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Background: Natural killer (NK) cells are involved in monitoring and eliminating
cancers. The purpose of this study was to develop a NK cell-related genes (NKGs)
in pancreatic cancer (PC) and establish a novel prognostic signature for PC
patients.

Methods: Omic data were downloaded from The Cancer Genome Atlas Program
(TCGA), Gene Expression Omnibus (GEO), International Cancer Genome
Consortium (ICGC), and used to generate NKG-based molecular subtypes and
construct a prognostic signature of PC. NKGs were downloaded from the
ImmPort database. The differences in prognosis, immunotherapy response,
and drug sensitivity among subtypes were compared. 12 programmed cell
death (PCD) patterns were acquired from previous study. A decision tree and
nomogram model were constructed for the prognostic prediction of PC.

Results: Thirty-two prognostic NKGswere identified in PC patients, andwere used
to generate three clusters with distinct characteristics. PCD patterns were more
likely to occur at C1 or C3. Four prognostic DEGs, including MET, EMP1, MYEOV,
and NGFR, were found among the clusters and applied to construct a risk
signature in TCGA dataset, which was successfully validated in PACA-CA and
GSE57495 cohorts. The four gene expressions were negatively correlated with
methylation level. PC patients were divided into high and low risk groups, which
exerts significantly different prognosis, clinicopathological features, immune
infiltration, immunotherapy response and drug sensitivity. Age, N stage, and the
risk signature were identified as independent factors of PC prognosis. Low group
wasmore easily to happened on PCD. A decision tree and nomogrammodel were
successfully built for the prognosis prediction of PC patients. ROC curves andDCA
curves demonstrated the favorable and robust predictive capability of the
nomogram model.
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Abbreviation: NK, Natural killer; NKGs, NK cell-related genes; PC, pancreatic cancer; TME, tumor
microenvironment; TCGA, The Cancer Genome Atlas Program; GEO, Gene Expression Omnibus;
PAM, partition around medoids; DEGs, differently expressed genes; FDR, false discovery rate; FC, fold
change; LASSO, least absolute shrinkage and selection operator; ROC, receiver operating characteristic;
MSigDB, Molecular Signatures Database; IC50, half-maximal inhibitory concentration; DCA, decision
curve analysis; TMB, tumor mutation burden; ICG, immune checkpoint genes; TNFSF10, tumor necrosis
factor ligand superfamily member 10; TNF, tumor necrosis factor; PIK3CB, phosphatidylinositol 4,5-
bisphosphate 3-kinase catalytic subunit beta isoform; HCK, hematopoietic cell kinase; LCK, src-family
kinases p56; TCR, T-cell antigen receptor; GEP, gene expression profile; CYT, cytolytic activity score.
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Conclusion: We characterized NKGs-derived molecular subtypes of PC patients,
and established favorable prognostic models for the prediction of PC prognosis,
which may serve as a potential tool for prognosis prediction and making
personalized treatment in PC.
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programmed cell death, prognosis

1 Introduction

Pancreatic cancer (PC) as a lethal malignancy shows a high
mortality worldwide, causing over 331000 deaths per year globally
(Rawla et al., 2019). Although advances in the treatment of PC,
patients who received surgical resection have a five-year survival rate
ranging from 10% to 25% (Siegel et al., 2020). PC was usually
diagnosed at a late stage due to the impalpable symptoms at the early
stage, and approximately 80%–85% of PC was unresectable or
metastatic at the time of diagnosis (Okasha et al., 2017).
Currently, chemotherapy is the main treatment for PC but
remains an unsatisfactory prognosis, and more effective and
precise therapies are required (Mizrahi et al., 2020).

Immunotherapy has been recently developed to help improve the
prognosis of various cancer types, such as renal cell carcinoma (Cho
et al., 2017), non-small cell lung cancer (Hellmann et al., 2018),
hematologic malignancies (Nelson and Paulos, 2015), and melanoma
(Ribas and Wolchok, 2018). The principle of tumor immunotherapy is
to fight against tumors through the activation of immune system,
during which restarting and maintaining tumor-immune cycle plays a
crucial role. Therapeutic targeting of immune checkpoints with
immune checkpoint inhibitors has revolutionized cancer treatment
(Komatsubara and Carvajal, 2017; Pulluri et al., 2017; Considine and
Hurwitz, 2019). It was reported that checkpoint blockade in
combination with GVAX has the potential for clinical benefit for
patients with PC (Le et al., 2013). T-cell immunity is associated with
the exceptional outcome of the few long-term survivors. A study
identified unique neoantigens as T-cell targets in PC patients, which
might be used to guide the application of immunotherapies
(Balachandran et al., 2017). Pembrolizumab is a PD-1 inhibitor and
has been approved for tumor patients with deficient mismatch repair or
high microsatellite instability, including PC (Boyiadzis et al., 2018).
However, the efficacy was restricted to a rare population due to the
complex, highly immunosuppressive tumor microenvironment of PC
(O’Reilly et al., 2019).

