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Background: As a new formof regulated cell death, cuproptosis differs profoundly
from apoptosis, ferroptosis, pyroptosis, and necroptosis. The correlation between
cuproptosis and long non-coding RNAs (lncRNAs) has been increasingly studied
recently. In this study, a novel cuproptosis-related lncRNA prognostic signature
was developed to investigate biochemical recurrence (BCR) and tumor immune
landscape in prostate cancer (PCa).

Methods and Materials: The transcriptome data and clinicopathologic
information of PCa patients were downloaded from The Cancer Genome Atlas
(TCGA). Pearson’s correlation analysis was applied to identify lncRNAs associated
with cuproptosis. Based on Cox regression analysis and the least absolute
shrinkage and selection operator (LASSO) regression analysis, we developed a
cuproptosis-related lncRNA prognostic model (risk score) to predict the BCR of
PCa patients. Additionally, we also constructed a nomogram with the risk score
and clinicopathologic features. The biological function, tumor mutation burden
(TMB), immune cell infiltration, expression levels of immune checkpoint genes,
and anti-cancer drug sensitivity were investigated.

Results: We constructed and validated the cuproptosis-related lncRNA signature
prognostic model (risk score) by six crlncRNAs. All patients were divided into the
low- and high-risk groups based on themedian risk score. The Kaplan–Meier (KM)
survival analysis revealed that the high-risk group had shorter BCR-free survival
(BCRFS). The risk score has been proven to be an independent prognostic factor of
BCR in PCa patients. In addition, a nomogram of risk scores and clinicopathologic
features was established and demonstrated an excellent predictive capability of
BCR. The ROCcurves further validated that this nomogram had higher accuracy of
predicting the BCR compared to other clinicopathologic features. We also found
that the high-risk group had higher TMB levels and more infiltrated immune cells.

OPEN ACCESS

EDITED BY

Nabila Kazmi,
University of Bristol, United Kingdom

REVIEWED BY

Christos K. Kontos,
National and Kapodistrian University of
Athens, Greece
Aria Baniahmad,
University Hospital Jena, Germany

*CORRESPONDENCE

Jincheng Pan,
panjch5@mail.sysu.edu.cn

Xiaopeng Mao,
maoxp3@mail.sysu.edu.cn

†These authors contributed equally to this
work and shared the first authorship.

SPECIALTY SECTION

This article was submitted to Cancer
Genetics and Oncogenomics,
a section of the journal
Frontiers in Genetics

RECEIVED 12 November 2022
ACCEPTED 10 February 2023
PUBLISHED 24 February 2023

CITATION

Ren L, Yang X, Wang W, Lin H, Huang G,
Liu Z, Pan J and Mao X (2023), A
cuproptosis-related LncRNA signature:
Integrated analysis associated with
biochemical recurrence and immune
landscape in prostate cancer.
Front. Genet. 14:1096783.
doi: 10.3389/fgene.2023.1096783

COPYRIGHT

© 2023 Ren, Yang, Wang, Lin, Huang, Liu,
Pan and Mao. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Abbreviation: lncRNA, long non-coding RNA; crlncRNA, cuproptosis-related lncRNA; DE-crlncRNAs,
differentially expressed cuproptosis-related lncRNA; PCa, prostate cancer; BCR, biochemical recurrence;
BCRFS, biochemical recurrence free-survival; TMB, tumor mutation burden; TME, tumor
microenvironment; DEGs, differentially expressed genes; RCD, regulated cell death.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 24 February 2023
DOI 10.3389/fgene.2023.1096783

https://www.frontiersin.org/articles/10.3389/fgene.2023.1096783/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1096783/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1096783/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1096783/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1096783/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2023.1096783&domain=pdf&date_stamp=2023-02-24
mailto:panjch5@mail.sysu.edu.cn
mailto:panjch5@mail.sysu.edu.cn
mailto:maoxp3@mail.sysu.edu.cn
mailto:maoxp3@mail.sysu.edu.cn
https://doi.org/10.3389/fgene.2023.1096783
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2023.1096783


Furthermore, patients with high TMB in the high-risk group were inclined to have
the shortest BCRFS. Finally, patients in the high-risk groupweremore susceptible to
docetaxel, gefitinib, methotrexate, paclitaxel, and vinblastine.

Conclusion: The novel crlncRNA signature prognostic model shows a greatly
prognostic prediction value of BCR for PCa patients, extends our thought on
the association of cuproptosis and PCa, and provides novel insights into individual-
based treatment strategies for PCa.

