 1-, 3-, and 5 years was 0.673,
0.709, and 0.722 in the two groups of patients, respectively,
indicating a good performance of the risk model for
predicting the survival of LUAD patients (Figure 2D).
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Prognostic value of BMs-related genes
signature in validation cohort

We used the samemethod to verify the prognostic value of BMs-
based signature in GSE72094 verification cohort. The survival curve

showed that the OS of patients in the low-risk group was better than
that in the high-risk group (p = 0.015) (Figure 2E), and there were
more deaths in the high-risk group than that in the low-risk group
(Figure 2F). The expression profiles of 10-BMs between the low-risk
group and the high-risk group were drawn in the heatmap

FIGURE 1
Analysis of differential expression and establishment of prognostic model of BMs-related genes in LUAD. (A) Volcano map showed differential
expression BMs-related genes. Red dots represent upregulated BMs-associated mRNAs, green dots represent downregulated ones, and black dots
represent mRNAs with no significant differential expression; (B) Heatmap showed differential expression BMs-related genes. Red represents high
expression and green represents low expression. Acronym: N = normal tissue, T = tumor tissue. (C)Determination of prognostic BMs-related genes
under univariate Cox regression analysis. (D) LASSO coefficient profiles of the 10 genes in LUAD. A coefficient profile plot was generated against the log
(lambda) sequence. (E) Selection of the optimal parameter (lambda) in the LASSO model for LUAD.
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(Figure 2G). Compared with the training cohort, the area under the
time-dependent ROC of the validation cohort at 1-, 3-, and 5 years
was 0.667, 0625, and 0.614, respectively, which also showed a good
verification (Figure 2H).

Prognostic significance and immune
infiltration of differential expression BMs
genes

From the 10 BMs genes which were used to construct the risk
score model, four of them based on survival significance were
screened. After we draw the survival curve of these four genes,
the high expression group of ITGB4 (p < 0.001), LAD1 (p = 0.009),
BCAN (p = 0.017), and ADAMTS15 (p = 0.043) had a worse
prognosis than the low expression group (Figures 3A–D),
respectively, suggesting that the high expression of ITGB4, LAD1,
BCAN and ADAMTS15 might be related to the progression of the

tumor. Moreover, the correlation analysis of differential expression
genes in immune cells and function showed that TIMP1, TENM3,
ITGA8 and ADAMTS8 were positively correlated with most
immune cells and immune function (Figure 3E), while ACAN,
BCAN, and LAD1 were negatively correlated, suggesting that
these genes may play significant roles in LUAD immunity and
deserve further study. Taken together, these results suggested that
above genes with differential expression could play a crucial role in
the immune regulation of LUAD.

Stratified analysis of association between
BMs-based signature and prognosis by
clinical features in patients with LUAD

We further confirmed the association between risk score and
clinical characteristics of LUAD patients. From the heatmap
(Figure 4A), we found that sex (p = 0.022), stage (p < 0.001),
radiotherapy (p = 0.008) and chemotherapy (p = 0.014) had
significantly statistical differences between the high-risk and low-
risk groups, while the age (p = 0.493) had no significant statistical
significance (Figures 4B–F). Thus, we performed the stratified
analysis of risk score on survival by clinical factors. We found
that there were significant survival differences between low-risk and
high-risk groups in different subgroups with different clinical
factors, including as age (≤65 vs. > 65 years) (p < 0.001), sex
(male vs. Female) (p < 0.001), with chemotherapy (p = 0.011),
without chemotherapy (p < 0.001), with radiotherapy (p = 0.014)
and stage (I/II vs. III/IV) (p < 0.001), while no significant survival
difference in patients without radiotherapy (p > 0.068)
(Figures 4G–K).

Multivariable analysis of prognosis of risk
score in LUAD

Multivariable Cox regression analysis was used to analyze
whether risk score could be regarded as independent prognostic

TABLE 1 Summary of the Clinicopathological characteristics of patients with LUAD.

Covariates Group Patient number (%) p-value1 p-value2

Age ≤65 218 (48.6) 0.271 0.182

>65 231 (51.4)

Gender Female 248 (55.2) 0.832 0.942

Male 201 (44.8)

Chemotherapy Yes 181 (40.3) 0.091 0.209

No 268 (59.7)

Radiotherapy Yes 106 (23.6) 4.20e-05 0.008

No 343 (76.4)

Stage Stage I-II 358 (79.7) 4.28e-07 <0.001

Stage III-IV 91 (20.3)

1 p-value of univariate Cox regression.