The tumor immune microenvironment (TME) contains tumor
cells, immune cells, cytokines, etc., and its heterogeneity can
potentially impact the patient’s response to immunotherapy.
Natural killer (NK) cells are a subset of innate immune cells and
play a crucial role as effector cells against tumors. NK cell can
directly kill malignant even at a relatively low ratio in the early
presence of tumors (Huntington et al., 2007) or promotes adaptive
T-cell immunological responses to limit cancer cell aggressiveness
(López-Soto et al., 2017). The activation of NK cells is controlled by
the integration of signals from cytokine receptors and a range of
germline-encoded inhibitory and activating receptors (Moretta
et al., 2006; Lanier, 2008). Studies found that NK cell activity was
significantly negatively correlated with the risk of malignancy (Imai

et al., 2000), and patients with a higher NK cell infiltration into
cancers had better outcomes (Coca et al., 1997; Ishigami et al., 2000;
Cursons et al., 2019). Cutting-edge immunotherapy targeting NK
cells exerts great potential in the treatment of cancer and become an
attractive alternative to T cell immunotherapies (Guillerey et al.,
2016; Souza-Fonseca-Guimaraes et al., 2019). Accumulating
evidence described the molecular characteristics of NK cells in
various cancers (Sun et al., 2021a; Sun et al., 2021b), but a
comprehensive molecular characterization of NK cells in PC
remains poorly understood.

In the present study, the PC patients were clustered on the basis of
natural killer cell-related genes (NKGs), and further comparison of the
clinicopathological, mutational, immunological and pathway
characteristics among subtypes was conducted. In addition, we
identified prognostic differentially expressed genes (DEGs) among
subgroups and constructed a risk signature for prognosis prediction.
The decision tree and nomogram model were built using
clinicopathological features and the risk signature to assist in
prognostic prediction and personalized treatment of patients with PC.

2 Materials and methods

2.1 Data collection and preprocessing

Transcriptome files and clinicopathological data of patients with PC
were obtained from the Cancer Genome Atlas Program (TCGA)
(https://tcga-data.nci.nih.gov/tcga/), Gene Expression Omnibus
(GEO) (https://www.ncbi.nlm.nih.gov/geo/), and the International
Cancer Genome Consortium (ICGC) (https://www.icgc.org)
databases. After removal of patients without complete clinical
information and outcome status, as well as follow-up of fewer than
30 days, 176 PC patients from the TCGA pancreatic adenocarcinoma
(TCGA-PAAD) cohort were retained as a training set. Ensembl was
converted into gene symbol, and median value was kept when a genes
hadmultiple gene symbols. The validation set contains 63 samples from
the GSE57495 cohort and 215 patients of the PACA-CA cohort from
the ICGC database. When multiple gene symbols appear or multiple
probes appear for a gene, the median is taken as the gene expression
value. A total of 134 humanNKGswere downloaded from the ImmPort
(https://www.immport.org/resource) database.

2.2 Consensus clustering

The prognostic NKGs were identified via univariate Cox
regression analysis and were used to perform consensus
clustering of PC patients. Consensus clustering analysis was

Frontiers in Genetics frontiersin.org02

Lan et al. 10.3389/fgene.2023.1100020

https://tcga-data.nci.nih.gov/tcga/
https://www.ncbi.nlm.nih.gov/geo/
https://www.icgc.org
https://www.immport.org/resource
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1100020


conducted using the “ConsensusClusterPlus” R package to
determine subgroups of PC patients based on the prognostic
NKGs (Wilkerson and Hayes, 2010). The best classification was
determined using the partition around medoids (PAM) algorithm
and 1-Pearson correlation distance, with 500 bootstraps.

2.3 Risk score

The DEGs among NKGs-derived clusters were screened out
using “limma” package according to the false discovery rate (FDR) <
0.05 and |log2 [fold change (FC)]| > log2 (2) (Ritchie et al., 2015).
The univariate and the least absolute shrinkage and selection
operator (LASSO) Cox regression analysis were adopted to
identify and filter prognosis-related NKGs, respectively. Finally,
by choosing the optimal penalty parameter lambda correlated
with the minimum 10-fold cross-validation, multivariate Cox
regression analysis was then implemented to establish the
prognostic signature. The formula for the risk signature was as
follows: risk score = ∑ βi × Expi. Where the βi represents the
coefficient and Expi represents the normalized expression level of a
gene. Two risk groups (high and low) were generated by a threshold
of zero, and K–M analysis was conducted to compare overall
survival (OS) differences between the high- and low-risk groups.
The receiver operating characteristic (ROC) analysis was performed
to estimate the predictive accuracy of the risk score.