KEYWORDS

cuproptosis, prostate cancer, lncRNA, biochemical recurrence, prognosticmodel, immune
cell infiltration

Introduction

Prostate cancer (PCa), which accounts for over 1,400,000 new
cases and 375,000 deaths globally in 2020, is the second most
frequent kind of cancer and the fifth greatest cause of cancer-
related mortality in men (Sung et al., 2021). For patients with
localized PCa, the preferred treatment strategies are still radical
prostatectomy (RP) and radiotherapy (RT) (Achard et al., 2021).
Although, with adequate preferred treatments, more than 35% of
patients will ultimately develop into biochemical recurrence (BCR)
or clinical relapse (Freedland et al., 2007). Once patients have a BCR,
poor prognosis and underlying clinical metastases are inevitable
without timely detection and treatment, significantly reducing the
overall survival and the quality of life (Lalonde et al., 2014; Xu et al.,
2020). Therefore, early prediction is increasingly important to
identify patients with a high risk of BCR. Although there are
remaining specific biomarkers and clinical characteristics to
assess the risk of BCR, including PSA level of pretherapy, tumor
stage, and Gleason score (GS), these factors seem incapable of
comprehensively evaluating the risk of BCR for patients
(Kretschmer and Tilki, 2017; Mottet et al., 2021). Consequently,
it is critical to identify an accurate risk model to predict BCR early
and improve the prognosis of patients.

Long non-coding RNA (lncRNA) pertains to non-coding RNA
with longer than 200 nucleotides and lacks a function to encode
proteins. There are growing evidences that lncRNAs play a crucial
role in tumor growth and metastasis through proliferation,
migration, and invasion (Quinn and Chang, 2016; Liang et al.,
2018; Chi et al., 2019; Statello et al., 2021), indicating that some
specific lncRNAs can be potential biomarkers and targets for the
treatment of many cancers. Meanwhile, lncRNAs also exert
substantial impact on immune escape and the tumor
microenvironment (TME) regulation, assisting tumor cells in
evading immune surveillance (Quinn and Chang, 2016; Hu et al.,
2019; Pi et al., 2021).

During the average growth and development of mammals,
regulated cell death (RCD), as well-known as programmed cell
death (PCD), plays a vital role in the evolution of organisms,
stabilization of the internal environment, and development of
multiple systems by a variety of biomacromolecules and signal
amplification complexes (Galluzzi et al., 2018; Peng et al., 2022).
Based on the occurrence mechanism, RCDs incorporate apoptosis,
ferroptosis, necroptosis, and pyroptosis, which collaborate to
maintain the stability of the cell cycle. However, abnormal RCDs
have been proven to take part in various disease processes, including

immune system dysfunction, developmental disorders of the body,
neurodegeneration, and especially tumorigenesis (Tang et al., 2019).
For patients with tumors, targeting RCD will provide an emerging
therapeutic strategy (LiuW. et al., 2022; Peng et al., 2022). Therefore,
developing a new model of RCDs would not merely improve our
understanding of tumorigenesis but provide novel therapeutic
targets for tumors. A recent study has revealed that cuproptosis
is a novel cell death mechanism that differs from the
abovementioned RCDs (Tsvetkov et al., 2022). Copper is a
significant catalytic cofactor of several essential enzymes and
plays a vital role in many metabolic processes (Scheiber et al.,
2013). According to previous studies, copper at unbalanced
concentrations could lead to the development and progression of
many tumors, as well as cause the death of cells (Tisato et al., 2010;
Shanbhag et al., 2021). Strikingly, Tsvetkov et al. found that the
amassing of intracellular copper could induce aggregation of the
lipoylated proteins and loss of iron-sulfur cluster protein in the TCA
cycle, finally resulting in proteotoxic stress-regulated cell death,
which was defined as cuproptosis (Tsvetkov et al., 2022).
Previous studies have revealed that cuproptosis is closely related
to the development and immune response of many cancers, such as
clear cell renal cell carcinoma, bladder cancer, and hepatocellular
carcinoma (Xu S. et al., 2022; Song et al., 2022; Zhang et al., 2022).
However, very little is currently known about the correlation
between cuproptosis-related lncRNAs and PCa in predicting the
prognosis.

In this study, we analyzed the transcriptome data (RNA-seq) of
PCa from the TCGA database to construct a prognostic model based
on the cuproptosis-related lncRNA signature to predict biochemical
recurrence (BCR). A nomogram was developed to improve the
prognostic prediction value for PCa patients. Moreover, based on
this prognostic model, we performed functional enrichment
analysis, immune cell infiltration, and TMB to investigate
underlying molecular mechanisms.

Methods and materials

Public data collection

We downloaded the RNA sequencing (RNA-seq) data and
clinicopathologic data of PCa samples from The Cancer Genome
Atlas (TCGA) database (https://portal.gdc.cancer.gov/repository).
We utilized the Fragment Pre Kilobase Method (FPKM) platform
to gather the RNA-seq data. The log transformation was applied to
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normalize the RNA-seq. To avoid statistical bias as much as possible,
we removed samples without complete clinical information. In total,
we included 455 patients in our study with 404 tumor samples and
51 normal samples. In a 1:1 ratio, all PCa patients randomly split
into the training set and the test set.

