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Identifying effective biomarkers in osteosarcoma (OS) is important for predicting
prognosis. We investigated the prognostic value of ferroptosis-related genes
(FRGs) in OS. Transcriptome and clinical data were obtained from The Cancer
Genome Atlas and Gene Expression Omnibus. FRGs were obtained from the
ferroptosis database. Univariate COX regression and LASSO regression
screening were performed and an FRG-based prognostic model was
constructed, which was validated using the Gene Expression Omnibus
cohort. The predictive power of the model was assessed via a subgroup
analysis. A nomogram was constructed using clinical markers with
independent prognostic significance and risk score results. The CIBERSORT
algorithm was used to detect the correlation between prognostic genes and
22 tumor-infiltrating lymphocytes. The expression of prognostic genes in
erastin-treated OS cell lines was verified via real-time PCR. Six prognostic
FRGs (ACSL5, ATF4, CBS, CDO1, SCD, and SLC3A2) were obtained and used
to construct the risk prognosis model. Subjects were divided into high- and low-
risk groups. Prognosis was worse in the high-risk group, and the model had
satisfactory prediction performance for patients younger than 18 years, males,
females, and those with non-metastatic disease. Univariate COX regression
analysis showed that metastasis and risk score were independent risk factors
for patients with OS. Nomogram was built on independent prognostic factors
with superior predictive power and patient benefit. There was a significant
correlation between prognostic genes and tumor immunity. Six prognostic
genes were differentially expressed in ferroptosis inducer-treated OS cell
lines. The identified prognostic genes can regulate tumor growth and
progression by affecting the tumor microenvironment.
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1 Introduction

Osteosarcoma (OS) is a highly aggressive malignant bone
tumor that occurs mostly in children and adolescents. The
global annual incidence rate is 480 cases per million (Bao
et al., 2019; Lancia et al., 2019; Wang S. et al., 2019; Zhou
et al., 2020). OS is thought to originate from primitive
mesenchymal osteoblasts, typically found in rapidly growing
bones, approaching the feet or hands (Mutsaers and Walkley,
2014; Leichter et al., 2017; Gambera et al., 2018). The modern
multimodal treatment combining chemotherapy, surgery, and
radiation therapy can improve 5-year survival by 60%–70%.
However, 40%–50% of patients will develop refractory
metastases with poor prognosis (Prabhu et al., 2014; Wu et al.,
2015). Therefore, There is an urgent need to improve the
treatment and prognosis is a specific cell death pathway caused
by iron-dependent lipid peroxides, which may cause the
deposition of reactive oxygen species (ROS) (Verma et al.,
2020; Wu et al., 2020). Previous studies suggest that elevated
ROS concentrations can promote tumor cell growth, but excessive
accumulation of ROS may cause irreversible oxidative damage,
which, in turn, leads to ferroptosis (Galadari et al., 2017; Hedrick
et al., 2019; Yee et al., 2020). Ferroptosis plays important roles in
cancer, cardiovascular system, and nervous system diseases (Li
et al., 2020). OS is also intimately associated with ferroptosis and
involves many potential mechanisms and therapeutic
applications (Zhao et al., 2021). Chen et al. (2021) found that
KDM4A depletion significantly inhibits in vivo OS progression
and lung metastasis, and KDM4A knockdown promotes
ferroptosis in OS cells, which is a non-apoptotic cell death
mechanism. Lin et al. (2021) found that EF24 upregulates
HMOX1 to inhibit GPX4 expression and induces ferroptosis in
OS cells by increasing MDA, ROS, and intracellular iron ion
levels.

The development of high-throughput sequencing technologies
continues to accelerate the exploration of cancer prognostic models
based on sequencing results. Liu et al. (2021) successfully identified
ferroptosis-related gene (FRG) signatures with important prognostic
value for bladder cancer, providing a new research direction for future
bladder cancer targeted therapy. Li et al. (2021) created features and
nomograms of 10 FRGs that can be used to predict prognosis in
patients with oral squamous cell carcinoma. The predictive model of
Nie et al. (2021) comprises five FRGs, which can predict the survival
rate of patients with colon cancer to a certain extent. There are few
studies on the effect of ferroptosis on the occurrence and treatment
of OS.

