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Background: Endothelial cells in the tumor microenvironment play an important
role in the development of kidney renal clear cell carcinoma (KIRC). We wanted to
further identify the function of endothelial cells in KIRC patients by integrating
single-cell and bulk RNA sequencing data.

Methods:Online databases provide the original data of this study. An endothelial-
related prognostic index (ERPI) was constructed and validated by R version
3.6.3 and relative packages.

Results: The ERPI consisted of three genes (CCND1,MALL, and VWF). Patients with
high ERPI scores were significantly correlated with worse prognosis than those
with low ERPI scores in the TCGA training group, TCGA test group, and
GSE29609 group. A positive correlation was identified between the ERPI score
and poor clinical features. The results of functional analysis indicated that ERPI was
significantly associatedwith immune-related activities. We suggested that patients
with high ERPI scores were more likely to benefit from immunotherapy based on
the results of immune checkpoints, tumor microenvironment, stemness index,
and TCIA, while patients with low ERPI scores were sensitive to gemcitabine,
docetaxel, paclitaxel, axitinib, pazopanib, sorafenib, and temsirolimus according to
the results of the “pRRophetic” algorithm. Therefore, this ERPI may help doctors
choose the optimal treatment for patients with KIRC.

Conclusion: By integrating single-cell and bulk RNA sequencing data from KIRC
patients, we successfully identified the key genes from the perspective of
endothelial cells in the tumor microenvironment and constructed ERPIs that
had positive implications in precision medicine.
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Introduction

In 2020, there were 431,288 newly diagnosed kidney cancer patients
worldwide, accounting for approximately 2.2% of all cancers (Siegel et al.,
2021). In western countries, with the highest incidence occurring, kidney
cancer accounts for 3% of all cancers (Capitanio et al., 2019). Of these,
80% of kidney cancer is kidney renal clear cell carcinoma (KIRC), which
has a shorter survival time than kidney cancer with other kinds of
pathologies (EAU Guidelines, 2022). Today, surgery is the main
treatment for localized KIRC. However, many patients will relapse
quickly, either after partial or radical nephrectomy (Escudier et al.,
2019). Furthermore, approximately one-third of patients with localized
RCC inevitably developmetastases (Escudier et al., 2019). To improve the
prognosis of patients with KIRC, various treatments are clinically applied,
such as chemotherapy, targeted therapy, radiotherapy, and
immunotherapy. Nevertheless, the effectiveness of the current
treatment is far from satisfactory. Under the guidance of precision
medicine, doctors try to find new targets to cure KIRC and choose
the optimal treatment for KIRC patients by screening powerful
biomarkers (Yu et al., 2022).

KIRC is a tumor rich in angiogenesis (Edeline et al., 2012). At
some time, angiogenesis plays a vital role in tumor progression (Folkman,
1972). Of these, vascular endothelial growth factor (VEGF) can promote
the angiogenesis and cell proliferation of KIRC by activating endothelial
cells, while tyrosine kinase inhibitors (TKIs) can inhibit the growth of
KIRC cells by inhibiting VEGF signaling (Edeline et al., 2012; Martin
et al., 2012). Nevertheless, many patients are resistant to TKIs (Marona
et al., 2022). Meanwhile, the adverse effects of anti-VEGF agents are
present in many patients (Chen and Cleck, 2009). Similarly, only some
KIRC patients are sensitive to immunotherapy (Powles and ESMO
Guidelines Committee, 2021). These therapeutic resistances may be
explained by the tumor microenvironment (Kim et al., 2021; Feng
et al., 2022; Gifre-Renom et al., 2022). Recently, single-cell RNA-
sequencing (scRNA-seq) technologies have attracted wide attention
and have allowed us to sequence and analyze thousands of cells per
tumor (Schreibing and Kramann, 2022). Therefore, we can discuss the
function of specific cell types in the tumor environment. For instance, by
analyzing scRNA-seq, Zhang et al. (2021) reported that there was a
negative correlation between endothelial cell infiltration and
immunotherapy response.