2.4 Gene set enrichment analysis

GSEA was performed to analyze the differences in specific gene
sets using the “GSVA” R package (Hänzelmann et al., 2013). The
hallmark gene sets from the Molecular Signatures Database
(MSigDB), the inflammation-related gene sets (Liu et al., 2020),
and the angiogenesis-related gene set (Masiero et al., 2013) were
used to be analyzed. These pathways with the FDR <0.05 was
considered to be significant. Functional enrichment analysis
included Kyoto Encyclopedia of Genes and Genomes (KEGG)
and Gene Ontology (GO) (biological process (BP), cellular
component (CC), and molecular function (MF)) analysis was
performed on DEGs in clusters using WebGestaltR package (Yu
et al., 2012).

2.5 Immune infiltration, chemotherapeutic
sensitivity, and immunotherapy response
predictions

The relative proportion of immune cells was calculated using the
CIBERSORT algorithm (https://cibersort.stanford.edu/), which
performs cell type enrichment analysis from gene expression data
for 22 immune cells. The “ESTIMATE” R package was applied to
estimate and extrapolate the fraction of stromal and immune cells in
tumor samples (Yoshihara et al., 2013). The expression levels of the
immune checkpoints were compared in different groups. To predict
the chemosensitivity of osteosarcoma patients to several common
anti-cancer drugs (methotrexate, paclitaxel, cisplatin, and
doxorubicin), we adopted the “pRRophetic” R package to infer

the half-maximal inhibitory concentration (IC50) values by
constructing the ridge regression model based on Genomics of
Drug Sensitivity in Cancer (GDSC) (www.cancerrxgene.org/) cell
line expression spectrum and gene expression profiles (Geeleher
et al., 2014).

2.6 Establishment of a predictive nomogram

The decision tree model was applied to classify subgroups based
on clinicopathogicial features and risk scores by using the “rpart” R
package (https://cran.r-project.org/web/packages/rpart/index.
html). The independent prognostic factors of OS for PC were
identified by univariate and multivariate Cox regression analysis.
A nomogram integrating the risk signature and independent
prognostic clinicopathological factors was constructed in the
TCGA cohort by the “rms” R package (https://cran.r-project.org/
web/packages/rms/index.html). The calibration curves were utilized
to evaluate the prediction accuracy between the predicted 1-, 2- and
3-year OS probabilities and the actual observations. The
discriminate ability of the nomogram was assessed by time-
dependent ROC curves. The decision curve analysis (DCA) was
conducted to test the clinical utility of the nomogram using the
“rmda” R package (https://cran.r-project.org/web/packages/rmda/
index.html).

2.7 Mutation analysis

Tumor mutation burden (TMB) is was determined as the
number of somatic indels and base substitutions per million
bases in the coding region of the genome detected. Gene
mutation data of PC patients were downloaded from the TCGA
database and TMB was calculated using the “maftools” package
(Mayakonda et al., 2018) as previously described (Chalmers et al.,
2017).

2.8 Programmed cell death (PCD) analysis

12 PCD patterns were acquired from previous (Zou et al.,
2022). Altogether, 580 apoptosis genes, 52 pyroptosis genes,
87 ferroptosis genes, 367 autophagy genes, 14 cuproptosis
genes, 9 parthanatos genes, 15 entotic cell death genes,
101 necroptosis genes, 8 netotic cell death genes, 7 alkaliptosis
genes, 220 lysosome-dependent cell death genes, and 5 oxeiptosis
genes were collected. Based on the expression data of above gene
sets, ssGSEA analysis was conducted on tumor samples using the
R package GSVA.

2.9 Statistical analysis

The R software (v3.6.3) was used for statistical analyses.
Wilcoxon test compared differences between two groups.
Survival differences were compared using K–M curves with a
Log-rank test. The Cox proportional hazard model was
performed to estimate the β regression coefficient, hazard

Frontiers in Genetics frontiersin.org03

Lan et al. 10.3389/fgene.2023.1100020

https://cibersort.stanford.edu/
http://www.cancerrxgene.org/
https://cran.r-project.org/web/packages/rpart/index.html
https://cran.r-project.org/web/packages/rpart/index.html
https://cran.r-project.org/web/packages/rms/index.html
https://cran.r-project.org/web/packages/rms/index.html
https://cran.r-project.org/web/packages/rmda/index.html
https://cran.r-project.org/web/packages/rmda/index.html
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1100020


FIGURE 1
Consensus clustering of PC patients based on NKG signature. (A) Forest plot of prognosis-related NKGs in the TCGA-PAAD cohort; (B) The
correlations among 32 prognosis-related NKGs in the TCGA-PAAD cohort; (C)Consensus cumulative distribution function (CDF) diagramwhen different
k values, (D) Delta area plot for the relative change in the area under CDF curve for k compared to k-1, (E) Consensus matrix when the number of groups
(k) = 3. In the consensus matrix, white meant that samples were impossibly clustered together, and dark blue meant that samples were always
clustered together. Both rows and columns of the matrix represented samples, (F) and (G) represented the survival analysis of the clusters in the TCGA-
PAAD cohort and PACA-CA cohort, respectively. (H) The heatmap of expression of 32 prognosis-related NKGs in the TCGA-PAAD cohort.
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ratios, p-value, and their corresponding 95% confidence interval
for each of the selected risk predictors. a nomogram was
constructed with the “rms” package in R. The C-index and

calibration curve with the bootstrap method were used to
evaluate the prediction performance of the nomogram. A
p-value <0.05 was deemed to be a statistical significance.

