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Pharmacogenomics has been at the forefront of precision medicine during the last
few decades. Precision medicine carries the potential of improving health outcomes
at both the individual as well as population levels. To harness the benefits of its
initiatives, careful dissection of existing health disparities as they relate to precision
medicine is of paramount importance. Attempting to address the existing disparities
at the early stages of design and implementation of these efforts is the only guarantee
of a successful just outcome. In this review, we glance at a few determinants of
existing health disparities as they intersect with pharmacogenomics research and
implementation. In our opinion, highlighting these disparities is imperative for the
purpose of researching meaningful solutions. Failing to identify, and hence address,
these disparities in the context of the current and future precisionmedicine initiatives
would leave an already strained health system, even more inundated with inequality.
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Introduction

The COVID-19 pandemic has helped expose the staggering rates of health disparities both
domestically and world-wide, yet those disparities have long been demonstrated. The root
causes continue to be debated with the goal of identifying future applicable solutions (Braveman
and Gottlieb, 2014; Weinstein, 2017; Lee et al., 2020; Landrigan et al., 2021). Precision medicine
initiatives carry a lot of promise in addressing these disparities with the potential to reduce
morbidity and mortality for millions of people, while decreasing the cost and improving the
quality of health care (Ginsburg and Phillips, 2018; Sisodiya, 2021). Without concerted efforts
towards inclusion of minorities and disadvantaged populations in the research and
development of such initiatives, what would have been potentially promising, could end up
being a new roadblock that widens the already existing gaps. One of the most promising areas of
precision medicine is pharmacogenomics (PGx), the science that utilizes genetic variation to
individualize drug therapy. While the field has been growing exponentially over the last few
decades with great potential, there is no evidence that the pattern of the implementation or
utilization of PGx is predictive of a path guaranteeing health equity in such efforts.

Health disparities are preventable differences in the burden of disease, injury or
opportunities to achieve optimal health that are experienced by socially disadvantaged
populations (CDC. Health Disparities, 2022). In the United States (US), federal regulations
define socially disadvantaged individuals as those who have been subjected to racial or ethnic
prejudice or cultural bias within the American society because of their identities as members of
groups and without regard to their individual qualities. These prejudices could be due to sex,
age, location, occupation, race, ethnicity, religion, citizenship status, disability, and sexual
orientation or gender identity (CFR, 2022; Ivers, 2022). The grave toll of health disparities far
exceeds the direct harm to the disadvantaged individual into the whole society in terms of lost
productivity, increased health care costs, and excess morbidity and mortality (LaVeist et al.,
2011; Bush, 2018; Essien et al., 2021). Addressing these health disparities is not merely an issue
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of aspiring to achieve equity, but an investment into reducing
avoidable health-care costs and towards building productive
healthy societies. The US congress-commissioned report published
in 2022, addressing the representation in clinical trials and research
states that: “Despite greater diversity, deep disparities in health are
persistent, pervasive, and costly. As the United States becomes more
diverse every day, without major advancements in the inclusion of
underrepresented and excluded populations in health research, failing
to reach these growing communities will only prove more costly over
time” (Bibbins-Domingo and Helman, 2022). Here, we review some of
the determinants of health disparities in the context of PGx research
and implementation.