Thus, by integrating single-cell and bulk RNA sequencing data, KIRC
data from online databases were used to identify the key genes from the
perspective of endothelial cells in the tumormicroenvironment. Then, we
constructed and validated an endothelial-related prognostic index. We
also explored the predictive value of the index for immunotherapy,
targeted therapy and chemotherapy.

Methods

Data collection

The expression and clinical data were extracted from the Cancer
Genome Atlas (www.gdc.cancer.gov, TCGA) database. The “limma”

package was used to identify the differentially expressed genes (|
log2FoldChange| >1 and p-value < 0.05) between 539 KIRC samples
and 72 normal samples. Then, we excluded KIRC patients with
postoperative survival times shorter than 30 days or without survival
outcomes. The included patients were randomly divided into the
TCGA training group (n = 309) and TCGA test group (n = 206). As
an external validation dataset, GSE29609 (Edeline et al., 2012) was
downloaded from the Gene Expression Omnibus (https://www.ncbi.
nlm.nih.gov, GEO) database.

The xCELL (https://xcell.ucsf.edu/) (Aran et al., 2017) website
was employed to calculate the endothelial cell content of each
included KIRC sample in the TCGA dataset. Then, based on the
gene expression and endothelial cell content of each included TCGA
sample, the endothelial-related genes (|coefficients| > 0.3 and
p-value <0.05) were screened by Pearson correlation analysis.
Then, the markers of endothelial cells (|log2FoldChange| >1 and
p-value < 0.05) were extracted from Tumor Immune Single-cell Hub
2 (http://tisch.comp-genomics.org, TISCH2) (Sun et al., 2021),
which is a single-cell RNA-seq database and provides markers of
cell type by validating differential genes between different cell types
in the tumor microenvironment. In our study, GSE139555 provided
the original data to analyze in TISCH2 (Wu et al., 2020).

Construction of the endothelial-related
prognostic index

The “VennDiagram” package was utilized to screen the
differentially coexpressed endothelial-related genes. Then, by
following a minimum standard of 10-fold cross-validation, the
lasso regression model applied penalties to these genes based on
the TCGA training group. The prognostic value of the selected genes
in the lasso regression model was assessed by a univariate Cox
regression model. Finally, three genes (CCND1, MALL and VWF)
were used to construct the endothelial-related prognostic index
score (ERPIs). Meanwhile, GeneMANIA (www.genemania.org)
(Warde-Farley et al., 2010) was used to evaluate the interacting
proteins of these three genes.

Validation of the clinical value of ERPI

Before estimating the ERPI, we assessed the prognostic value of
endothelial cells in KIRC patients using Kaplan‒Meier curves. Then,
the prognostic value of the ERPI was validated by Kaplan‒Meier
curves in the TCGA training group, TCGA test group, and
GSE29609 dataset. Furthermore, we also evaluated the prognostic
value of ERPI in clinical subgroups using Kaplan‒Meier curves. The
correlation between ERPI and clinical parameters was assessed by
the Wilcoxon rank-sum test. Moreover, according to the results of
the univariable Cox regression model, factors with a p-value <
0.05 were included in the multivariable Cox regression model to
estimate the independent prognostic value of ERPI. Referring to the
results of the multivariable Cox regression model, we established
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two nomograms based on the TCGA training group and TCGA test
group. The performance of these two nomograms was evaluated by
the concordance index (C-index), multiparameter ROC analysis,
and calibration curves.

Functional analysis

We performed Gene Ontology (GO) enrichment analysis and
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment
analysis based on the TCGA dataset (including TCGA training
group and TCGA test group) and ERPI. The GO results and
enriched KEGG pathways were screened out with
p-value <0.05 and Q < 0.05 criteria. Meanwhile, Gene Set
Enrichment Analysis (GSEA) was used to screen REACTOME
pathways with p-value <0.05 and FDR<25%.