Identification of differentially expressed
cuproptosis-related lncRNAs

We obtained ten cuproptosis-related genes (including FDX1,
LIPT1, DLD, LIAS, DLAT, PDHA1, PDHB, MTF1, GLS, and
CDKN2A) from previous studies (Tsvetkov et al., 2022), and
explored their expression levels between tumor samples and
normal samples with cut-off criteria of |log2FC|≥1 and
p. adj. <0.05 using the “DESeq2” R package and prognostic values
in PCa patients by the univariate Cox regression analysis (p < 0.05).
Pearson’s correlation analysis was applied to identify cuproptosis-
related lncRNAs (crlncRNAs) with the filter criteria |Pearson R| >
0.3 and p < 0.001. Then, we screened differentially expressed lncRNAs
between tumor samples and normal samples with cut-off criteria of |
log2FC|≥1 and p. adj. <0.05 using the “DESeq2” R package via the
Wilcoxon test (Liu et al., 2021). Ultimately, the overlapped lncRNAs
were recognized as differentially expressed crlncRNAs (DE-
crlncRNAs), and the forest plot was drawn.

Establishment and evaluation of the
cuproptosis-related lncRNA signature
prognostic model

The DE-crlncRNAs expression and BCR free survival were
matched. The univariate Cox regression analysis was utilized to
identify prognosis-related lncRNAs among DE-crlncRNAs (p <
0.05). We performed the LASSO Cox regression analysis using
the “survival” and “glmnet” R package in the training set to
further screen optimal prognosis-related DE-crlncRNAs. Then,

we developed a crlncRNA signature prognostic risk model based
on optimal lncRNAs by multivariate Cox regression. Finally, the risk
score for each patient was calculated based on the formula below:

Risk score � ∑
n

i�1
coefi lncRNAi( ) p exp lncRNAi( )( )

The coefi refers to the coefficient, and exp refers to the normalized
expression level of lncRNAs.

We used the median score as the cutoff point to divide all PCa
patients into the low-risk and high-risk groups. The Kaplan–Meier
(KM) survival analysis was performed to compare the BCRFS between
the low- and high-risk groups in the training, test and whole sets using
the “survival” R package. Then, we evaluated the predictive accuracy
of the prognostic risk model by ROC curves analysis using the “ROC”
and “rms” R packages (McHugh, 2013). The area under the curve
(AUC) was utilized to quantify the ROC curve.

The chi-square test was applied to assess the correlations
between the prognostic risk model and clinicopathologic features.
We also performed univariate and multivariate Cox regression
analysis to explore whether the risk score was an independent
prognostic risk factor for BCR among clinicopathologic features.

Construction and evaluation of the
nomogram

With the “rms” and “survival” packages in R, a nomogram of the
risk score and clinicopathologic features was constructed to predict
the BCR in PCa patients. To evaluate the nomogram’s effectiveness,
the Calibration curve and time-dependent ROC curves analysis was
performed.

Functional enrichment analysis

We conducted gene set enrichment analysis (GSEA) to analyze
potentially enriched pathways between the two groups using GSEA

FIGURE 1
The flowchart of this study.
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software (version 4.3.2, http://www.gsea-msigdb.org/gsea/index.
jsp). P. adj. < 0.05 and simulated value = 1,000 were considered
statistically significant.

Analysis of tumor mutation burden and
immune cell infiltration

We obtained the somatic mutation data of PCa patients from the
TCGA database. Then, we analyzed and assessed TMB using the
“maftools” R package to explore difference of TMB between the low-
and high-risk groups. Based on the median value of TMB, patients were
divided into the low and highTMBgroups, and theK-M survival analysis
was performed. Besides, we calculated correlations between the risk score
and TMB by Pearson correlation analysis. We utilized CIBERSORT
algorithm to evaluated the immune cells levels of the two groups (Chen
et al., 2018). Furthermore, we applied ssGSEA algorithm to quantify the
subgroups of the infiltrating immune cells between the two groups.

Drug sensitivity prediction of the risk model

Based on the “pRRophetic” R package, we predicted the
IC50 values of common chemotherapeutic drugs for the low- and
high-risk groups on the Genomics of Drug Sensitivity in Cancer
(GDSC; https://www.cancerrxgene.org/) database. We collected the
immune checkpoint genes from previous studies (Kgatle et al., 2021)
and compared expressed levels of immune checkpoint genes by

Wilcoxon test analysis (p < 0.05) between the two groups to the
clinical significance of the risk model in immunotherapy.

Cell culture

Human prostate cancer cells PC3, DU145, and LNCAP and
human normal prostate epithelium cell line RWPE-1 were
purchased from Procell (Procell Life Science and Technology Co.,
Ltd.). Cells were cultured in RPMI-1640 medium (Invitrogen)
mixed with 10% FBS. The incubator was set as a water-saturated
atmosphere with 5% CO2 at 37°C.

Quantitative real-time PCR (qRT-PCR)
The TRIzol (Invitrogen, United States) reagent was utilize to extract

total cellular RNA based on the protocol. RNA was reverse transcribe to
cDNA by the PrimeScript RT reagent kit (EZBioscience, China).
EZBioscience 2 × SYBR Green qPCR Master Mix (EZBioscience,
China) conducted the procedure. Primers for qRT-PCR were
provided by TSINGKE (Beijing TSINGKE Biotech Co., Ltd., China)
and shown in Supplementary Table S1. ACTB was chosen for the
internal reference. Expression levels of lncRNAsweremeasured as 2−ΔΔCT.