2 p-value of multivariable Cox regression.

TABLE 2 The 10 BMs-related gene list and coefficient.

Genes Coefficient

ACAN 0.1021

ADAMTS15 0.0162

ADAMTS8 −0.010

BCAN 0.0058

COL4A3 −0.0070

ITGA8 −0.0405

ITGB4 0.0017

LAD1 0.0043

TENM3 0.0891

TIMP1 0.0003
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indicators of LUAD after adjustment with other prognostic factors.
We first found that risk score (p < 0.001), stage (p < 0.001), and
radiotherapy (p < 0.001) were significantly associated with survival

in patients with LUAD by the univariate analysis (Figure 5A). We
then performed the multivariable Cox regression analysis to show a
significant association between risk score and prognosis (p < 0.001)
(Figure 5B), indicating that risk score may serve as an independent
predictor of prognosis of patients with LUAD.

Nomogram of BMs-related genes signature
in patients with LUAD

In the training cohort, we used BMs-based signature risk score,
age, sex, stage, radiotherapy and chemotherapy to develop a visual
nomogram for 1-, 3- and 5-year individual survival prediction
(Figure 5C). Bootstrap verification was performed to verify the
accuracy of the nomogram. The C-index of the training cohort
was 0.663, which showed that the nomogram had good prediction
ability in LUAD. We then draw the calibration curve (Figure 5D) to
verify the accuracy of the nomogram. The calibration curve showed
that the survival probability of the actual observation and prediction
was satisfactory in terms of 1-, 3- and 5-year consistency.

Functional enrichment analysis and PPI of
the BMs-related genes

To investigate the function and potential pathway of BMs genes
in LUAD, we performed the GO and KEGG analysis for
differentially expressed BMs genes. Based on the results of
biological process (BP)’s analysis, we found that 81 BMs genes
were involved in extracellular matrix organization, extracellular
structure organization, and external encapsulating structure
organization. The cellular component (CC) analysis demonstrated
that collagen-containing extracellular matrix and basement
membrane. Molecular function (MF) analysis also showed that
81 BMs were mainly related to extracellular matrix structural
constituent, extracellular matrix structural constituent conferring
tensile strength, metalloendopeptidase activity, glycosaminoglycan
binding, and extracellular matrix binding (Figure 6A). Moreover,
the KEGG pathway enrichment analysis found that the main
enrichment pathways of BMs differentially expressed genes
included ECM-receptor interaction, focal adhesion, protein
digestion and absorption, human papillomavirus infection, PI3K-
Akt signaling pathway, small cell lung cancer, axon guidance,
arrhythmogenic right ventricular cardiomyopathy, hypertrophic
cardiomyopathy, and dilated cardiomyopathy (Figure 6B). From
the STRING database, we found that the PPI network based on
differentially expressed BMs genes was mainly composed of
62 nodes and 173 edges (Figure 6C).

Analysis of immune checkpoint analysis for
BMs-related genes signature in patients with
LUAD

The relationship between risk score and immune checkpoint is
worthy of our investigation as the immune checkpoints play
important roles in immunotherapy. We found that there were
differences in the expression of CD276, TNFSF9, CD200R1,