FIGURE 2
The comparison between our defined cluster with other existing subtypes. (A) The comparison of our defined clusters with the subtypes derived
from the pan-cancer study. (B) The comparison of our defined clusters with immune signature-derived subtypes. (C) The comparison of somatic
mutations in NKGs-derived subtypes in the TCGA cohort. *p < 0.05; **p < 0.01; ***p < 0.001; and ****p < 0.0001.
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3 Results

3.1 Molecular subtypes derived from natural
killer cell-related genes

The flowchart is shown in Supplementary Figure S1. To obtain
molecular subtypes of PC based on NKG, we first identified
32 NKGs that were significantly associated with the prognosis of
PC (p < 0.05, Figure 1A). Notably, positive correlations among the
expression of the 32 NKGs were observed in Figure 1B.
Subsequently, consensus clustering of the 32 NKGs generated
three stable clusters (C1, C2, and C3) in the TCGA-PAAD
cohort (Figures 1C–E). Survival analysis demonstrated that the
C3 cluster had a favorable prognosis whereas the C1 cluster had
a poorer prognosis (Figure 1F). The individuals in the PACA-CA
cohort were also divided into three clusters, which exerted similar
prognosis characteristics as the clusters in the TCGA-PAAD cohort
(Figure 1G). Among the 32 NKGs, the risk genes were generally
overexpressed in the C1 cluster, and the protective genes were
mainly elevated in the C3 clusters (Figure 1H).

3.2 Genomic landscapes among molecular
subtypes

We compared defined three clusters with the molecular subtypes
derived from a pan-cancer study and immune signatures (Thorsson
et al., 2018). As shown in Figure 2A, the C1 cluster presented with a
higher TMB, aneuploidy, homologous recombination defects, and
loss of heterozygosity. Meanwhile, a significantly higher proportion
of immune signature-derived C3 subtype in our defined C3 subtype
was observed (Figure 2B). The immune signature-derived
C3 subtype was characterized by the overexpression of TH17 and
Th1 genes, a low to moderate proliferation rate of tumor cells, and
lower levels of aneuploidy and overall somatic copy number
alterations. Meanwhile, the immune signature-derived C3 subtype
showed a better prognosis than other subtypes, which is consistent
with our defined C3 cluster showing the best prognosis, as shown in
Figure 1F. The gene mutations in each cluster were compared and
the top 20 genes with a lower p-value were illustrated in Figure 2C.
Most mutations were present in KRAS, TP53, and SMAD4,
accounting for 75.3%, 28.2%, and 19.7%, respectively. It was
noticed that the C1 cluster with a poor prognosis had more gene
mutations.

3.3 Pathway characteristics among
molecular subtypes

GSEA was performed to elucidate the pathway features in each
cluster by using the Hallmark candidate gene sets. As shown in
Figure 3A, the C1 cluster was significantly enriched in 38 pathways
in the TCGA cohort. Generally, the activated pathways mainly
included cell cycle-related pathways, such as E2F_TARGETS,
G2M_CHECKPOINT, MYC_TARGETS_V1, whereas the
inhibited pathways primarily contained INFLAMMATORY_
RESPONSE, COMPLEMENT, and INTERFERON_GAMMA_
RESPONSE. Similar results were also observed in the PACA-CA

cohort. In addition, we compared the pathway characteristics
between clusters (Figures 3B–D). It revealed that PC patients
with the 3 subtype had activated immune pathways, such as cell
cycle-related pathways, indicating that the 32 NKGs might play vital
roles in the regulation of cell cycle and TME.

3.4 Immune signatures between molecular
subtypes and differences in
immunotherapy/chemotherapy/PCD

Furthermore, we assessed the relative abundance of 22 immune
cells in the TCGA-PAAD and PACA-CA cohorts using the
CIBERSORT algorithm. As shown in Figures 4A, C, significant
differences among three clusters were observed for several immune
cell types, such as CD8+T cells and activated CD4+ memory T cells.
Meanwhile, we observed a significantly higher immune score in the
C3 cluster than in other clusters (Figures 4B, D), indicating that the
C3 cluster had a higher immune infiltration. In addition, we
investigated the 7 inflammation-related metagenes clusters in the
three molecular subtypes. As a result, 6 of the 7 metagenes clusters
were significantly differently expressed among subtypes, except for
interferon (Figure 4E). Overall, the C1 cluster presented with a
higher inflammation activity than other clusters. Meanwhile, we also
observed a higher enrichment score of LCK and MHC-II, and
STAT1 in the C1 cluster than the other two clusters in the
PACA-CA cohort (Figure 4F). The ssGSEA analysis of 12 PCD
patterns indicated that 10 PCD patterns had obviously differences
among 3 subtypes, and in general, C1 or C3 subtype had higher
ssGSEA scores (Figure 4G).