Statistical analysis

R software (ver. 4.0.1) was utilized to conduct data analysis and
visualize the results. Pearson correlation analysis was applied to

FIGURE 2
Cuproptosis-related genes expressed in PCa patients and prognostic value. (A) Expression levels of ten genes. (B, C) The comparison of LIPT1 and
CDKN2A between PCa tissues and normal tissues. (D) The prognostic value of CDKN2A.
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calculated the correlation coefficient between variables. The log-rank
test was performed to determine statistically significant differences
between K-M curves. The heatmap in our study were constructed
using the “heatmap” R package. SPSS version 25 (IBM SPSS Statistics
forWindows, version 25.0, Inc., Chicago, IL, United States) was used to
perform the univariate and multivariate Cox regression analysis to
confirm the independent prognostic risk factor of the risk score.
GraphPad Prism 9.0 (GraphPad, La Jolla, CA, United States) was
utilized to draw forest plots. Statistical significance was defined as
p-value <0.05 when there is no special description for above methods.

Results

Differentially expressed cuproptosis-related
genes in PCa

The flowchart of our study was displayed in Figure 1. Two of ten
cuproptosis-related genes were differentially expressed between
404 PCa samples and 51 normal tissues, including LIPT1 and
CDKN2A (Figures 2A,B). It was found that patients with high
CDKN2A expression had worse clinical outcomes (shorter
BCRFS), as shown in Figure 2C. These results indicated that

cuproptosis might involve in the prognostic development of PCa
patients.

Identification of the differentially expressed
crlncRNAs

We identified 1,187 differentially expressed lncRNAs from the
TCGA database with the cut-off criteria of |log2FC|≥1 and the false
discovery rate (FDR) < 0.05. Among 1,187 lncRNAs, 101 lncRNAs
were associated with the cuproptosis by Pearson’s correlation
analysis and codetermined as DE-crlncRNAs, among which
66 lncRNAs were downregulated and 35 lncRNAs were
upregulated (Supplementary Table S2, Figure 3A). Through the
univariate Cox regression analysis, we ultimately selected
14 prognosis-related DE-crlncRNAs (Supplementary Figure S1).

Establishment of the crlncRNA signature
prognostic model

Firstly, we randomly divided all PCa patients from the TCGA
database into the training and test sets. The clinicopathologic features

FIGURE 3
Establishment of the crlncRNA signature prognostic model. (A) The volcano plot of 101 DE-crlncRNAs. (B) The 10-fold cross-validation for variable
selection in the LASSO algorithm. (C) The LASSO coefficients of six crlncRNAs. (D) Multivariate Cox regression showed six crlncRNAs. (E) The Sankey
diagram indicated the correlations of the cuproptosis-related genes and six crlncRNAs.
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of thesepatientswerepresented inTable1. Inorder topreventoverfitting,
weperformedLASSOCoxregressionanalysis inthetrainingsettofurther
screen six optimal prognosis-relatedDE-crlncRNAs and calculated their
coefficients (Figures 3B,C). Then, the prognostic risk model of six
lncRNAs was established by multivariate Cox regression (Figure 3D).
The Sankey diagram revealed the correlation of the cuproptosis-related
genes and six lncRNAs (Figure 3E). Interestingly, we found that RP11_
160O5.1 was an independent prognostic risk factor for BCR in PCa
patients.TheSankeydiagramrevealed thecorrelationof thecuproptosis-
related genes and six lncRNAs. Finally, the risk score for eachpatientwas
calculated with the formula below:

Risk Score � RP11 − 497G19.3 × 0.7466( ) + RP11

− 575F12.3 × −4.1249( ) + RP11

− 718O11.1 × 2.0446( ) +MIR100HG × −3.4310( )
+ CTD − 2008P7.9 × −0.6198( ) + RP11

− 160O5.1 × 1.3322( )

Evaluation and validation of the crlncRNA
prognostic risk model

By using the median risk score as the cut-off point in the
training, test, and whole sets, all patients were divided into the

low-risk and high-risk groups (Figures 4A,B). The survival curves
revealed that patients in the high-risk group tended to have
significantly shorter BCRFS than in the low-risk group, which
was validated by the test set and whole set (Figure 4C). The
heatmaps of the expression profiles of six prognosis-related DE-
crlncRNAs in three sets were shown in Figure 4D. The AUCs for the
training set, test set, and whole set of time-dependent ROC curve
analysis were 0.766, 0.613, and 0.693, respectively (Figure 4E). These
results suggested that the prognostic risk model exhibited good
sensitivity and better power of this model to predict BCR for PCa
patients.

The clinical significance of the prognostic
model

To evaluate the clinical significance of the prognostic model,
patients of the whole set were divided into different subgroups by
variable clinicopathological features (age, T stage, N stage, M stage,
and Gleason score) via stratification analysis (Figures 5A–F). The
K-M survival curves revealed that patients in the high-risk group
had shorter BCRFS for different classifications, except for GS > 7,
T2 stage, and N1 stage (Supplementary Figure S2). The results
suggested that our model had broad applicability to clinically predict
the BCR for PCa patients with different clinicopathological features.