PGx and implications of genetic ancestry

According to the National Human Genome Research Institute,
genetic ancestry is defined as the information about the people that an
individual is biologically descended from, including their genetic
relationship (https://www.genome.gov/genetics-glossary/Genetic-
Ancestry). People of different genetic ancestries have different
frequencies and severity of disorders as well as variance in
response to therapeutic agents (Ortega and Meyers, 2014;
Ramamoorthy et al., 2015; Gu et al., 2017; Shah and Gaedigk,
2018). PGx can help identify the genetic variation underlying
interindividual differences in response to medication and therefore
can better instruct which medication and which dosage to prescribe.
Yet, most available research studies and clinical trials in the field of
PGx have been conducted in either individuals of European descent or
relied on genome-wide association studies (GWAS) which have long
been criticized for lack of diversity (Haga, 2010; Sirugo et al., 2019;
Magavern et al., 2022; Davis and Limdi, 2021). In a review article
investigating the diversity in precision medicine and PGx research
studies, the authors analyzed 146 studies, of which 104 were conducted
in north America (71%), 26 in Asia (18%) and 16 studies were
conducted elsewhere (Africa, Australia, Europe, and South
America) (Popejoy, 2019). Given that over 77% of the world
population reside in Asia and Africa (UN, 2022), the concentration
of such studies outside these continents carries significant implications
on their clinical utility outside North America, or even for non-
European populations residing within North America (Popejoy and
Fullerton, 2016; Popejoy, 2019; Sirugo et al., 2019). TakingWarfarin as
an example, the drug was approved as an anticoagulant in the year
1954 (Lim, 2017), yet proper dosing remains a main challenge given its
extremely narrow therapeutic index (Johnson and Cavallari, 2015). In
2007 the US Food and Drug Administration (FDA) relabeled warfarin
with dosing recommendations based on genetic variation in CYP2C9
or VKORC1 for optimization (Bodin et al., 2005; FDA Coumadin,
2022). In 2016 the Clinical Pharmacogenetics Implementation
Consortium (CPIC) updated their PGx-guided Warfarin dosing to
add CYP4F2 and rs127777823 to CYP2C9 and VKORC1. Given that
CPIC relies on available literature, the limited diversity among
participants in the studies used to generate the guidelines, is an
acknowledged limitation of such effort (Johnson et al., 2017). To
put this in context, in the United States, the second largest racial group
after white Caucasians is the Hispanics/Latinos which made up 18.9%
of the population, while the multiracial population was the fastest
growing group based on the latest census (https://www.census.gov/)
(Roman et al., 2020; Nicholas Jones et al., 2020). Individuals of a

Hispanic origin, as well as African Americans (AA), are considered to
be at an especially high risk for poor outcomes after anti-coagulation
therapy with warfarin (Birman-Deych et al., 2006; Shen et al., 2007;
Shen et al., 2008), yet they remain largely underrepresented in trials
aiming at developing dosing algorithms for Warfarin (Bress et al.,
2012; Duconge et al., 2015). Furthermore, the Hispanics are an
admixed population of Europeans, Native American and West-
Africans (Bryc et al., 2010; Baran et al., 2012) and therefore
extrapolating the findings of PGx studies conducted among
Europeans to such an admixed population carries the risk of
undermining the validity of any evidence that supports the
implementation of PGx and precision medicine and remains a
flawed practice (Ramos et al., 2012; Claudio-Campos et al., 2015;
Grinde et al., 2019; Lee et al., 2019). Similarly, findings from the few
studies conducted among AAs should not be directly extrapolated to
other black populations such as sub-Saharan Africans or Afro-
Brazilians given that the genetic architecture of AAs is distinct
from that of other Africans (Zakharia et al., 2009; Dandara et al.,
2022). Moreover, the development of therapeutics relies on evidence
from clinical trials conducted mainly in non-Hispanic Whites or less
frequently among Asian populations. Therefore, African, Hispanic, or
native American-specific variants are often missed during drug
discovery and development and the significance of these variants
will only be realized upon release of such drugs to individuals of the
underrepresented populations with the development of adverse
reactions (Flores et al., 2021; Venkatakrishnan and Benincosa,
2022). In addition to the need for prioritizing enrollment of large
numbers of participants from less-studied populations for GWASs
and clinical trials, alternative genome-wide approaches such as
admixture mapping or utilization of ancestry informative
pharmacogenetic loci to allow for incorporating data reflecting the
genetic diversity of different ancestral backgrounds is equally critical
(Enoch et al., 2006; Ramos et al., 2014; Yang et al., 2021). While gene-
based dosing models have been developed, they are proven to be
stronger when the data are corrected for admixture (Alzubiedi and
Saleh, 2016; Shendre et al., 2018). A growing number of PGx studies
focusing on biogeographically defined populations particularly among
less studied groups such as Native Americans, Africans or South
Asians populations are to be applauded (Ortega and Meyers, 2014;
Bonifaz-Pena et al., 2014; Hariprakash et al., 2018; Nagar et al., 2019;
Ahsan et al., 2020)