The role of ERPI in immune-related analysis was also explored
because the functional results indicated that ERPI was involved in
immune-related activities. The immune checkpoints were compared
between the high- and low-ERPI groups. In the tumor
microenvironment, according to the results of xCELL, the Wilcoxon
rank-sum test was utilized to compare the contents of infiltrated immune
cells in the high- and low-ERPI groups. Moreover, the one-class logistic
regression machine learning algorithm contributed an mRNA
expression-based stemness index (mRNAsi), which could reflect the
cell stemness of samples (Malta et al., 2018). Thus, we calculated the
mRNAsi score of each sample using this algorithm and compared the
mRNAsi score between the high- and low-ERPI groups. To predict the
response to immunotherapy, the Cancer ImmunomeAtlas (https://www.
tcia.at/home, TCIA) (Charoentong et al., 2017), a database providing
comprehensive immunogenomic analyses based on the TCGA database,
was used to evaluate the immunotherapy response in each sample. After
that, the TCIA score was compared between the high- and low-ERPI
groups. Furthermore, since tumor-related endothelial cells can induce
chemotherapy resistance and angiogenesis, the predictive value of ERPI
was evaluated by the “pRRophetic” package. The half-maximal inhibitory
concentration (IC50) was the main endpoint of chemotherapy and
targeted therapy, which was also compared between the high- and
low-ERPI groups.

Statistical analysis

According to the normality and quality of variances of the data,
one-way ANOVA or theMann‒WhitneyU test was used to perform
statistical analysis of three or more continuous variables.
Quantitative data in two groups were compared using Student’s
t-test. All analyzed data are displayed as the standard deviation (SD).
A p < 0.05 was considered significant for all analyses, which were
performed using R version 3.6.3 and relative packages.

Results

Construction of the index and basic data

Figure 1 shows the workflow of our work. After calculating the
endothelial cell content in each TCGA sample, Kaplan‒Meier curves

indicated that patients with low endothelial cell infiltration had
worse overall survival (OS) than those with high endothelial cell
infiltration (Figure 2A, p = 0.027). A total of 1840 endothelial-related
genes were confirmed by Pearson correlation analysis
(Supplementary Table S1). There were 135 endothelial-specific
genes acquired from TISCH2 (Supplementary Table S2). The
‘VennDiagram’ package identified 21 differentially coexpressed
endothelial-related genes (Figure 2B), and the lasso regression
analysis ultimately selected six genes (Figure 2C). CCND1,
MALL and VWF exhibited significant prognostic value in the
TCGA training group (Figure 2D). Meanwhile, CCND1, MALL
and VWF were highly expressed in KIRC (Figure 2E). The
CDK4 protein was the interacting protein of these three genes
(Figure 2F). As described in the methods section, the ERPI
consisted of CCND1, MALL and VWF. After calculating the
ERPI score, we divided patients in the TCGA training group and
TCGA test group into low- and high-ERPI groups according to the
median value of ERPI. Due to the limited patient number of the
GSE29609 dataset, we employed ROC curves to find the optimal
cutoff value of the ERPI score, which was 3.9373. Patients with ERPI
scores higher than 3.9373 were divided into the high-ERPI group,
while the remaining patients were divided into the low-ERPI
group. In the TCGA training group, patients in the high-ERPI
group were positively correlated with poor clinical features, such as
Fuhrman grade, American Joint Committee on Cancer (AJCC)
stage, and T stage (Table 1). Detailed information on the TCGA
test group and GSE29609 is presented in Supplementary Tables S3,
S4, respectively.

ERPI has clinical value

In the results of Kaplan‒Meier curves, patients with high ERPI
scores were significantly associated with worse OS than those with
low ERPI scores in the TCGA training group (Figure 2G, p < 0.001),
TCGA test group (Figure 2H, p = 0.033), and GSE29609 (Figure 2I,
p = 0.042) dataset. Regarding cancer-specific survival, compared
with patients with low ERPI scores, shorter survival times were
observed in patients with high ERPI scores in the TCGA training
group (Figure 2J, p < 0.001), TCGA test group (Figure 2K, p < 0.001),
and GSE29609 (Figure 2L, p = 0.017) dataset. In TCGA training
subgroups, patients in the high-ERPI group had worse OS than
those in the low-ERPI group, including Fuhrman grade 3–4
(Figure 2M, p < 0.001), T stage 3_4 (Figure 2N, p < 0.001), and
no distant metastasis (Figure 2O, p < 0.001) subgroups. In TCGA
training subgroups, shorter OS time was significantly associated
with patients in the high-ERPI group than those in the low-ERPI
group, such as Fuhrman grade 3–4 (Figure 2P, p = 0.045), T stage 3_
4 (Figure 2Q, p = 0.035), and no distant metastasis (Figure 2R, p =
0.043) subgroups. The prognostic value of ERPI in
GSE29609 subgroups was not identified due to the limited
number of patients.