FIGURE 2
Assessment of BMs-related genes signature. (A) Kaplan-Meier
survival analysis of patientswith LUAD in high and low risk groups of TCGA
training cohort; (B) Survival status distribution based on the median risk
score in TCGA training cohort; Red represents high risk and green
represents low risk; (C)Heatmap showed differential expression of BMs in
high and low risk groups of TCGA training cohort; (D) ROC curve analysis
of risk score predicting overall survival in TCGA training cohort. (E) Kaplan-
Meier survival analysis of patients with LUAD in high and low risk groups of
the GSE72094 validation cohort; (F) Survival status distribution based on
the median risk score of the GSE72094 validation cohort; Red represents
high risk and green represents low risk; (G) Heatmap showed differential
expression of BMs in high and low risk groups in the GSE72094 validation
cohort t; (H) ROC curve analysis of risk score predicting overall survival in
the GSE72094 validation cohort.
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FIGURE 3
Analysis of survival significance of differential expression BMs-related genes signature in high-risk group and low-risk group including high
expression of ITGB4 (A), LAD1 (B), BCAN (C) and ADAMTS15 (D). The red curve represents the high expression of mRNA and the blue curve represents the
low expression. (E) Analysis of immune cells and immunology functions associated with differential expression genes. Correlation analysis of differential
expression genes with immune cells and immunology functions. The red color represents positive correlations, the blue color represents negative
correlations, and the white indicates relationships without a statistical difference.
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FIGURE 4
Clinical characteristics of BMs-related genes signature with LUAD. (A) The heatmap of clinical factors and BM genes in high and low-risk with LUAD.
Differential expression in clinical factors of age(B), sex (C), stage (D), radiotherapy (E) and chemotherapy (F) under high and low-risk with LUAD.
Prognostic analysis of different clinical factors, including age>65 (G), age≤65 (H), sex =M (I), sex = F (J), stage = I + II (K), stage = III + IV (L), radiotherapy =
No (M), radiotherapy = Yes (N), chemotherapy = No (O) and chemotherapy = Yes (P) in K-M survival analysis of high and low risk. Red curve
represents the high-risk group and blue curve represents the low-risk group. Abbreviations: F = female, M =male, I + II = I and II stage, III + IV = III and IV
stage.
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CD28, CD80, CD48, TNFS18, TNFS15 and CD40LG between high-
risk and low-risk groups. Among them, CD276, and TNFSF9 were
highly expressed in the high-risk group (Supplementary Figures
S1 A, B), while CD200R1, CD28, CD80, CD48, TNFS18, TNFS15,
and CD40LG were highly expressed in the low-risk group
(Supplementary Figures S1 C–L).

Discussion

Based on the data from open access public databases, many
studies have focused on the link between RNA-seq data of specific
genomes and prognosis of individual patients (Sun et al., 2022;
Zhao et al., 2022), while few studies were focused on the
prognosis of LUAD with specific genomes, particularly on

clinical application, immune infiltration and other related
areas. There was growing evidence that the response of
extracellular matrix to TME drives the potential carcinogenic
mechanisms of many cancers, including lung cancer (Li et al.,
2021). At present, there were few reports on the prognostic value
of BMs-related genes in LUAD. In this study, we have developed a
comprehensive model with multi-genes for prediction of
prognosis in the patients with LUAD. This study was aimed to
investigate the relationship between the expression of BMs-
related gene signature and the prognosis of patients with
LUAD. We constructed a new prognostic model based on the
BMs-based signature which included 10-BMs-related genes, such
as ACAN, ADAMTS15, ADAMTS8, BCAN, COL4A3, ITGA8,
ITGB4, LAD1, TENM3, and TIMP1. Furthermore, we confirmed
the prognostic value of BMs-based signature, and established a

FIGURE 5
Development of a BMs-related genes signature nomogram with LUAD. (A) Univariate Cox regression analysis of the clinical features and the risk
score in patients with LUAD; (B) Multivariate Cox regression analysis of the clinical features and the risk score in patients with LUAD. (C) Nomogram for
BMs risk score and clinical features; (D) The calibration plots for predicting 1-,3- or 5-year survival probability.
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survival prediction nomogram involving risk score, age, sex,
staging, radiotherapy and chemotherapy, and verified its
predictive ability with GSE72094 data sets. In this study, we
have demonstrated that the nomogram was verified to have good
prediction performance. We further investigated the relationship
between BMs-based signatures and clinical features. Finally, we

explored the relationship between the differential expression of
BMs-related genes and immune checkpoints in patients
with LUAD.

In the current study, the risk score was constructed based on
10 BMs-related genes and used to demonstrate its value in clinical
research. The ITGB4, LAD1, BCAN and ADAMTS15 were found