In this study, we developed a novel FRG-based OS prognostic
model and investigated its prognostic impact on patients with OS. We
also investigated the relationship between these prognostic genes and
tumor immunity. This may help to further improve the prognosis
of OS.

2 Materials and methods

2.1 Data sources and processing

We downloaded OS transcriptional data along with the
corresponding platform annotation documents and patient clinical

profiles from The Cancer Genome Atlas (TCGA) (https://portal.gdc.
cancer.gov/repository) and Gene Expression Omnibus (GEO) (https://
www.ncbi.nlm.nih.gov/geo). FRGs were derived from the ferroptosis
database (http://www.zhounan.org/ferrdb/current/). We used |
log2FC|>1 and false discovery rate of <.05 as the threshold to
determine the differential expression between OS cell lines and
normal samples and drew a Venn diagram to obtain FRGs with
different expressions.

2.2 Construction of the risk score model

Using the data for patients with OS in TCGA as the training set,
the prognosis-related genes were determined via LASSO machine
learning regression analysis. The risk coefficient (βi) was generated,
and the risk assessment model, including the coefficient and gene
expression level (risk � ∑i

1expi*βi), was constructed to obtain the risk
score of all samples. Using the median risk score as the cut-off point,
patients were divided into high- and low-risk groups. Survival curves
were used to compare the prognosis of the two groups of patients. The
predictive ability of the model was assessed by analyzing the receiver
operating characteristic (ROC) curve to obtain the area under the
curve. The above analysis was validated using the validation set.
Finally, the predictive power of the model was assessed by dividing
patients into different subgroups based on their age, sex, and presence
of metastases. Patients with OS from the GEO database were used as
the validation set to validate the results of the training set.

2.3 Nomogram construction and evaluation

Univariate and multivariate COX regression analyses were
performed using risk scores and clinical factors (age, sex, and
metastasis) to screen for independent prognostic factors. We
constructed a nomogram based on the multivariate COX regression
results of risk scores. Nomograms were used to predict 3- and 5-year
overall survival for each patient. Simultaneously, C-index, calibration
curve, and ROC curve were generated to evaluate the prediction power
of the model. The above results were used to verify the stability of the
results in the validation set.

2.4 Gene enrichment analysis

Using the Gene Set Enrichment Analysis (GSEA) database
(https://www.gsea-msigdb.org/gsea/msigdb/index.jsp), Gene
Ontology and Kyoto Encyclopedia of Genes and Genomes
enrichment analyses were performed on high- and low-risk groups,
and gene function set analysis was established. The established set was
used to determine whether the genomes were statistically significantly
different in different biological states.

2.5 Correlation analysis of prognostic genes
and tumor immunity

CIBERSORT analysis was used to determine the degree of immune
cell infiltration in patients with OS. Correlation analysis was then used
to determine the association of prognostic FRGs with immune cell
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infiltration to examine the mechanisms by which prognostic genes
influence OS progression.

2.6 Cell culture

MG-63 human OS cells were grown in Dulbecco’s modified
Eagle’s medium containing 10% fetal bovine serum and 1%
penicillin/streptomycin (Gibco; Thermo Fisher Scientific, Waltham,
MA, United States) at 37°C and 5% CO2. Saos-2 cells were cultured in
McCoy’s S5 A medium (37°C, 5% CO2) containing 15% fetal bovine
serum and 1% penicillin/streptomycin (Gibco). The medium was
replaced with a freshly prepared one every other day.

2.7 Cell viability assay

MG-63 and Saos-2 cells were seeded onto 96-well plates at a
density of 5,000 cells/well and cultured in an incubator at 37°C and 5%
CO2 for 24 h. Cells were then treated with 0, 10, 20, and 40 µM erastin
(Aladdin Biochemical Technology Co., Ltd., Shanghai, China) for 24,
48, and 72 h. Then, Cell Counting Kit-8 (TargetMol) reagent was
added, and the 96-well plate was incubated for 2 h. Optical density at
450 nm was measured using a microplate reader. Three independent
experiments were performed, each in triplicate.