In the TCGA training group, a positive correlation was identified
between the ERPI score and poor clinical features, such as Fuhrman
grade (Figure 3A), AJCC stage (Figure 3B), T stage (Figure 3C),
lymph node metastasis (Figure 3D), and distant metastasis
(Figure 3E). Fortunately, there was no difference in ERPI
between patients of different sexes (Figure 3F) and ages
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(Figure 3G). Similarly, in the TCGA-test group, ERPI was also
positively correlated with poor clinical characteristics, including
Fuhrman grade (Figure 3H), AJCC stage (Figure 3I), T stage
(Figure 3J), and distant metastasis (Figure 3K). There was also
no difference in ERPI between patients of different ages
(Figure 3L) and sexes (Figure 3M) in the TCGA-test group. In
the GSE29609 dataset, there was no difference between ERPI and age
(Figure 3N). These results indicated that the ERPI score was
positively associated with poor clinical features and that there
was no difference between patients of different ages and sexes.

Construction and validation nomogram

According to the results of the univariable Cox regression
model, we constructed a multivariable Cox regression model that

consisted of age, Furhman grade, AJCC stage, M stage, T stage,
and ERPI score based on the TCGA training group. In the
results, ERPI presented independent prognostic value
(Figure 4A, p = 0.004). In the TCGA test group, ERPI could
also independently predict the prognosis of BC patients
(Figure 4B, p = 0.046). Referring to the results of
multivariable analysis, we established two nomograms based
on the TCGA training group (Figure 4C) and TCGA test group
(Figure 4D). The C-index of the TCGA training group
nomogram was 0.756 (0.730–0.782). The nomogram of the
TCGA test group also had a moderate C-index, which was
0.744 (0.713–0.775). The predicted values in the two
nomograms (TCGA training group (Figure 4E) and TCGA
test group (Figure 4F)) fluctuated around the true values.
Furthermore, in the nomogram of the TCGA training group,
the area under the curve (AUC) value increased from 0.782 to

FIGURE 1
The workflow of this study.
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FIGURE 2
The prognostic value of endothelial cells in TCGA dataset (A), the co-expressed genes (B), the cross-validation to determine the optimal penalty
parameter lambda (C), the prognostic value of these six genes in overall survival (OS) according to the results of univariable Cox regression analysis in
TCGA training group (D), the expression of these three genes (E), the protein–protein interaction network (F), the Kaplan-Meier analysis results of OS in
TCGA training group (G), TCGA test group (H), and GSE29609 dataset (I); the Kaplan-Meier analysis results of cancer-specific survival in TCGA
training group (J), TCGA test group (K), andGSE29609 dataset (L); the Kaplan-Meier analysis results of OS in TCGA training subgroups: Furhman grade3-4
(M), T3_4 stage (N), and no distant metastasis (O) subgroups; the Kaplan-Meier analysis results of OS in TCGA test subgroups: Furhman grade3-4 (P), T3_
4 stage (Q), and no distant metastasis (R) subgroups.
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0.811 after adding the ERPI into the model (Figures 4G,H). This
phenomenon was also observed in the nomogram of the TCGA
test group. After adding ERPI to the model, the AUC value
increased from 0.773 to 0.851 (Figures 4I,J). These results
indicated that the ERPI had significant prognostic value for
BC patients.