In order to determine whether the risk score was an independent
prognostic risk factor, we conducted Cox regression analysis.
Figure 5G illustrated the results of univariate Cox regression
analysis, which showed that the BCRFS was significantly
correlated with T stage (HR = 2.557, p < 0.001), N stage
(HR = 1.831, p = 0.016), Gleason score (HR = 2.208, p < 0.001)
and risk score (HR = 3.580, p < 0.001). By performing multivariate
Cox regression analysis, we found that only the risk score (HR =
2.340, p = 0.002) and Gleason score (HR = 1.789, p < 0.001) were
independent prognostic risk factors for BCR of PCa patients
(Figure 5H). Furthermore, the multivariate ROC analysis
indicated that the AUCs of risk score was 0.693, higher than T
stage and N stage; and just lower than Gleason score of 0.722
(Figure 6B). We also compared clinicopathologic variables,
including age, TNM stage, and Gleason score between the high-
and low-risk group. As shown in the heatmap (Figure 5I), it was
found that T stage, N stage, and Gleason score were significantly
different in the two groups.

The nomogram construction and evaluation

For further predicting the BCRFS for PCa patients, an integrated
nomogram was constructed, including the risk score and
clinicopathological features (age, T stage, N stage, M stage, and
Gleason score) to provide a clinically predictive tool for 1, 3, and 5-
year BCR rate of all patients (Figure 6A). An evaluation of the
effectiveness and accuracy of the nomogram was conducted in the
training set, as well as a verification of its stability on the test and
whole sets. An early assessment of BCR for PCa patients can be
accomplished using this nomogram, which had the highest AUC
value of 0.774 (Figure 6B). The calibration curve for 1-, three- and 5-
year BCR displayed good uniformity between actual outcomes and

TABLE 1 Clinicopathologic features of 404 PCa patients from the TCGA
database.

Variable Training set Test set Whole set

(n = 202) (n = 202) (n = 404)

Age (years)

<65 144 142 286

≥65 58 60 118

T stage

T2 78 62 140

T3 120 134 254

T4 4 6 10

N stage

N0 165 165 330

N1 37 37 74

Metastasis

M0 190 186 376

M1 12 16 28

Gleason score

6 13 10 23

7 100 101 201

8 31 26 57

9 55 65 120

10 3 0 3
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the predicted BCRFS in the training set (Figure 6C). Based on time-
dependent ROC analysis, our nomogram also displayed an excellent
prediction performance for BCR in the training set, with the AUCs
of 0.744, 0.772, and 0.818 for 1-, three- and 5-year BCR, respectively
(Figure 6C).

To further validate the nomogram, the calibration curve
displayed a good uniformity between actual outcomes and the
predicted BCRFS time in the test and whole sets (Figures 6D,E).
Meanwhile, the AUCs of the test set were 0.797, 0.729, and 0.755
(Figure 6D). For the whole set, the AUCs were 0.774, 0.754, and

0.781 (Figure 6E). In sum, our nomogramwas excellent at predicting
the BCRFS in PCa patients.

Functional enrichment analysis

We conducted GSEA to investigate the molecular mechanisms
underlying significant differences between the two groups. The results
(Supplementary Table S3) indicated that the high-risk group was
significantly associated with oxidative phosphorylation, base excision

FIGURE 4
Prognosis value of the risk model in different sets. (A) The risk score distribution of PCa patients based on crlncRNAs in the training, test, and whole
sets, respectively. (B) BCRFS and BCR status between the low- and high-risk groups in the training, test, and whole sets, respectively. (C) The heatmap of
six crlncRNAs expression in the training, test, and whole sets, respectively. (D) Kaplan-Meier survival analysis of BCRFS of patients in the training, test, and
whole sets, respectively. (E) ROC curve analysis of the risk model in the training, test, and whole sets, respectively.
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repair, DNA replication, and pyrimidinemetabolism (Figure 7A). The
enriched pathways of the low-risk groups were ERBB signaling
pathway, prostate cancer, and WNT signaling pathway (Figure 7B).

Immune cell infiltration analysis

TME is critical for tumorigenesis and progression, as well as
immune cell infiltration (Arneth, 2019). As a result, we
compared the proportions of 21 immune cell types between
the two groups to explore the correlations of the risk score and
TME. According to CIBERSORT algorithm, B cells memory,
T cells regulatory (Tregs), NK cells activated, and Mast cells
activated had higher infiltrations in the high-risk group, while

T cells CD4 memory resting, Monocytes, Dendritic cells resting
and Neutrophils had higher infiltrations in the low-risk group
(Figures 7C,D). The values of Pearson correlation were figured
out between risk scores and the CIBERSORT calculated
immune cells infiltration values. Further, we analyzed
subgroups of the immune cell in the two groups using
ssGSEA. It was found that the infiltration levels of central
memory CD4+ T cell, immature dendritic cell, mast cell,
memory B cell, NK cell, neutrophil, Treg, T follicular helper
cell, type 2 T helper cell, Eosinophil, and central memory CD8+

