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In the pursuit of precision medicine for cancer, a promising step is to predict drug
response based on data mining, which can provide clinical decision support for
cancer patients. Although some machine learning methods for predicting drug
response from genomic data already exist, most of them focus on point
prediction, which cannot reveal the distribution of predicted results. In this paper,
we propose a three-layer feature selection combined with a gamma distribution
based GLM and a two-layer feature selection combined with an ANN. The two
regression methods are applied to the Encyclopedia of Cancer Cell Lines (CCLE) and
the Cancer Drug Sensitivity Genomics (GDSC) datasets. Using ten-fold cross-
validation, our methods achieve higher accuracy on anticancer drug response
prediction compared to existing methods, with an R2 and RMSE of 0.87 and 0.53,
respectively. Through data validation, the significance of assessing the reliability of
predictions by predicting confidence intervals and its role in personalized medicine
are illustrated. The correlation analysis of the genes selected from the three layers of
features also shows the effectiveness of our proposed methods.
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1 Introduction

Due to the advances in technology, medical devices and treatment conditions, cancer is no
longer as difficult to treat as it was 20 years ago. However, the heterogeneity and genetic
diversity of cancer make it possible for patients with the same type of cancer to obtain different
therapeutic effects even with the same treatment (Stein et al., 2004; Shoemaker, 2006;Workman
et al., 2012; Cortés-Ciriano et al., 2015). Although the research on drug sensitivity is widespread
and many methods have already demonstrated outstanding performance in this research field,
it is still challenging to develop more accurate and powerful computational models to improve
the performance of prediction. Moreover, portable algorithm development is a hot topic in this
area (Caponigro and Sellers, 2011; Garnett et al., 2012; Wei et al., 2019).

At present, precision medicine is a crucial issue in cancer treatment research around the
world (Reardon, 2015; Ali Dokuyucu et al., 2018; Li and Li, 2022), which needs to take into
account patient information such as medical history and genetic information, resulting in
individualized treatment plans for patients with maximum therapeutic effects and minimum
side effects. Since cancer is a disease caused by genetic mutations, it is reasonable to develop
computational models based on the genetic data of patients to predict drug responses
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(Garraway, 2013). Based on the data on cancer patients accumulated
over the past few decades, several large public cancer datasets have
emerged. The Encyclopedia of Cancer Cell Lines (CCLE) project
compiled the genomic profiles of 947 human cancer cell lines and
the pharmacological profiles of 24 anticancer drugs in 479 cancer cell
lines (Barretina et al., 2012). The Cancer Drug Sensitivity Genomics
(GDSC) is another project which compiled the genomic maps of
639 human cancer cell lines and their drug response data into
130 drugs, aiming to identify genomic biomarkers of drug
sensitivity in cancer cells (Yang et al., 2013). Both CCLE and
GDSC datasets have abundant genomic data, including gene
expression, DNA copy number, ONcomAP mutation, etc., which
offer support for the construction of prediction models.

Machine learning methods, such as Random Forest (RF) and the
Bayesian approach, are commonly used to establish fitting and
regression models of drug response prediction models. Fang et al.
used the EC50 of 947 cancer cell lines in the CCLE database to predict
drug response based on RF, and then estimated the conditional
distribution by observing the weight distribution of tag values
(Fang et al., 2018). Finally, they obtained the point estimate of
drug response value, and established the prediction interval to
evaluate the prediction credibility. Amid-ud-din et al. proposed a
Kernelized Bayesian Matrix Factorization (KBMF) based algorithm,
which integrates genomic features of cell lines such as gene expression
data, copy number variation and gene mutations as auxiliary
information for predicting the drug response of 650 cell lines to
116 drugs, achieving an R2 of 0.32 for the new drugs prediction
(Ammad-ud din et al., 2014). The methods based on fuzzy-rough set
evaluation have also been applied to the feature selection problem,
where lower and upper approaches are used to intuitive fuzzy sets
from rough sets to remove uncertainty due to having simultaneous
membership, non-membership, and hesitation degrees and obtain
better results (Lanbaran and Celik, 2021; Lanbaran et al., 2022). In
addition, there have been some attempts based on deep learning.
Menden et al. made the first effort to integrate cell line genomic
features, including microsatellites, sequence variation and copy
number variation, combined with one-dimensional (1D) and two-
dimensional (2D) chemistry of compounds to model half growth
inhibitory concentration (IC50) (Menden et al., 2013). The IC50 of
111 drugs were predicted on 608 cell lines using three-layer neural
networks and random forest. As a result, the coefficient of
determination (R2) and the root mean square error (RMSE) are
0.64 and 0.97 on the test set, respectively.