ERPIs is ERPIinvolved in immune-related
activities

As shown in Figure 5A, based on the data of TCGA training
group, GO enriched epidermal cell differentiation biological process,
humoral immune response biological process, growth factor activity,

and hormone activity. In the TCGA test group, ERPI was involved in
acute inflammatory response biological processes, humoral immune
response biological processes, drug transmembrane transporter
activity, and cytokine activity (Figure 5B). In terms of pathways,
based on the data of TCGA training group, KEGG enriched
chemical carcinogenesis pathway and metabolism-related
pathways (Figure 5C). In the TCGA test group, ERPI was
involved in chemical carcinogenesis, metabolism of xenobiotics
by cytochrome P450, and cytokine‒cytokine receptor interaction
pathways (Figure 5D).

In further GSEA, based on the data of the TCGA training group,
GSEA enriched the innate immune system, cytochrome
p450 arranged by substrate type, integrin cell surface interactions,
and signaling by VEGF pathways (Figures 5E,F). In the TCGA test

TABLE 1 Clinicopathologic characteristics of the TCGA training dataset.

Characteristic Low risk-score High risk-score p

n 154 155

Age, mean ± SD 60.68 ± 11.87 61.28 ± 11.89 0.653

Gender, n (%) 0.377

Female 56 (18.1%) 48 (15.5%)

Male 98 (31.7%) 107 (34.6%)

Fuhrman grade, n (%) <0.001

Grade 1_2 88 (28.9%) 49 (16.1%)

Grade 3_4 65 (21.3%) 103 (33.8%)

AJCC stage, n (%) <0.001

AJCC Stage I_II 112 (36.5%) 76 (24.8%)

AJCC stage III_IV 41 (13.4%) 78 (25.4%)

Distant metastasis, n (%) 0.006

No 132 (45.2%) 116 (39.7%)

Yes 13 (4.5%) 31 (10.6%)

Lymph node metastasis, n (%) 0.034

N0 72 (48%) 69 (46%)

Yes 1 (0.7%) 8 (5.3%)

T stage, n (%) <0.001

T1_2 114 (36.9%) 83 (26.9%)

T3_4 40 (12.9%) 72 (23.3%)

Overall survival, n (%) <0.001

Alive 123 (39.8%) 84 (27.2%)

Dead 31 (10%) 71 (23%)

Cancer-specific survival, n (%) <0.001

Alive 139 (45.6%) 99 (32.5%)

Dead 14 (4.6%) 53 (17.4%)

AJCC, american joint committee on cancer; SD, standard deviation; n, Number.
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FIGURE 3
The correlation between the index and clinical parameters: TCGA training group (Furhman grade (A), AJCC stage (B), T stage (C), lymph node
metastasis stage (D), distant metastasis stage (E), sex (F), age (G)), TCGA test group (Furhman grade (H), AJCC stage (I), T stage (J), distant metastasis stage
(K), age (L), sex (M)), GSE29609 dataset (age (N)). N: lymph node metastasis; M: distant metastasis; AJCC: American Joint Committee on Cancer; ns, p ≥
0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001.
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group, ERPI involved in chemokine receptors binds chemokines,
MHC class II antigen presentation, apoptotic cleavage of cell
adhesion proteins, and signaling by FGFR3 fusions in cancer

pathways (Figures 5G,H). Taken together, these results suggested
that ERPI was associated with endothelial cells and involved in
immune-related activities and pathways.

FIGURE 4
Validation of the independent prognostic value of the index: multivariable Cox regressionmodel in TCGA training group (A) and TCGA test group (B),
nomograms of TCGA training group (C) and TCGA test group (D), calibration plots of TCGA training nomogram (E) and TCGA test nomogram (F),
multiparameter ROC analysis without (G)/with (H) the index in TCGA training nomogram, multiparameter ROC analysis without (I)/with (J) the index in
TCGA test nomogram, N: lymph node metastasis; M: distant metastasis; AJCC: American Joint Committee on Cancer.
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FIGURE 5
Functional analysis: the Gene Ontology results of TCGA training group (A) and TCGA test group (B), Kyoto Encyclopedia of Genes and Genomes
results of TCGA training group (C) and TCGA test group (D), Gene Set Enrichment Analysis results TCGA training group (E, F) and TCGA test group (G, H).
Immune checkpoint results of the TCGA training group (I) and TCGA test group (J). Ns, p ≥ 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001.