T cell were lower in the high-risk group, while CD56dim NK
cells and type 1 T helper cell were higher infiltrated (Figure 8A).
As depicted in Figure 8B, the infiltration values of B cells, NK
cells, CD8+ T cells, Macrophages M2, and Tregs were

FIGURE 5
Kaplan-Meier survival analysis of BCR in the low- and high-risk groups for patients with age≤65 (A), patients with age>65 (B), patients with T3-T4 (C),
patients with N0 (D), patients with M0 (E), patients with G ≤ 7 (F). Univariate (G) and Multivariate Cox regression (H) confirmed that the risk score and GS
were independent prognostic factors of BCR of PCa patients. (I) The correlations between the prognostic model and clinicopathologic variables (age,
TNM stage, and Gleason score). **p < 0.01; ***p < 0.001.
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significantly positively correlated with the risk score, and the
values of Dendritic cells and CD4+ T cells, and were significantly
negatively correlated with the risk score.

TMB analysis

We obtained the somatic mutation data of each PCa patient
from TCGA and analyzed the genetic alteration of the low- and
high-risk groups. In Figures 9A,B, the top 10 most mutated genes
differed between the two groups, among which SPOP and TP53 had
the highest rate. In the high-risk group, patients with high TMB had

the shortest BCRFS than other subgroups (Figure 9C). We found
that the TMB in the high-risk group was remarkably higher than in
the low-risk group, and the risk score was significantly positively
correlated with TMB (Figures 9D,E).

Prediction of the sensitivity to antitumor
drug with the risk score

Based on studies by Kgatle MM et al. (Kgatle et al., 2021), we
collected 17 significant immune checkpoint genes and
investigated their expression levels between the low- and high-

FIGURE 6
Construction and evaluation of the nomogram. (A) The nomogram combining the risk score and clinicopathological features. (B) ROC curve analysis
of the nomogram, risk score and clinicopathological features. Evaluation of the nomogram model with calibration curves in 1, 3, and 5 years and ROC
curves analysis in the training (C), test (D), and whole sets (E).
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risk groups. We found that the high-risk group patients had
significantly higher expression of LAG3, CTLA4 and B7-H3,
while patients in the low-risk group had higher expression of
B7-H4, PDL-2 and PDL-1 (Figure 9F). Then, we assessed the
responses of the two groups to chemotherapeutic drugs by the
half-maximal inhibitory concentration (IC50) values. The results
showed that PCa patients in the high-risk group were more
susceptible to bryostatin.1, docetaxel, gefitinib, methotrexate,
paclitaxel, and vinblastine, whereas patients in the low-risk
group were more susceptible to AKT inhibitor VIII,
bexarotene, bicalutamide, doxorubicin, gemcitabine, and
vinorelbine (Figure 10).

Expression level of crlncRNAs in prostate
cancer cell lines

We further validated the expression levels of four crlncRNAs in
PCa cells PC3, DU145, and LNCAP by qRT-PCR. As shown in

Figure 11, we found that RP11_497G19.3, RP11_718O11.1, CTD_
2008P7.9, and RP11_160O5.1 were significantly upregulated in PCa
cell lines compared with those in the RWPE-1 cells. In our
bioinformatics analyses, CTD_2008P7.9 was significantly
downregulated in the PCa samples which is inconsistent with the
results of qRT-PCR.

Discussion

The early BCR of PCa patients after radical prostatectomy (RP)
or radical radiotherapy (RRT) is associated with underlying clinical
metastases and poor prognosis (Xu et al., 2020). Early detection and
seasonable intervention for PCa patients with BCR can improve the
clinical prognosis and outcomes. Therefore, accurate and effective
prediction for early BCR and reasonable management strategies are
essential. Recently, Tsvetkov et al. uncovered a new type of regulated
cell death (RCD), cuproptosis, which arises from copper-induced
lipoylated proteins aggregation and loss of iron-sulfur cluster

FIGURE 7
Functional enrichment analysis and immune cell infiltration. (A, B) The results of GSEA analysis of the high- and low-risk groups. (C, D) The immune
cell infiltration by CIBERSORT algorithm. *p < 0.05; **p < 0.01; ***p < 0.001; ns, no significance.
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protein in TCA cycle, resulting in proteotoxic stress regulated cell
death (Tsvetkov et al., 2022). Mitobe Y et al. pointed out that
lncRNAs play a special role in the development of PCa as well as
progression to endocrine therapy resistance and would be promising
therapeutic targets of advanced PCa (Mitobe et al., 2018). In a recent
study, Liu et al. identified a ferroptosis-related lncRNAs signature
consisting of five lncRNAs to predict the BCR of PCa patients (Liu C.
et al., 2022). The purpose of this study was to establish a novel
cuproptosis-related lncRNA (crlncRNA) signature for studying
biochemical recurrence (BCR) and tumor immune landscape of
prostate cancer (PCa).