2.8 ROS level measurement

MG-63 and Saos-2 cells were incubated in 60 mm cell culture
dishes for 24 h. Then, DMSO (ferroptosis activator erastin, 10, 20,
40 μM) was added to different treatment groups for 48 h, and the
samples were incubated for 30 min at 37°C in 60 mm cell culture
dishes containing 5 μM BODIPY581/591C11 stain (D3861,
Invitrogen, Carlsbad, CA, United States). Cells were washed with
PBS, trypsinized, and stained with propidium iodide in PBS for 5 min.
They were then stained using the ROS assay kit (Beyotime Institute of
Biotechnology, Jiangsu, China) according to the manufacturers’
instructions 23°C ± 2°C for 20 min, and analyzed via flow
cytometry (CytoFLEX, Beckman, CA, United States) to determine
the ROS levels.

2.9 Real-time PCR

Total RNA was extracted from Morin-treated MG-63 and Saos-2
cells using the RNeasy Mini Kit (Qiagen, Valencia, CA, United States)
according to the manufacturer’s instructions. The concentration and
purity of all RNA samples were determined by measuring the
absorbance at 260/280 nm. The iScript cDNA Synthesis Kit from
Bio-RadTM (Hercules, CA, United States) reversely transcribes 1 µg of
RNA. Real-time PCR analysis was performed on an iCycler thermal
cycler using the SYBR Green qPCR Supermix kit (Invitrogen,
Carlsbad, CA, United States). Real-time quantitative PCR was used
to detect the mRNA expression levels of central prognostic genes.
Relative mRNA expression of each gene was determined by
normalizing it to GAPDH. Real-time PCR primers were purchased
from Sankong Bio (Shanghai, China) (Supplementary Table S1).

2.10 Statistical analysis

All statistical analyses were performed using R 3.3.1 (https://www.
r-project.org/). An analytical scoring model was built using LASSO
regression. The main packages used were Limma, GSA, GSEABase,
Sparcl, Pheatmap, Estimate, ggpubr, e1071, PreprocessCore, Survival,
Glmnet, SurvMiner, Survivvalroc, RMS, Foreign, TimeROC, and
ggplot2. Differences were considered statistically significant at p < .05.

3 Results

3.1 Differential expression analysis of FRGs

We extracted OS cell sample data from the GEO database,
including 19 OS cell lines and 6 healthy samples (osteoblasts and
bone). Data of 84 and 53 patients with OS with complete clinical
data were downloaded from TCGA and GEO, respectively
(Supplementary Table S2). FRGs were obtained from the
FerrDb database. Differentially expressed genes in OS and
normal cells were identified using the Limma R software
package. A total of 862 differentially expressed genes were
identified, including 596 downregulated and 266 upregulated
genes (Figures 1A, B; Supplementary Table S3). Subsequently,
25 differentially expressed FRGs were obtained through the
intersection of FRGs (Figure 1C).

3.2 Construction of the prognostic risk score
model

TCGA data were used as the test set, and GEO data were used
as the validation set; patients with a follow-up time of more than
30 days were included in the LASSO regression analysis. Six core
genes (ACSL5, ATF4, CBS, CDO1, SCD, and SLC3A2) closely
related to prognosis were obtained through screening (Figures
2A, B). A risk scoring model was constructed using multivariate
Cox regression analysis (The result was shown in Supplementary
Table S4). The median risk score was used as a cut-off point to
classify patients into high- and low-risk groups. The survival
curve showed that the OS of the low-risk group was significantly
higher than that of the high-risk group (p < .001, Figure 3A). Risk
curves and scatterplots showed that the low-risk group had lower
risk and mortality coefficients than the high-risk group (Figures
3A, B). A heatmap showing the expression levels of the six genes
in the high-risk and low-risk groups is provided in Figure 3D. The
3- and 5-year area under the curve values obtained from the ROC
curves were .762 and .702, respectively (Figure 3E). Similar
results were obtained using the GEO data validation set
(Figures 3F–J).