3.5 Immunotherapy response and drug
sensitivity among clusters

Immunotherapy achieved favorable therapeutic effects in
various cancers and immune checkpoint genes (ICG) play vital
roles in these processes. Therefore, we evaluated the expression of
ICGs among clusters and found an elevated expression of PD-1, PD-
L1, and CTLA4 in the C3 cluster, as shown in Figure 5A. Meanwhile,
we assessed the capability of clusters in predicting immunotherapy
response using the T cell inflamed GEP score and observed a higher
score in the C3 cluster than in other clusters (Figure 5B). INF-γ is a
cytokine that plays a key role in immune regulation and anticancer
immunity (Zhang et al., 2017), therefore, we calculated the ssGSEA
score of the GOBP_RESPONSE_TO_INTERFERON_GAMMA
gene set and found a significantly higher score of INF-γ response
in the C3 cluster (Figure 5C). In addition, we also observed a higher
CYT score in the C3 cluster than in other clusters (Figure 5D), which
was used to reflect cytotoxic effects. Moreover, our data showed that
the C1 cluster was more sensitive to cisplatin, gemcitabine, and
erlotinib.

3.6 Establishment of a risk signature

A total of 294 DEGs among clusters were identified, as shown
in Figures 6A–C. Enrichment analysis on the DEGs was
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performed and the results showed that the C3 cluster contained
DEGs that were significantly associated with immune-related
pathways (Figure 6D). Univariate COX analysis showed that

122 of the 293 DEGs were significantly associated with the
prognosis of PC (p < 0.01), including 84 risk genes and
38 protective genes (Figure 7A). Subsequently, lasso COX

FIGURE 3
The comparison of pathways between molecular subtypes. (A) Bubble chart of GSEA analysis results of the TCGA cohort and the ICGC cohort. (B)
Bubble chart of the GSEA analysis results of C1 vs. C3, C1 vs. C2, and C2 vs. C3 in the TCGA cohorts; (C) The radar chart of the C1vsC2, C2vsC3 coherent
activation pathway in the TCGA cohort; (D) The radar plot of the C1vsC2, C2vsC3 coherent activation pathway in the ICGC cohort.
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FIGURE 4
Comparison of immune infiltration and inflammation activity among threemolecular subtypes. (A) and (C) represented the differences in the relative
abundance of 22 immune cells among different molecular subtypes in the TCGA-PAAD and PACA-CA cohorts, respectively. (B) and (D) represented the
comparison of the ESTIMETE results among clusters in the TCGA-PAAD and PACA-CA cohorts, respectively. (E) and (F) represented the differences in the
inflammation activity among clusters in the TCGA-PAAD and PACA-CA cohorts, respectively. (G) The ssGSEA score differences of 12 programmed
cell death patterns among 3 molecular subtypes.

Frontiers in Genetics frontiersin.org08

Lan et al. 10.3389/fgene.2023.1100020

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1100020


regression was adopted to compress the gene number and found
9 candidate genes when lambda = 0.0666 (Figures 7B, C). Finally,
four genes were identified after stepwise multivariate regression
analysis on the 9 candidate genes and were used to construct a
prognosis model (Figure 7D), RiskScore =
+0.306*MET+0.299*EMP1-0.225*NGFR+0.182*MYEOV. The
four gene expressions were negatively correlated with
methylation level (Supplementary Figure S2). The risk score
was calculated for each patient in the TCGA cohort and was
used to divided the patient into the high and low group
(Figure 8A). ROC analysis demonstrated a favorable predictive
capability in forecasting the 1-, 3-, and 5-year survival rates
(Figure 8B). Survival analysis showed a significantly difference

in prognosis between the high and low groups (Figure 8C). In
addition, we evaluated the robustness of the prognosis model in
the PACA-CA and GSE57495 cohorts, which had similar results
as the TCGA cohort (Figures 8D–G).

3.7 Differences in clinicopathological
features and clusters between the high and
low groups

The correlations between risk score and clinicopathological
characteristics were analyzed in the TCGA and PACA-CA
cohorts, and the results found significant associations between

FIGURE 5
Differences in the immunotherapy response and drug sensitivity among clusters in the TCGA cohort. (A) Comparison of the ICGs among clusters.
(B–D) Showing comparisons of the T cell inflamed GEP score, response to IFN-γ, and Cytolytic activity among clusters, respectively. (E) The box plots of
the estimated IC50 for cisplatin, 5-Fluorouracil, gemcitabine and erlotinib in the three clusters.
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risk score and grade, but not stage, age, and gender (Figures 9A, C).
Meanwhile, the risk score was significantly different among the three
clusters, which manifested by a higher risk score in the C1 cluster
and a lower risk score in the C3 cluster (Figures 9B, D). In addition,
K-M curves showed that the risk score exhibited a favorable
capability in the prognostic prediction of PC in sub-populations
with specific clinicopathological features (Figures 9E, F).