It has been reported that ten cuproptosis-related genes are
associated with the process of cuproptosis, including FDX1,
LIPT1, DLD, LIAS, DLAT, PDHA1, PDHB, MTF1, GLS, and
CDKN2A (Tsvetkov et al., 2022). Our present study found that
only two of these genes, including CDKN2A and LIPT1, were
differentially expressed between PCa samples and normal tissues.
Lipoyltransferase 1, encoded by LIPT1, is a vital enzyme that
transfers lipoate to the E2 subunits of the 2-ketoacid
dehydrogenase complexes, and the deficiency of it had already
been confirmed to suppress TCA cycle metabolism (Solmonson
et al., 2022). Studies have shown that LIPT1 is closely linked to a

favorable outcome in patients with urothelial cancer, hepatocellular
carcinoma, and melanoma (Chen et al., 2021; Lv et al., 2022; Yan
et al., 2022). In this study, we found that LIPT1 was upregulated in
PCa, but not correlated with the BCR. CDKN2A, a tumor suppressor
gene, encodes the p16INK4a protein that negatively regulates the cell
cycle, which is an important tumor suppressor protein. Loss of
CDKN2A could promote tumorigenesis and metastasis and indicate
a poor prognosis in many cancers, including PCa (Zhao et al., 2016).
The study by Lu W et al. revealed that interaction between HNF1B
with CDKN2A could play a crucial role in the development and
progression of PCa (Lu et al., 2020). Furthermore, methylation of the
CDKN2A promoter was associated with poor prognosis in PCa
patients and was also closely related to the metabolism of copper
ions in humans (Ameri et al., 2011; Silva et al., 2020). We found that
the expression of CDKN2A was upregulated in PCa and was
strongly correlated with poor prognosis. Thus, we can infer that
CDKN2A, via the methylation of its promoter, is involved in the
process of cuproptosis, which may play a vital role in PCa initiation
and progression.

We obtained 455 samples with complete clinical data and RNA-
seq from the TCGA database. In order to assess and quantify the
cuproptosis-related lncRNAs of PCa patients, and accurately predict

FIGURE 8
Immune cell infiltration in the low- and high-risk groups. (A) The infiltrating levels of immune cells in the low- and high-risk groups. (B) The
correlation between risk score and immune cell subtype infiltration. *p < 0.05; **p < 0.01; ***p < 0.001; ns, no significance.
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the BCRFS, we randomly divided all PCa patients into a training set and
a test set in a1:1 ratio. By performing LASSO and multivariate Cox
regression in the training set, we screened a total of six cuproptosis-
related lncRNAs and constructed a crlncRNA signature prognostic
model. We calculated risk scores of each patient according to the
formula. All patients were divided into the low-risk and high-risk
groups according to median value of risk scores. The survival curves
revealed that patients in the high-risk group tended to have significantly
shorter BCRFS than in the low-risk group.

We utilized the ROC curves analysis to identify that the
prognostic model had good accuracy in predicting the BCRFS in
the training set, which was validated in the test set and whole set.
Our results showed that the risk score was an independent
prognostic factor for the BCR of PCa patients. We then
constructed an integrated nomogram, including risk score, age, T
stage, N stage, M stage, and Gleason score. ROC curves indicated

that the nomogram showed a good performance in predicting the
BCRFS. The calibration curve displayed good uniformity between
actual outcomes and the predicted BCRFS time.

Our cuproptosis-related lncRNA signature contained six
lncRNAs: RP11-497G19.3, RP11-575F12.3, RP11O-718O11.1,
MIR100HG, CTD-2008P7.9, and RP11O-160O5.1. By performing
multivariate Cox regression, we found that RP11O-160O5.1 was an
independent prognostic risk factor for BCR of PCa patients and we
inferred that it might be a prognostic indicator for PCa patients.
LncRNA MIR100HG was dysregulated in many cancers and played
distinctively complex and contradictory roles, which involved
tumorigenesis, proliferation, and invasion or inhibition of these
biological behaviors of tumors (Wu et al., 2022). Previous studies
had demonstrated that lncRNA MIR100HG was identified as an
oncogene in various cancers, including breast cancer (Chen et al.,
2020), hepatocellular carcinoma (HCC) (Li et al., 2021), gastric

FIGURE 9
Analysis of tumor mutation burden and immune checkpoint genes. (A, B) Waterfall plots of mutated genes in the low- and high-risk groups,
respectively. (C) Kaplan-Meier survival curve of BCRFS stratified by TMB and risk score. (D) The comparison of TMB between the low- and high-risk
groups. (E) The correlation between TMB and risk score. (F) Differentially expressed immune checkpoint genes between the low- and high-risk groups.
*p < 0.05; **p < 0.01; ***p < 0.001.
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cancer (Li J. et al., 2019; Li et al., 2020), and colorectal cancer (Li W.
et al., 2019). However, studies in MIR100HG also proved that it
could exert tumor suppressive effects in papillary-thyroid carcinoma
(Yang et al., 2021; Park and Lee, 2022) and cervical cancer (Lang
et al., 2022; Lin et al., 2022). Furthermore, there are opposing results
about the role of lncRNA MIR100HG in bladder cancer (BC). Ying
W et al. found that MIR100HG is lowly expressed in BC, and the
overexpression of MIR100HG inhibits the proliferation and
invasion of BC cells (Ying et al., 2021). Conversely, it had been
reported from Zhang S’s study that the overexpression of
MIR100HG effectively promoted the proliferation, migration, and
invasion of BC cells, and it was proved to be an independent
prognostic factor for BC (Zhang et al., 2021). Our results
suggested that MIR100HG was lowly expressed in PCa and
indicated that this lncRNA might play a tumor-suppressive role
in PCa. For the other five lncRNAs, no relevant studies in tumors