Sex and gender-based PGx

Despite the robust evidence of varied response to medication
between men and women; one cannot help but wonder why women
continue to be subject to more adverse drug events, compared to men,
with women having 1.5- to 1.7-fold greater risk of developing such
adverse events (Rademaker, 2001; Soldin and Mattison, 2009; Zucker
and Prendergast, 2020; FDA, 2021; Madla et al., 2021). This could very
well result from treatment protocols relying on clinical trials
dominated by male participants with disregard of the influence of
sex and gender on drug safety and efficacy (Manteuffel et al., 2014;
Ravindran et al., 2020). The difference in response to drugs between
sexes has been attributed to many factors including biological
differences in pharmacodynamics and pharmacokinetics (e.g.,
differences in absorption, distribution, metabolism, and excretion
(ADME) genes, smaller volume of distribution, higher body fat in
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women, receptor numbers or binding), or to biological processes such
as pregnancy and menopause (Soldin and Mattison, 2009; Mezzalira
and Toffoli, 2021). While drug therapy is prevalent during pregnancy,
how and why drug disposition is altered in pregnant women remains
poorly studied and not all commercially available medications are
tested for safety and efficacy during pregnancy (Buhimschi and
Weiner, 2009; Jeong, 2010; Ito, 2016; Haas et al., 2018; Betcher and
George, 2020). Taking another stage of female life, menopause is
inevitable in all women, yet variations in timing, symptoms, and their
severity, as well as needs and response to menopausal hormonal
therapy varies significantly (Minkin, 2019). Estrogen remains the
most effective medication used in menopause to treat its symptoms
as well as to prevent serious related diseases such as cardiovascular
diseases, osteoporosis, or even early death (Moyer et al., 2016; Paciuc,
2020). The influence of genetic variation on estrogen efficacy and
metabolism has been well studied, yet genetically-based algorithms for
estrogen administration and dosing relevant to its contribution to
increased risk of development of venous thromboembolic events
remain lacking (Wall et al., 2014; Moyer et al., 2018). Clinical trials
to better understand the genetics underlying this thrombotic
susceptibility are needed and could lead to establishing the safety
of estrogen use among women who do not share that genetic risk
(Herrington and Klein, 1985; Wall et al., 2014; Vinogradova et al.,
2019; Abou-Ismail et al., 2020).

A new growing area of interest in PGx, is the study of the effect of
variations in sex chromosomes between men and women (e.g.,
X-chromosome inactivation, gene mutations, differences in number
of microRNAs or epigenetic deregulation, etc.) that could explain
variations in drug response in general or response to certain classes of
medications such as increasing resistance to cancer immunotherapy
(Care et al., 2018; Irelli et al., 2020; Mezzalira and Toffoli, 2021).

In addition to inadequate studies addressing safety or proper
dosing during various stages of a woman’s life, women’s under-
representation in drug clinical trials remains a significant hurdle.
The FDA and the National institute of health (NIH) published policies
and guidelines to encourage women’s participation and inclusion in
research and clinical trials (Nasem Women and Health Research,
1994; NIH, 2017; FDA Research, 2019). Despite these efforts having
shown relative success in increasing recruitment among white women,
this has not similarly translated to increase in recruitment of women of
color (Camidge et al., 2021; Bierer et al., 2022). Larger scale PGx
studies with adequate enrollment of female participants, including
underserved women, as well as the emerging science of gender
medicine or sex-based medicine could potentially be the answer to
addressing the existing sex gap in the outcomes of treatments and/or
toxicity (Mauvais-Jarvis et al., 2021; Mezzalira and Toffoli, 2021).