3.8 Immune infiltration and pathway
characteristics in different risk groups

As shown in Figure 10A, we observed a significantly
difference in the relative abundance of four immune cells,
including naive B cells, CD8 T cells, monocytes, and
M0 macrophages, between the high and low groups in the

FIGURE 6
The identification of DEGs in each cluster. (A–C) Volcano plot of DEGs in the TCGA-PAAD cohort; (D) Functional enrichment analysis of DEGs of
each cluster.
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TCGA cohort. The correlations between risk score and immune
cells were illustrated in Figure 10B. In addition, a higher immune
score was observed in the low group than the high group,
indicating a higher immune infiltration in the low group
(Figure 10C). The ssGSEA scores on each pathway were
calculated for individuals and were compared between two risk
groups. The results demonstrated that the High group was
significantly associated with cell cycle-related pathways
(Figures 10D, E).

3.9 Immunotherapy response,
chemotherapy sensitivity and PCD between
two risk groups

As shown in Figure 11A, we observed a significantly higher T cell
inflamed GEP score in the Low group as compared with those in the
High group. Our data also revealed a significantly higher response to
IFN-γ and cytolytic activity in the Low group, when compared with the
high group (Figures 11B, C). In addition, we found elevated expression

FIGURE 7
The identification of hub genes for the construction of the prognosis model, (A) A total of 122 promising candidates were identified from the DEGs;
(B) The trajectory of each independent variable with lambda; (C) Confidence interval under lambda; (D) Distribution of LASSO coefficients of the Natural
Killer Cell-related prognostic gene signature.
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of PD-1 and CTLA4, but not PD-L1, in the low group (Figure 11D),
suggesting potential differences in immunotherapy response between
the two risk groups. Chemotherapy sensitivity in different risk groups
was analyzed and found that the patients in the high group were more
likely to be sensitive to gemcitabine, cisplatin, and erlotinib, as shown in
Figure 11E. In addition, four of 12 PCD patterns had increased ssGSEA
score in low group, while 3 PCDhad higher ssGSEA score in high group
(Figure 11F, left). Furthermore, we analyzed the correlation between
RiskScore, four model genes and 12 PCD patterns, and there were
different degrees of correlation with each other (Figure 11F, right).

3.10 Improvement of the prognostic model

As shown in Figure 12A, a decision tree was constructed based
on the risk score and clinicopathological features and generated four
groups (Lowest, Low, Mediate, High) using three parameters (risk
score, N stage, age). Survival analysis demonstrated significant
differences in prognosis among the four groups (Figure 12B, p <
0.001). The correlations between the decision tree-derived groups
and risk groups were illustrated in Figures 12C, D. Univariate
regression analysis showed that T stage, N stage, age, and risk

FIGURE 8
Construction and validation of the prognosis model for PC. (A) The risk scores of patients in the TCGA cohort. (B) The ROC results of the prognostic
model in the TCGA cohort. (C) The survival analysis results of the prognostic model in the TCGA cohort. (D, E) ROC curve and KM survival curve of risk
score in PACA-CA cohort; (F, G) ROC curve and KM survival curve of risk score in GSE57495 cohort.
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score was associated with the prognosis of PC, and three of them (N
stage, age, and risk score) were identified as independent risk factors
via multivariate regression analysis (Figures 12E, F). Therefore, a
nomogram was built using the three factors (Figure 12G). It was
observed that the predicted values were close to the observed values
in terms of the 1-, 2, and 3-year OS (Figure 12H), indicating that the
nomogram had good prediction performance. In addition, a
decision curve was used to evaluate the reliability of the model,
and it was observed that the risk signature and nomogram model

had a higher standardized net benefit as compared with other
clinicopathological features (Figure 12I).