Frontiers in Genetics frontiersin.org09

Li et al. 10.3389/fgene.2023.1096491

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1096491


FIGURE 6
Immune-related analysis: the tumor microenvironment results of TCGA training group (A) and TCGA test group (B), the stemness index results of
TCGA training group (C) and TCGA test group (D), the TCIA results of TCGA training group (E) and TCGA test group (F), the prediction of chemotherapy
and targeted therapy in TCGA training group (G) and TCGA test group (H). mRNAsi: stemness index; IC50: the half-maximal inhibitory concentration. Ns,
p ≥ 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001.
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ERPI could predict immunotherapy and
chemotherapy responses

In both the TCGA training and TCGA test groups, compared
with the low ERPI group, the high ERPI group had higher immune
checkpoint expression, such as CTLA4, PDCD1, and KLRC1
(Figures 5I,J). In the tumor environment, Figures 6A,B show that
samples in the high ERPI group had higher B cell, CD8+ T cell,
macrophage cell, NK T cell, and CD4+ Th1/2 cell infiltration, while
samples in the low ERPI group had higher endothelial cell
infiltration in both the TCGA training and TCGA test groups.

Furthermore, in the TCGA training group (Figure 6C) and the
TCGA test group (Figure 6D), a positive correlation was identified
between the mRNAsi score and ERPI score. Meanwhile, patients
with high ERPI scores had significantly higher mRNAsi scores than
those with low ERPI scores.

In the field of immunotherapy prediction, TICA results
indicated that patients with high ERPI scores were more likely to
benefit from immunotherapy (Figure 6E) in the TCGA training
group. Similarly, in the TCGA test group, patients in the high ERPI
group had a higher response to immunotherapy than those in the
low ERPI group (Figure 6F). In chemotherapy and targeted therapy,
patients with low ERPI scores had significantly lower IC50 values of
gemcitabine, docetaxel, paclitaxel, axitinib, pazopanib, sorafenib,
and temsirolimus, which might suggest that patients in the low-
ERPI group were more likely to benefit from chemotherapy and
targeted therapy in both the TCGA training group (Figure 6G) and
TCGA test group (Figure 6H).

Discussion

Endothelial cells in the tumor environment play a key role in
antiangiogenic therapy, which is a main therapy for KIRC (Gifre-
Renom et al., 2022). Meanwhile, Zhang et al. (Zhang et al., 2021)
reported that there was a negative correlation between endothelial
cell infiltration and immunotherapy response. These results
identified the important role of endothelial cells in KIRC.
Therefore, in this study, for the first time, we constructed an
endothelial-related prognostic index and validated the clinical
value of the index. Furthermore, the index could also predict the
response to immunotherapy, chemotherapy, and targeted therapy,
thereby providing a useful tool for clinical use.

MAL-like protein (MALL) is normally expressed in endothelial
cells and can encode an element of the machinery for raft-mediated
trafficking in endothelial cells. In the early stage of carcinogenesis,
the expression of MALL changes (Jiang et al., 2009). Cyclin D1
(CCND1), as a protein encoding gene, is highly expressed in KIRC
and can promote KIRC cell proliferation by regulating the cell cycle
(Musgrove et al., 2011; Patel et al., 2022). With VEGF stimulation,
endothelial cells can release Von Willebrand Factor (VWF), which
encodes a glycoprotein involved in hemostasis (Maisonpierre et al.,
1997). There was a positive correlation between the tumor burden of
metastatic renal cell cancer and VWF expression (van der Veldt
et al., 2012). Among the interacting proteins, cyclin-dependent
kinase 4 (CDK4) is a member of the Ser/Thr protein kinase
family and forms a complex with CCND1 to regulate the cell
cycle G1/S transition (Adamopoulos et al., 2022). Together, these

results indicated that these three genes were associated with
endothelial cells and involved in the development of tumors,
especially KIRC.