Treatment access and socioeconomics
inequalities

Individuals on the lower scale of socioeconomic status (SES)
determinants e.g., income, education or racial ancestry are similarly
subject to health disparities including less access to proper medication
or diagnostic testing (Plumper et al., 2018; Ji et al., 2020; Trivedi et al.,
2020; Salmond and Dorsen, 2022). This can be demonstrated for
example by the case of direct oral anticoagulants (DOACs). While
DOACs have become the standard of care for patients with deep vein
thrombosis compared to Vitamin K antagonists, low-income and

black patients consistently receive less prescriptions of DOACs
even when they are insured (Nathan et al., 2019). Similarly,
utilization of DOACs remain limited in African countries due to
its unaffordability because of patent laws, in addition to lack of clinical
trials to address its safety in African populations (Semakula et al., 2021;
Dandara et al., 2022). With a growing body of studies of DOACs PGx,
efforts to enroll minorities, which most probably would also fall on a
lower level of SES, is of paramount importance. Additionally, if the
landscape of reimbursement practices and insurance coverage for
genetic testing including PGx does not improve, test access
inequities will persist (Lee et al., 2018; Qureshi et al., 2022).
Another example is cancer mortality rates and newer anti-cancer
drugs. While the overall USmortality from all cancers declined by 26%
from 1990 to 2015, the interventions to decrease that rate has not been
uniform in terms of ancestry, region of residence or SES (Siegel et al.,
2011; Robbins et al., 2012; Siegel et al., 2015; Ma et al., 2019). The
utilization of human epidermal growth factor receptor 2 (HER2)-
targeted therapies such as trastuzumab demonstrates the intricacies
between SES and health disparities. (HER2)-targeted therapies have
proven to be highly effective at treating breast cancer (Loibl and
Gianni, 2017; Kay et al., 2021), yet clear racial and socio-economic
disparities exist with regards to the receipt of such an effective
medication, with black women being 25% less likely to receive
trastuzumab than white women, with that percentage becoming
even higher among poorer patients. The single most significant
factor determining not receiving HER-2 therapies is lack of
financial resources (Reeder-Hayes et al., 2016; Adusumilli et al.,
2017). (HER2)-targeted therapies have many side effects including
risk for cardiotoxicity. These side effects occur at particularly higher
rates among AA women and in patients with additional risk factors
such as Diabetes and Hypertension which in turn are prevalent in
communities with lower SES including among poor white individuals
(Gaskin et al., 2014; Glover et al., 2020; Price-Haywood et al., 2020; Al-
Sadawi et al., 2021). Studies to decipher the genetic contributors to the
heterogeneity in response and the side-effects of (HER2)-targeted
therapies and other anti-neoplastic drugs are evolving including novel
approaches utilizing PGx. Unfortunately, most of these studies
continue to be conducted among majority white Caucasian
populations (Wells et al., 2017; Garcia-Pavia et al., 2019; Jeibouei
et al., 2019).

Unsurprisingly and given how intertwined race/ancestry is to
socioeconomic resources, it was inevitable to repeatedly reference
race and ancestry in this section that was meant to address the relation
between SES and PGx access or utilization (Ribisl et al., 1998; NIH,
2004; Williams et al., 2016).

Pediatric to geriatric PGx

Our knowledge about the clinical utility and cost-effectiveness of
PGx among the pediatric population remains limited even for
medications with available guidelines. CPIC has so far published
26 gene/drug clinical practice guidelines using evidence extracted
from studies conducted mainly on adult individuals. About 50% of
these drugs, either the whole class or individual drugs within these
classes, have not been studied in children or have limited evidence of
safety in pediatric populations. Extending these recommendations to
the pediatric populations and adolescents remains controversial
(Neyro et al., 2018; Roberts et al., 2021; CPIC, 2022). Fortunately,
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efforts to better understand the potential utility for PGx
implementation among the pediatric population are ongoing
(Namerow et al., 2020; Ramsey et al., 2021; Roberts et al., 2021).
Various models have been adopted by different institutes, from single
gene to panels tested either preemptively or reactively while offering
point of care electronic clinical decision support (eCDS) to clinicians
(Johnson et al., 2013; Haidar et al., 2019). Concurrently, consortia such
as the Sanford Children’s Genomic Medicine Consortium consisting
of ten children’s’ hospitals across the US, has integrating PGx into
pediatric care as a major goal of the consortium’s efforts utilizing
genomics in pediatric medicine (Gregornik et al., 2021).