4 Discussion

Tumor immunotherapy has brought hope for cancer
treatment, and more and more studies have shown that innate
immune cells, including NK cells, have unique advantages in anti-

FIGURE 9
The distribution and predictive capability of the risk score in sub-population with distinct clinicopathological features. (A) and (C) Differences in risk
score among different clinicopathological groups in the TCGA-PAAD and PACA-CA cohorts, respectively; (B) and (D) Difference in risk score among
different molecular subtypes in the TCGA-PAAD and PACA-CA cohorts, respectively; (E) and (F) K-M curve of risk score-derived groups in different
clinicopathological groups the TCGA-PAAD and PACA-CA cohorts, respectively.
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tumor immunotherapy. However, most of the current research
focuses on adaptive immune cells, and the role of innate
immune cells has not been paid enough attention. Studies have

shown that the abundance of tumor infiltrating NK cells is
closely related to the prognosis of patients with various solid
tumors (Villegas et al., 2002; Cursons et al., 2019; Meng et al.,

FIGURE 10
Comparison of immune infiltration and pathways between two risk groups. (A) Comparison of the proportion of immune cells in the TCGA cohort;
(B)Correlation analysis between 22 immune cells and risk score in the TCGA cohort; (C)Comparison of the results of ESTIMATE between two risk groups;
(D) The top 10 pathway with the most significant difference between the two risk groups. (E) Correlation analysis between pathways and risk score.
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FIGURE 11
Comparison of the immunotherapy response and chemotherapy sensitivity between two risk groups in TCGA-PAAD cohort. (A–C) Represented the
comparison of the T cell inflamed GEP score, response to IFN-γscore and cytolytic activity between the two risk groups, respectively. (D) Differences of
expression ICGs between different groups; (E) The box plots of the estimated IC50 for cisplatin, 5-Fluorouracil, gemcitabine and erlotinib between the risk
groups. (F) Left, the ssGSEA score differences of 12 programmed cell death patterns between high- and low-group. Right, the correlation analysis
between 12 programmed cell death patterns and RiskScore.
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2019). The prognostic model based on NKG has the potential
ability to predict prognosis and immunotherapy response
(Cursons et al., 2019). Meanwhile, a novel human NK cell-
based immunotherapy was developed and showed efficacy in
human metastatic PC models (Teng et al., 2022). Inspired by
these findings, we attempted to investigate the molecular subtypes
of PC based on prognosis-related NKGs using transcriptomic
data in this study. Distinct differences in prognosis,
immunotherapy response, and drug sensitivity among subtypes
were observed, indicating the crucial role of NK cells in the

progression and treatment of PC. Functional enrichment
analysis showed that NKGs involved in activated immune
pathways, such as cell cycle-related pathways, indicating that
the those NKGs might play vital roles in the regulation of cell
cycle and TME. Furthermore, we developed a novel prognostic
prediction signature based on DEGs that were found among
NKGs-derived molecular subtypes of PC, which exerts a
favorable capability of prognostic prediction.

Herein, we identified 32 prognosis-related NKGs in PC, including
12 protective genes and 20 risk genes, and the expression of most of

FIGURE 12
Construction of prognostic models of PC using the risk score and clinicopathological features. (A) A decision tree model generated four risk groups
based on age, N stage and the risk score. (B) Survival analysis of the decision tree-derived risk groups showing distinct prognoses among the groups. (C, D)
showed the correlations between risk score-derived groups and decision tree-derived groups. (E) and (F) Univariate and multivariate Cox analysis of risk
score and clinicopathological characteristics. (G) The nomogrammodel consists of age, N stage, and the risk score; (H) 1-, 2-, and 3-year calibration
curves of the established nomogram; (I) The decision curves showing the capacity for survival prediction.
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these genes was significantly correlated. A number of studies had
proposed potential roles of these NKGs in PC. For instance, the tumor
necrosis factor ligand superfamilymember 10 (TNFSF10), also known
as TRAIL, encodes a cytokine that belongs to the tumor necrosis factor
(TNF) ligand family, it preferentially induces apoptosis in
transformed and tumor cells and was proposed as a prognostic
indicator of PC (Wang et al., 2021; Wang et al., 2022). As a well-
known driver gene, KRAS frequently mutated in PC patients (Waters
and Der, 2018), our data revealed that KRAS was the most mutated
gene in the TCGA-PAAD cohort. KRAS gene mutations has been
reported to be involved in the invasion and metastasis of tumor cells,
as well as chemoresistance (Mueller et al., 2018; Buscail et al., 2020). It
was found that TMB was associated with the sensitivity of
immunotherapy response and was more effective than ICG
expression in screening patients suitable for immunotherapy
(Choucair et al., 2020). This finding may result from the
enrichment of immune cells due to the elevated production of
“non-self” neoantigen under high TMB (Schumacher and
Schreiber, 2015). In addition, it was observed that the
phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit
beta isoform (PIK3CB) was involved in metastasis of PC cells (Qu
et al., 2021). Therefore, further investigation on these prognostic
NKGs and their mutationsmight provide clues for the development of
novel treatment of PC.