According to the Kaplan‒Meier curves, KIRC patients with high
endothelial cell infiltration had a better prognosis than those with
low endothelial cell infiltration. Patients in the low-ERPI group had
higher endothelial cell infiltration. Meanwhile, patients in the low-
ERPI group were significantly associated with better prognosis in the
TCGA training group, TCGA test group, and GSE32894 dataset,
which was consistent with the finding that high endothelial cell
infiltration in KIRC was significantly correlated with good
prognosis. This finding was also reported by Zhang et al. (2021)
who also found that KIRC patients with high endothelial cell content
tend to have better OS than those with low endothelial cell content.
Interestingly, they found that patients with high endothelial cell
content had significantly better OS than those with high CD8+ T-cell
content. This also agrees with our earlier observations, which
showed that patients in the low ERPI group had low CD8+ T-cell
and high endothelial cell infiltration and were associated with good
OS. Based on these results, we established and validated two
nomograms with clinical value. Furthermore, ERPI was
statistically correlated with poor clinical features. These results
indicated that the ERPI had clinical value for KIRC patients.

In the results of functional analysis, ERPI was associated with
cellular components (such as keratin filaments and blood
microparticles) and enriched signaling by Notch1 HD domain
mutants in cancer and signaling by VEGF pathways. Of these,
keratin filaments are required for maintaining the mechanical
stability of epithelial cells (Nafeey et al., 2016). In pathways,
Clark et al. (Clark et al., 2019) observed that the highest
endothelial cell signature group also enriched the Notch signaling
pathway. These functional results repeatedly identified that ERPI
was truly associated with endothelial cells in the tumor
microenvironment. In addition, functional analysis indicated that
ERPI is involved in immune-related pathways. Thus, we explored
the role of ERPI in immune-related analysis. Regarding immune
checkpoints, the high ERPI group had higher CTLA4, PDCD1, and
KLRC1 expression than the low ERPI group. However, we could not
suggest which group might have a higher response rate to
immunotherapy because these checkpoints could not predict the
response to immunotherapy (Labadie et al., 2021). It remained us
that the immune environment was different between the high- and
low-ERPI groups. In terms of the tumor microenvironment, tissues
in the high ERPI group had higher CD8+ T-cell infiltration and less
endothelial cell infiltration. In KIRC, CD8+ T cells activated by anti-
CTLA4 immunotherapy could kill tumor cells (Yang et al., 2007). In
another study, tumor-infiltrating CD8+ T cells were positively
associated with a response to anti-PD1 therapy (Borcherding
et al., 2021). Meanwhile, in metastatic KIRC, low endothelial cell
infiltration was correlated with a better response to immunotherapy
(Zhang et al., 2021). Given the results of the above studies, we
reasonably speculated that patients in the high-ERPI group were
more likely to benefit from immunotherapy. In stemness index
analysis, patients with high mRNAsi scores had a higher response to
immunotherapy than those with low mRNAsi scores (Malta et al.,
2018). Consistent with the results of the tumor microenvironment, a
higher mRNAsi score was identified in patients with a high ERPI
score, which suggested that patients in the high-ERPI group were
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more likely to benefit from immunotherapy. In further TICA
analysis, patients in the high-ERPI group had a higher response to
anti-CTLA4 and anti-PD1 therapies than patients in the low-ERPI
group. As an anticancer therapy, antiangiogenic therapy improves the
prognosis of patients with KIRC (Ferrara et al., 2005). Nevertheless, only
some patients could benefit from the therapy (Marona et al., 2022). To
help solve this problem, we also explored the predictive value of ERPI in
targeted therapy and chemotherapy. Compared with the high-ERPI
group, patients in the low-ERPI group were sensitive to many
targeted therapies and chemotherapies. Taken together, these results
indicated that ERPI could predict the response to immunotherapy,
targeted therapy and chemotherapy.

Conclusion

By integrating single-cell and bulk RNA sequencing data from
KIRC patients, we successfully identified the key genes from the
perspective of endothelial cells in the tumor microenvironment and
constructed ERPIs that had positive implications in precision
medicine.
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