In addition to the improvement of the algorithm itself, the
optimization of the input data is another effort which have been
made to improve the performance of the model. Cortes-Ciriano et al.
(2016) compared seven genomic profiles and their cell line
combinations and found that protein, gene transcript levels and
miRNA abundance had the highest predictive power when
simulating the 50% growth inhibition bioassay endpoint. They then
integrated the transcriptional profiles of the top 1,000 genes that
showed the highest variance in 59 cell lines, as well as the Morgan
fingerprints of 17,142 compounds, and used RF and support vector
machines (SVM) to predict drug response. Zhang et al. (2015)
constructed a three-layer integrated cell line drug network
including cell line similarity network (CSN) and drug similarity
network (DSN) based on Pearson’s correlation coefficient of cell
line gene expression profile and compound 1D and 2D information
from CCLE and the Cancer Genome Project (CGP) datasets. The basic

assumption is that similar drugs may have similar responses to a given
cell line. In the proposed model, the drug response is first inferred
from each network, and then the final response is obtained by linear
weighting, with weights customized for each drug. The Pearson’s
correlation coefficient between the predicted drug response and the
observed response is 0.6. However, there are still some problems in the
existing studies. For example, the results of most studies are obtained
by statistical analysis and have not been verified in new cell lines. From
the perspective of data sources, although the genomic information
such as methylation, copy number variation, and gene mutation are
considered in several previous studies, other information such as drug-
target interaction is not included.

To further improve the prediction accuracy for drug response, we
propose a three-layer feature selection combined with a gamma
distribution based generalized linear model (GLM), the flowchart
of which is shown in Figure 1 and a two-layer feature selection
combined with an artificial neural network (ANN) for drug
response prediction. Three feature selecting methods, namely
Boruta (Xu et al., 2019), mRMR (Junhuai et al., 2016) and
XGBoost (Sidorov et al., 2018) are applied on the drug Morgan
molecular fingerprint coding and genomic data. After the feature
selection, the gamma distribution based GLM and ANN are applied to
the feature matrix to predict specific IC50 value (Cheng et al., 2016) of
the drug for cancer cell lines. In general, our proposed models
outperform the existing models such as RF and the Bayesian
model, while predicting precise confidence intervals for the
IC50 values for breast cancer, which can select appropriate drugs
for cancer treatments.

2 Methods

2.1 Data and preprocessing

In this study, the gene expression and drug IC50 data from
CCLE and GDSC databases are used. We focus on four classes of
drugs for breast cancer: Anthracycline, Paclitaxel,
Cyclophosphamide and Platinum. Since there are two types of
Anthracycline, a total of five drugs are studied. The gene expression
data are used as features, including gene mutations (MUT),
chromosomal variations (RNA), and copy number variations
(CNV). Among them, the chromosomal and copy number
variations are real numbers, while gene mutations are binary,
with 1 representing mutation and 0 representing wild-type.

In addition, the 2D chemical structures of the five drugs are
downloaded from the PubChem website, whose Morgan
fingerprints are calculated using the R package RCDK (Guha,
2007). The Morgan fingerprint is a topological fingerprint, which is
obtained by the modified Morgan algorithm (Duvenaud et al., 2015).
The algorithm first assigns a unique identifier to each atom. Then,
after iterations of updating, the substructure is calculated, generating a
256-bit binary feature list.

We use two types of feature matrices as input. One is composed
of the gene expression data alone, for which the label values keep
intact, and regression fitting is carried out for the five drugs
respectively. The other feature matrix is integrated with the
gene expression data and Morgan fingerprints, for which all cell
lines from the five drugs are integrated and the label values are
logarithmically transformed.
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2.2 Feature selection

Since the dimension of feature matrix of gene expression data reaches
tens of thousands, it is necessary to use feature selection to get key features
to reduce the size of themodel. In this study, a three-layer feature selection
integrating Boruta (Xu et al., 2019), mRMR (Junhuai et al., 2016) and
XGBoost (Sidorov et al., 2018) is adopted. We decide to use a three-layer
feature selection for three reasons. Firstly, we aim to select all the feature
sets related to the label value, rather than selecting the feature set that can
minimize the loss function for a specific model. Secondly, for ultra-high-

dimensional features, the programof the regressionmodelmay crash after
single or double-layer feature selections. Thirdly, the three-layer feature
selection algorithm can help understand the influencing factors of label
values more comprehensively, so as to perform feature selection better
and more efficiently.