FIGURE 6
Differentially expressed BMs-related genes analysis of enrichment function in LUAD. (A) GO function analysis; (B) KEGG pathway analysis; (C) PPI
network.
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to have significance in OS of patients with LUAD, of which the
integrin subunit β4 (ITGB4) is one of the most characteristic
integrins and is involved in regulation of various cellular
functions (Giancotti, 2007). Previous studies have shown that
integrin regulates angiogenesis, connective tissue proliferation
and immune response of tumor host cells by affecting tumor cell
migration, invasion, proliferation and survival. Thus it affects
epithelialmesenchymal transition (EMT), tumor occurrence,
metastasis and even treatment outcome (Xiong et al., 2021).
For example, the overexpression of ITGB4 was associated with
invasive behavior and poor prognosis of NSCLC (Zheng et al.,
2013; Wu et al., 2019). In this study, we found that the high
expression of ITGB4 contributes to the poor prognosis of LUAD,
which was consistent with previous studies. The LAD1 (Ladinin-
1) was a collagen-anchored filament protein on the BM, which
was used to maintain the cohesion of the dermis-epidermal
junction (Teixeira et al., 2015). It helped to stabilize the
connection between the epithelium and the underlying
mesenchyme (Motoki et al., 1997). In addition to its structural
role, LAD1 also participates in the regulation of mitotic signals by
acting as a connexin in EGF-induced ERK5 cascade activation
(Yao et al., 2010). Comparative proteomic studies showed that
the expression of LAD1 in LUAD was more abundant than that in
normal lung tissue (Codreanu et al., 2017). Similarly, we found
that the overexpression of LAD1 leads to the poorly prognostic
value in the progression of LUAD. The ADAMTS-15 acted as a
tumor suppressor in breast and prostate cancer (Porter et al.,
2006; Binder et al., 2020). Enhanced expression of ADAMTS-15
might reduce the motor ability of breast cancer cells and
angiogenesis, rather than rely on its catalytic activity. Binder
et al. found that ADAMTS-15 combined with androgen could
inhibit tumor (Binder et al., 2020). However, in our current
study, the overexpression of ADAMTS-15 led to a poor prognosis
of patients with LUAD. Recent study has found that the
expression of BCNA gene can protect bacterial cell capsule
from lipid peroxidation free radicals; however, its exact roles
in cancer require to be further studied (Naguib et al., 2022). In
our study, BCNA was risk factors, and the patients with
highexpression had a poor prognosis, which provided evidence
for further study in the future.

Our understanding of BMs in normal and disease states remains
limited due to the lack of adequate understanding of the role of BM
proteins in LUAD. However, in the GO enrichment analysis, we
found that BMs was an important part of EMC in the process of BP,
CC and MF, which was consistent with previous studies (Baghban
et al., 2020; Sahai et al., 2020). The EMC macromolecules exist in all
extracellular tissues, coordinating a variety of cellular processes and
tumor metastasis (Jayadev et al., 2022). The KEGG analysis showed
that BMs-related genes played a significant role in ECM-receptor
interaction. The TME, apart from ECM, included fibroblasts,
immune cells, and blood vessels. Composition and network
organization of EMC were synthesized and modified by cancer-
associated fibroblasts (CAFs) and cancer cells (Baghban et al., 2020;
Sahai et al., 2020). In this way, the nature of TME is altered, and
conversely, the TME can dictate the growth and spread of the tumor.
This showed that BMs might play a certain role in the
transformation between TME and ECM, which needs futher
study to be explored in the future.

Tumor infiltrating lymphocytes (TIL) were indispensable for the
occurrence and development of tumors (Kuninty et al., 2022).
Although the monotherapy of PD-1 or PD-L1 was generally well
tolerated and the efficacy is limited, combination therapy increased
the risk of immune-related adverse events. Therefore, new predictive
biomarkers were needed to maximize the benefit of patients, reduce
toxicity, and guide combination therapy (Ni et al., 2022). We used
immune algorithm to find immune checkpoints with differences
between high-risk and low-risk groups of BMs. Moreover, LUAD
patients in high-risk groups might benefit from immune checkpoint
therapy. However, so far, there have been no studies on the
association between BMs and drug sensitivity or resistance. Using
the CellMine database, we found that the expression of BMs-related
genes was related to the sensitivity of Vemurafeni, Dabrafenib,
Selumetinib and Cobimetinib, which were targeted drugs for gene
mutations. Therefore, we speculated that BMs might play a role in
targeted therapy, which might increase the drug sensitivity.

Although this study has found the relationship between BMs-
related genes signature and the prognosis of LUAD and clinical
significance of prognosis prediction of patients with LUAD, it
remains certain limitations. For example, since this study
collected the data of LUAD patients from TCGA and GEO
public databases and lacked actual laboratory research data, the
model was constructed based on such data, the findings are needed
to be verified or validated with the real data from the prospectively
designed clinical trials.

In conclusion, we determined whether the BMs genes risk
characteristics related to the OS of LUAD patients; and
constructed and verified the prognostic nomogram of
LUAD, including BMs-related risk score, age, sex, stage,
radiotherapy and chemotherapy for prediction of individual
survival. Moreover, we comprehensively analyzed the
differentially expressed BMs-related genes by enrichment
analysis, immunity and drug susceptibility. Thus, this study
may identify a new BMs-related prognostic marker,
demonstrate the clinical significance of BMs in LUAD, and
provide some evidence for the future study on the role of BMs
in LUAD.
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