3.3 Subgroup analysis

The results of the subgroup analysis showed that the model
showed better differentiation ability in the subgroups of <18 years
old, male, female, and M0 patients (non-metastatic disease) (p < .05).
Due to the small sample size of patients ≥18 years old and the
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M1 subgroup (metastatic disease), survival curves tended to differ
from baseline but not significantly (Figure 4).

3.4 Independent prognostic factor screening

Univariate and multivariate Cox regression analyses revealed that
transfer and risk scores of six genes were independent risk factors for
patients with OS (Figures 5A, B). Nomograms were constructed based
on independent prognostic factors.

3.5 Nomogram construction

Results of multivariate Cox regression analysis were used for
column plot construction, including both metastasis and risk scores

(Figure 6A). Using the C-index of the nomogram as the training set
(.804), the area under the curve for overall survival at 3 and 5 years was
.741 and .775, respectively (Figure 6B). A clinical decision curve
analysis (Figure 6D), and a calibration curve (Figure 6F) were also
established. The results showed that the model has good predictive
performance and may aid patients. The stability of the above results
was validated using the GEO validation set (Figures 6C, E, G).

3.6 GSEA

GSEA enrichment analysis showed that the activated
signaling pathways in the high-risk group were ascorbic acid
and uronic acid metabolism, cytochrome P450 drug metabolism,
and RNA polymerase (Figures 7A–C), while those in the low-risk
group were B cell receptor signaling pathway, Notch signaling

FIGURE 1
Volcano plot showing differences in gene expression in osteosarcoma and paracancerous tissues. Red color indicates significantly upregulated genes,
green color indicates significantly downregulated genes, and black color indicates no significant difference in gene expression. (A) Volcano plot showing
differentially expressed genes. (B)Heatmap of differentially expressed genes. (C) Venn diagram showing intersections between differentially expressed genes
and ferroptosis-related genes.

FIGURE 2
Identification of ferroptosis-related genes with prognostic value for osteosarcoma. (A) Fitting parameters of the LASSO regression model. (B) LASSO
coefficient profile of genes associated with prognosis.
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FIGURE 3
Kaplan–Meier survival analysis of patients with osteosarcoma in the test and validation sets of risk assessment models (A, F) showed that the high-risk
group showed a significantly poor prognosis, and the low-risk group showed a good prognosis. (B, G) Survival of patients with osteosarcoma in the test and
validation sets. (C, H)Distribution of risk scores for six genes in osteosarcoma patients in test and validation sets. (D, I)Heatmaps of six genes in low- and high-
risk groups for test and validation sets. (E, J) Receiver operating characteristic curve analysis and validation of patients with osteosarcoma in the test set.
AUC, area under the curve.
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FIGURE 4
Survival curves of various subgroups in the high- and low-risk groups of patients with osteosarcoma. (A) Patients aged <18. (B) Patients aged ≥18. (C)
Females. (D) Males. (E) M0. (F) M1.

FIGURE 5
Prognostic value of clinical information and risk score. (A) Univariate Cox regression analysis of patients with osteosarcoma. (B) Multivariate Cox
regression analysis of patients with osteosarcoma.
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pathway, and Toll-like receptor signaling pathway
(Figures 7D–F).

3.7 Correlation analysis between prognostic
genes and tumor immunity

Infiltration values of 22 immune cell types in patients with OS
were determined using CIBERSORT analysis. The results of the
study showed that the genes used for model construction were
associated with γ/δ T cells, CD4-naive T cells, NK cell quiescence,
NK cells activation, neutrophils, mast cell activation,
macrophages, dendritic cell quiescence, and naive B cell
infiltration (Figure 8), suggesting that these genes may affect
the tumor-infiltrating microenvironment, thereby regulating
tumor growth and progression.