Three stable clusters with distinct differences in prognosis were
generated based on the prognostic NKGs, and GSEA results found
significant differences in cell cycle pathways and immunity-related
pathways among clusters. Therefore, the inferior prognosis of patients
in the C1 cluster may be partly attributed to the disturbance of cell
cycle regulation, which is closely related to tumor proliferation and
progression (Tang et al., 2020). Meanwhile, these data indicated that
the prognostic NKGs used for molecular typing play important roles
in the cell cycle process and tumor immune microenvironment. For
example, Rac1 plays an important role in regulating cell function, and
its activation affects cell morphology (Etienne-Manneville and Hall,
2002), cell cycle and gene expression (Yoshida et al., 2010), survival
and apoptosis (Liang et al., 2021). Tyrosine kinase FYN was reported
to be associated with mediating mitogenic signals and involved in
regulating cell cycle and proliferation (Zheng et al., 2017). Besides, we
observed significant differences in immune cells infiltration among
NKG-derived clusters. The C1 cluster was characterized as so-called
“cold tumor” since it presented with a lower immune cell infiltration.
The tumor-infiltrating immune cells participated in tumor
development and influence prognosis (Barnes and Amir, 2017),
and anti-tumor activity of “cold tumor” is decreased because low
immune cell infiltration could increase tumor cell escape from
immune surveillance and contribute to tumor progression
(Bonaventura et al., 2019). These finding may partly contribute to
the significant reduction in survival of the C1 and C2 clusters.
Meanwhile, a lower stromal score was observed in the C1 and
C2 clusters, which was suggested to be associated with a poor OS
of osteosarcoma (Alves et al., 2019).

Since GSEA revealed significant inhibition of inflammatory
response among clusters, we further evaluated the relationships
between NKG-derived clusters and inflammatory activities by
analyzing inflammatory-related metagenes. Notably, significant
differences in hematopoietic cell kinase (HCK), IgG, MHC-II,
src-family kinases p56 (LCK), MHC-I, and were observed among

clusters. HCK plays a pivotal role in innate immunity and was
overexpressed in various cancers. It could regulate the phagocytosis
of neutrophils and macrophages (Roseweir et al., 2019), as well as
immune cell infiltration in the TME (Cheng et al., 2022). LCK is
critical for proximal T-cell antigen receptor (TCR) signal
transduction and is involved in the earliest steps of TCR-
mediated T-cell activation (Salmond et al., 2009). MHC-I and
MHC-II are two pivotal molecules presenting with the function
of antigenpresentation, and their loss of expression would make
tumor cells escape T-cell killing (Garrido and Aptsiauri, 2019).
Therefore, a lower level of these inflammatory-related metagenes
may partly account for the immunosuppressive microenvironment
in the C1 and C2 clusters.

Discrepancy between inflammatory activities and immune cell
infiltration among clusters prompted us to explore the
immunotherapy response. It was suggested that ICG expression
partly contribute to the success of immune checkpoint blockade
therapy. Herein, we revealed significant differences in ICG
expression among clusters, indicating potential differences in the
response to immunotherapy among clusters. In addition, a T cell-
inflamed gene expression profile (GEP) was found to be effective in
predicting response to anti-PD-1-directed therapy (Ayers et al., 2017).
Our data showed that the C3 cluster had a significantly higher T cell-
inflamed GEP score, indicating that PC patients in the C3 cluster
might be more sensitive to anti-PD-1 therapy. Cytokine IFN-γ plays a
key role in anticancer immunity and immune regulation, and the
C3 cluster presented with a higher elevated expression of the gene set
that responds to IFN-γ. Moreover, the cytolytic activity score (CYT)
has been considered as a useful tool to evaluate anti-tumor immunity.
It has been revealed that high CYT was associated with better
prognosis of colorectal cancer, which could be explained by
increased immunity and cytolytic activity of T cells and
M1 macrophages (Narayanan et al., 2018). In this study, elevated
cytolytic activity was observed in the C3 cluster. Moreover, our data
also revealed the differences in chemotherapeutic drug sensitivity
among clusters. The clusters derived from NKG have significant
differences in immunotherapy and chemotherapy responses, which
has potential value to guide individualized treatment strategies.

On the basis of NKG-derived clusters, we established a novel
prognostic signature using the DEGs found among clusters. This
prognostic signature has satisfactory prognostic performance and
has shown good predictive power in immunotherapy response and
chemotherapeutic drug sensitivity. Despite the promising findings
obtained, several limitations in this study should be acknowledged.
First, due to the high heterogeneity of the tumor immune
microenvironment, the prognosis-predicting ability of NKG-
derived molecular subtypes and subsequent prognostic models
was limited. Second, analysis of NK cell characteristics based on
single cell sequencing will help to further understand its role in PC.
Finally, further study is required to investigate the underlying
mechanism of the genes in the risk signature and PC patients’
outcomes.

5 Conclusion

In conclusion, we established three molecular clusters of PC using
32 prognosis-related NKGs and revealed differences in
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clinicopathological and genomic features, pathways, immunotherapy
response, and drug sensitivity among clusters. Furthermore, a
prognostic signature with robust prognosis-predicting ability was
built and validated. The NKG-derived molecular clusters and
prognostic signature might serve as a useful tool for assisting in
the decision of individualized treatment and the selection of suitable
individuals for chemotherapy.
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