Similarly, knowledge gaps still exist with regards to PGx and drug-
gene associations in the elderly populations. Morbidity, mortality, and
health care costs due to adverse drug reactions (ADRs) in the elderly is
a major public health concern although many of which are predictable
and avoidable (Onder et al., 2013; Bozina et al., 2020; Roman et al.,
2020; Hoel et al., 2021). With a growing aging population, the
economic burden of management and hospitalizations due to
ADRs will only be exacerbated (Maher et al., 2014; Formica et al.,
2018; Perez-Jover et al., 2018; Malki and Pearson, 2020). Evidence is
growing to support the utility of PGx in guiding treatment regimens in
older patients (Bozina et al., 2020; Inventor and Paun, 2021).
Significantly higher rates of hospitalizations are observed in
patients with polypharmacy (5 or more drugs) who harbor large
number of PGx polymorphisms compared to those with
polypharmacy and no or less genetic variants, while the rates of
hospitalizations decrease and cost savings per patient increase if
PGx-guided treatment is followed (Finkelstein et al., 2016a;
Finkelstein et al., 2016b; Brixner et al., 2016). While polypharmacy
is a common problem among the aging population, extrapolating the
value of PGx-guided treatment to all polypharmacy patients regardless
of age, would be a reasonable practice. PGx studies with the goal of
establishing recommendations for genetic testing in older patients
either pre-emptively or reactively upon hospitalization is an endeavor
worth consideration.

Healthcare settings: Primary care and rural
communities

While most of drug prescriptions occur within primary care
settings and despite robust evidence supporting the utility of PGx
in medicine optimization, extending PGx implementation into
primary care settings specially within rural communities remains
challenging given the current models of clinical practice (Sudia,
2016; Dearing and Cox, 2018; Rollinson et al., 2020). Most PGx
programs implemented to date are conducted within urban health
care systems or large academic institutes (Houwink et al., 2015; Dawes,
2020; Leitch et al., 2022). Adding the current limited reimbursement
available for PGx testing and the lack of providers comfort or literacy
with PGx ordering to already existing problems in the rural
communities such as physicians and health care providers
shortages, lower socio-economic standards, less insurance coverage,
and limited access to specialists, and then PGx implementation would
easily be seen as an unattainable endeavor (Kogan et al., 2018;
Johnston et al., 2019; Richman et al., 2019; Empey et al., 2021;
Leitch et al., 2022). Yet the value of PGx to these resource-poor
settings, in terms of improving the quality of healthcare by decreasing
costs, reducing ADRs, and better management of polypharmacy

should override such existing hurdles. To overcome PGx
implementation barriers, innovative approaches need to be
considered in such settings, such as improving access using
telehealth tools or considering population-guided approaches to
PGx (Patrinos, 2010; Mette et al., 2012; Naik et al., 2020).
Additionally, given the novelty of PGx implementation in clinical
practice, the availability of educational resources regarding PGx
testing and related guidelines for both healthcare providers and
patients becomes imperative (Haga, 2017; Amara et al., 2018).
Without efforts to overcome the existing barriers to
implementation of PGx and other personalized medicine initiatives
in primary care and rural settings, one more layer of inequality in
access to care will be added to an already underserved population.