3.8 Effect of erastin on the expression levels
of six genes related to the prognosis of OS

MG-63 and Saos-2-OS cell lines were treated with ferroptosis-
triggering erastin to examine the role of six prognostic genes. The
results of cell viability assay showed that erastin inhibited the

proliferation of MG-63 and Saos-2 cells in a dose-dependent
manner (Figures 9A, B). When the concentration of erastin
exceeded 10 μM, its growth inhibitory effect on both OS cell lines
was significant. We then performed FACS experiments and found that
treatment with 10, 20, and 40 μM erastin significantly increased ROS
accumulation (Figures 9C, D). Finally, we tested the expression of six
nuclear genes inMG-63 and Saos-2 cells treated with 20 μMerastin for
48 h using real-time PCR. As a result, the mRNA expression levels of
five genes (ACSL5, ATF4, CBS, CDO1, and SCD) were elevated after
erastin treatment and positively correlated with OS ferroptosis; mRNA
expression of SLC3A2 was decreased and negatively correlated with
OS ferroptosis (Figures 9E, F).

4 Discussion

OS is a common malignancy that threatens adolescent health
globally, and its incidence and mortality rate increase every year.
Previous studies have shown that ferroptosis is strongly related to the
prognosis of OS. Screening for reliable ferroptosis-related prognostic
markers can improve the prognosis of patients with OS and help
provide reliable information to guide OS treatment (Zhao et al., 2021).

In this study, we constructed an OS prognostic model using FRGs
to predict the survival of patients with OS. This model consisted of six

FIGURE 6
Construction and evaluation of the nomogram. (A) Nomogram constructed using the training set. (B, C) Receiver operating characteristic curves and
validation using the test set. (D, E)Decision curve analysis clinical decision curves for the test and validation sets. (F, G)Calibration curves for test and validation
sets. OS, osteosarcoma.
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genes. At the same time, it showed good prediction performance and
could benefit patients with OS. We further analyzed the correlation
between prognostic genes and tumor immunity. Finally, we tested the
effects of ferroptosis-inducing factors on the expression of six
prognostic genes in OS cell lines in vitro.

Ferroptosis is an iron-dependent and non-apoptotic cell death
mechanism (Shimada et al., 2016; Du et al., 2020). In tumor cells,
induction of ferroptosis improves treatment, making it a current
research hotspot (Chen et al., 2020; Jin et al., 2021). Ferroptosis
plays an important role in OS treatment, particularly in drug-
resistant OS cells (Qiu et al., 2022). However, there are few studies
on whether specific FRGs regulate OS progression at present. The link
between ferroptosis and the prognosis of OS has not been
demonstrated. Our study showed that 25 FRGs were significantly
differentially expressed in OS and normal cells, suggesting that FRGs
may be involved in ferroptosis and that it is possible to use FRGs to
build predictive models.

The six FRGs used for model construction were ACSL5, ATF4,
CBS, CDO1, SCD, and SLC3A2. ACSL5 is a mitochondrial enzyme that
can promote the synthesis of long-chain fatty acid thioesters and can
promote apoptosis. ACSL5 isoenzymes play a dominant role in
cardiolipin biosynthesis in mitochondria and may participate in
cancer cell survival (Zhang et al., 2019). Previous research has

shown that ACSL5 may be vital to the malignant progression and
metastasis of gliomas, and this supports targeting ACSL5 as a
potentially effective treatment strategy (Sebastiano and
Konstantinidou, 2019). ATF4 is a transcription factor that is
associated with the progression of different cancers, such as breast
cancer, lung cancer, and melanoma. ATF4 is highly expressed in
human OS, and MYC-regulated ATF4 may help in anoikis resistance
in human OS cells (Mo et al., 2018). CBS is one of the three main
enzymes that participate in H2S biosynthesis in various mammalian
cells and tissues (Russo et al., 2016). Studies reported that CBS is
highly expressed in colon cancer (Szabo et al., 2013), ovarian cancer
(Bhattacharyya et al., 2013), prostate cancer (Guo et al., 2012), and
breast cancer (Sen et al., 2015). Pharmacological inhibitors or silencing
of CBS were associated with anticancer effects in vitro and in vivo,
increasing the effectiveness of L-OHP (Russo et al., 2016). CDO1 is a
tumor suppressor in human cancers and can promote apoptosis. As
CDO is a methylation-specific gene in human cancers,
CDO1 methylation has been reported in many cancers recently
(Nishizawa et al., 2019; Alfarsi et al., 2020). SCD is a rate-limiting
enzyme in lipid biosynthesis that plays a key role in fuel metabolism
and is a potential therapeutic target in cancer treatment (Piao et al.,
2019; Zhou et al., 2021). Overexpression of SLC3A2 can promote
tumorigenesis, and SLC3A2 is overexpressed in various cancer cell