were reported, which may provide us with new research perspectives
to further improve the predictive ability of BCR for PCa patients and
explore underlying mechanisms between cuproptosis and PCa.

It has been reported that innate immune cells and adaptive
immune cells played an important role in the proliferation and
invasion of tumors in the tumor microenvironment (TME)
(Hinshaw and Shevde, 2019). Therefore, we utilized ssGSEA to
quantify differences in the immune cell infiltration between the
high- and low-risk groups, then further explored the association of
the risk score and immune status. The results revealed that
patients in the high-risk group presented reduced infiltration
levels of central memory CD8+ T cells (TCM) and NK cells,
which was highly consistent with previous studies that both
TCM and NK cells play a major role in effective anti-tumor
responses (Fridman et al., 2017; Bohner et al., 2019). We also
found that infiltration levels of mast cells were evaluated in the

FIGURE 10
Prediction of the sensitivity to chemotherapeutic drug with the risk score by IC50 values.
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low-risk group. Johansson A et al. demonstrated that highly
infiltrated mast cells in PCa tissue could inhibit tumor growth and
development and indicate a better prognosis (Johansson et al., 2010).
These results suggested that this crlncRNA signature may play a vital
role in tumor proliferation and invasion via regulating the TME,
especially TCM, NK cells, and mast cells. Therefore, targeting
cuproptosis is expected to be a novel therapeutic strategy to
suppress PCa progression or enhance the effect of castration therapy.

We also found a significant difference in genetic mutation between
the two groups, and the risk score was positively correlated with TMB.
PCa patients in the high-risk group with high TMB had shorter BCRFS,
indicating that high TMBwas correlated with poor prognosis. TP53 and
SPOP had the highest mutated rate in the low- and high-risk groups,
respectively. The mutation of SPOP could cause genomic instability as
an early event that drives tumorigenesis in PCa and increase sensitivity
to DNA-damaging therapeutics (Boysen et al., 2015). The
TP53 mutation was the most mutated gene in PCa patients and had
been demonstrated to involve progression and metastasis in PCa (Xu X.
et al., 2022;Maxwell et al., 2022). Due to increasing attention to immune
checkpoint inhibitors for PCa patients, we analyzed differentially
expressed immune checkpoint genes between the two groups and
found that patients in the high-risk group tended to express higher
levels of LAG3, CTLA4, B7-H3, and B7-H4. It had been reported that
high levels of immune checkpoints and TMB predicted improved
effectiveness of immunotherapy (Wu et al., 2019; Fahmy et al.,
2021). We demonstrated that the high-risk group patients had
higher TMB and the risk score is significantly positively correlated

with TMB, which indicated that patients with high risk score may
benefit more from immunotherapy. Then, we assessed the sensitivity of
chemotherapeutic drugs in the two groups. The results revealed that PCa
patients in the high-risk group were more susceptible to bryostatin.1,
docetaxel, gefitinib, methotrexate, paclitaxel, and vinblastine, whereas
patients in the low-risk group benefited more from AKT inhibitor VIII,
bexarotene, bicalutamide, doxorubicin, gemcitabine, and vinorelbine.
Therefore, the risk model could guide clinicians to provide PCa patients
with individual-based treatment regime.

However, wo do have a few limitations with this study. Firstly, the
crlncRNA prognostic model was constructed and validated only using the
TCGAdatabase. Therefore,more external databases are needed to validate
its prognostic significance. Secondly, our analysis refers to a retrospective
analysis of public data, and selection bias is inevitable in it that may affect
the precision and accuracy of our results. Finally, further experimental
proof (in vivo or in vitro) is essential to uncoveringmolecularmechanisms
of crlncRNAs regulating the progression and invasion of PCa.

Conclusion

This study was to identify a novel cuproptosis-related lncRNA
signature to precisely predict BCR of PCa patients based on risk
scores. We demonstrated that the risk score was an independent
prognostic factor and identified significant differences in immune
cell infiltration and TMB between the low- and high-risk groups.
Our results can assist researchers further understand the role of

FIGURE 11
The qRT-PCR results of four crlncRNAs in three PCa cell lines. (A) qRT-PCR result of RP11-497G19.3. (B) qRT-PCR result of RP11O-718O11.1. (C)
qRT-PCR result of CTD-2008P7.9. (D) qRT-PCR result of RP11O-160O5.1.
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cuproptosis in PCa and provide new insights into developing
individual-based treatment strategies.
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