Discussion

With the current rates and patterns of population growth in the
US, health disparities that currently cost up to $320 billion annually,
could grow to $1 trillion by 2040 (Asif Dhar et al., 2022). This is
obviously unsustainable. Despite scientific and technological
advancements that improved health outcomes in the US,
prevalence of diseases and death rates remain significantly higher
among certain disadvantaged populations. Precision medicine aims at
improving health through the concept of preventing and treating
diseases relying on individuals’ or populations’ specific genetic or
environmental make-up and shifting away from empirical
management (Collins and Varmus, 2015). In the same context,
pharmacogenomics (PGx), a main component of precision
medicine, aims at improving the clinical outcomes of
pharmacotherapy. In addition to the hope that precision medicine
and PGx initiatives would improve health outcomes, it was projected
that inadvertently it will also help address existing health gaps
(Griffith, 2020). We chose some of the well-studied determinants
of health such as genetic ancestry, sex, and socioeconomic status, as
well as less commonly investigated ones, such as age and healthcare
setting, to review if PGx implementation in the recent years have
shown success or promise towards addressing health disparities. For
all those determinants, and despite areas of success or active research,
major challenges continue to exist. There was limited evidence of
coordinated efforts or strategies designed to implement PGx and other
precision medicines programs that take into account inclusion and
implementation within underserved or disadvantaged populations. To
be able to garner the benefits of PGx, structural changes are needed in
the way we conduct PGx research, from the point of choosing
participants of diverse backgrounds, to the setting where the
studies are conducted to ensure accessibility, to how evidence-
based guidance is developed ensuring inclusivity. Engaging with
patient advocacy groups and with community partners such as
local clinicians and religious leaders to set priorities and strategies
for addressing local needs helps build trust with the targeted
communities. Addressing individual barriers of recruitment by
offering compensation, transportation options, flexibility in
scheduling as well as multi-linguistic material and plain language
consents and study information are needed. Increasing outreach
through expanding telemedicine technologies and utilizing social
media platforms to improve health literacy and education
campaigns is another strategy to increase engagement. Additionally,
diversifying the research team to include lay persons from the targeted
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community, and encouraging minority trainees and early career
faculty to be part of or lead research efforts is postulated to
increase trust and enhance enrollment. Funding agencies can also
play a role by incentivizing minority populations enrollment such as
through supplemental awards for innovative approaches to recruit
individuals from rural or underserved communities. Moreover,
assigning a score for inclusion of women or minorities could be
another approach that would positively impact recruitment and
retention. Retraining of study section reviewers and scientific
officers to identify bias could also be needed. Lastly, Institutional
Review Boards (IRBs) should ensure research studies have enrolled
people who represent the groups affected by the condition or disease
studied and require researchers clearly outline their recruitment
strategies (Brooks et al., 2015; Clark et al., 2019; Strauss et al.,
2021; Thakur et al., 2021).

Moreover, many barriers to the implementation of PGx into
clinical practice need to be addressed. Integration into clinical
workflows need to be improved, efficient, user-friendly clinical
decision support tools need to be developed, terminology and
practice need to be standardized, cost-effectiveness needs to be
proven, and lastly, clinician education is a cornerstone for any
successful adoption or implementation (Klein et al., 2017; Amara
et al., 2018; Giri et al., 2019). These barriers are expected to be even
harder to address in communities with less or limited resources.
Additionally, without regulatory and legislative efforts towards
improving reimbursement for PGx testing as part of the effort to
improve overall access to genomic medicine, the high out-of-pocket
costs would be an additional obstacle for implementation within
underserved populations.

Most of the work discussed in this review originates from the
United States or the global north. Needless to say, the challenges and
limitations identified and discussed with regards to the
implementation of PGx or other precision medicine programs in
relation to health disparities will be present at even larger scales in the
global south and developing countries that have much limited

resources or access to new innovations (Chong et al., 2018; Shih
et al., 2022). Without meaningful partnerships between the north and
the south, and without creative solutions, these underprivileged
regions of the world will be further deprived of tools that carry a
lot of promise to improve efficiency and guarantee equity in
healthcare.
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