FIGURE 7
Gene set enrichment analysis enrichment results. (A) Drug metabolism cytochrome P450. (B) RNA polymerase. (C) Ascorbate and aldarate metabolism.
(D) Toll-like receptor signaling pathway. (E) Notch signaling pathway. (F) B cell receptor signaling pathway. KEGG, Kyoto Encyclopedia of Genes and
Genomes.
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FIGURE 8
Correlation between immune cell ratios based on CIBERSORT algorithm and expression levels of six genes used for risk score model construction.

FIGURE 9
(A, B) Expression of six prognostic genes in MG-63 (A) and Saos-2 (B) cells treated with erastin. (C, D) Lipid peroxidation experiments were performed
using erastin-treated MG-63 (C) and Saos-2 (D) cells via flow cytometry. (E, F) Real-time PCR of six core prognostic genes of MG-63 (E) and Saos-2 (F) cells
upon 20 μM erastin treatment for 48 h. *p < .05; **p < .01; ***p < .001. ROS, reactive oxygen species.
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lines including lung cancer, colon cancer, and breast cancer. SLC3A2 is
also known as a new marker for kidney cancer (Nguyen et al., 2018).

The interaction between tumor cells and the immune
microenvironment plays an important role in the occurrence and
development of tumors (Kim et al., 2021). The tumor
microenvironment consists of cellular components, including
immune cells, endothelial cells, fibroblasts, and non-cellular
components, including the extracellular matrix, cytokines, and
hormones. Immune cells play an important role in influencing
tumor behavior and its response to treatment (Wu and Dai, 2017).
In our study, we performed a correlation analysis of tumor immunity
based on ferroptosis-related prognostic genes. Interestingly, we found
that the FRGs used in model construction were correlated with the
infiltration of some immune cells. Wang W. et al. (2019) were the first
to reveal that immunotherapy-activated CD8+ T cells induce
ferroptosis in ovarian tumor cells, showing that ferroptosis is
intimately associated with antitumor immunity. Furthermore,
immunotherapy-activated CD8+ T cells induce ferroptosis in
human melanoma and fibrosarcoma cells (Lang et al., 2019).
Another study reported the identification of a new gene feature
about ferroptosis, prognosis prediction, and immune
microenvironment of OS and suggested that FRGs in patients with
OS were closely related to the immune microenvironment (Zheng
et al., 2022).

γδ T cells show varying degrees of cytolytic activity toward
different malignant tumors, and in vitro expansion of γδ T cells
may be a promising immunotherapy option against malignant
tumors (Wu et al., 2014; Long, 2018). We found that the FRG
ACSL5 might be intimately associated with the immune responses
of γ/δ T cells in OS. Although the specific mechanisms behind this
require further clarification, this may help to provide new insights into
the molecular mechanisms underlying the origin and development of
OS, as well as to explore potential targeted therapies for OS, which
would have significant clinical implications, especially for patients
with poor prognosis.

There are some limitations to this study. First, we constructed and
validated a prognostic model related to ferroptosis based on a public
database of retrospective data. We also demonstrated that ferroptosis-
inducing erastin affects the expression of six important prognostic
genes in OS cells in vitro. In the future, we will use multicenter
prospective clinical data to further confirm the above results. In
addition, the correlation between our model and tumor immunity
requires further experiments for validation.

In conclusion, we constructed an FRG-based OS prognostic model
that has good prediction performance. We also showed that FRGs are
significantly correlated with the invasion of immune cells. This study
can provide a reference for the development of new treatments for OS.
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