2.2.1 Boruta
A preliminary screening of the features is first applied by training two

single-hidden-layer autoencoder networks, where the hyperbolic tangent
is used as the activation function. The contribution of input genes to

FIGURE 1
Flowchart of the study. (A) The first-layer feature selection is performed on the genomic information of patients. (B) The second feature selection layer.
(C) The third layer feature selection is carried out for the Morgan fingerprints and genomic features of drugs, a gamma distribution based GLM and ten-fold
cross-validation are applied to the final feature matrix.
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output genes is calculated to screen the chromosomal variation and copy
number variation features. Based on theGedeonmethod, the contribution
Q of the ith input gene to the jth output gene is expressed as

Qij � ∑K
k�1

Pik × Pkj( ) (1)

where K denotes the total number of the neurons of the hidden layer.
Pik is the contribution of the ith input to the kth neuron of the hidden
layer calculated by

Pik � Wik| |
∑G
i*�1

Wi*k| |
(2)

with G being the total number of the inputs andWi*k being the weight
linking the corresponding neuron couple. Pkj is the contribution of the
kth neuron of the hidden layer to the jth output, whose calculation is
similar to that of Pik. The total contribution of the ith input is
calculated by

qi � ∑G
j�1

Qij

∑G
i*�1

Qi*j

(3)

We rank the inputs of the autoencoder in descending order with
respect to qi and remain the last 50% features. Then, we retain one feature
from the highly correlated features, whose correlation coefficients are
more than 0.8. The extracted rna and cnv features are finally merged with
the mut features, resulting in a matrix with about 23,500 dimensions.
Compared with the original feature matrix, the size is reduced by more
than half. However, such magnitude can still lead to the curse of
dimensionality. To avoid such problem, the mRMR algorithm is
carried out to further reduce the number of features.

2.2.2 mRMR
An ideal list of features should have two properties: a strong

correlation with the object variable, and no redundancy among
features. Based on this criterion, we apply the mRMR algorithm
which selects features by calculating the mutual information
between features and the object variable. The mutual information
entropy between feature X and the response variable (class label) Y can
be calculated as follows:

I Y,X( ) � ∫
ΩY

∫
ΩX

p x, y( )log p x, y( )
p x( )p y( )( )dxdy (4)

whereΩY andΩX are the sample spaces corresponding to Y and X, p(x,
y) is the joint probability density, and p() is the marginal density
function. Assuming there are in total m features, and for a given

feature Xi(i ∈ {1, 2, . . . , m}), its feature importance based on the
mRMR criterion can be expressed as:

fmRMR Xi( ) � I Y,Xi( ) − 1
|S| ∑

Xs∈S
I Xs, Xi( ) (5)

where S is the set of selected features, |S| is the size of the feature set
(number of features), Xs ∈ S is one feature out of the feature set S, Xi

denotes a feature currently not selected: Xi∉S.
In the mRMR feature selection process, at each step, the feature

with the highest feature importance score maxXi ∉ SfmRMR(Xi) will be
added to the selected feature set S. By setting m, a total of 500 features
are finally selected.

2.2.3 XGBoost
When integrating the Morgan fingerprints of drugs into the

feature matrix, it is inevitable to generate a number of missing
values, which may cause the model to fail. To deal with this
problem, we apply XGBoost which can automatically learn the
splitting direction for samples with missing data, while reducing
the feature dimension. Based on the modification to the (Gradient
boosted decision tree, GBDT) model which uses the first derivative,
the XGBoost algorithm makes a second-order Taylor expansion of the
loss function, while adding a regularization term to the objective
function, which is used to balance the complexity of the objective
function and the model to prevent overfitting. The objective function
is expressed as:

Ψm � ∑N
i�1

gifm xi( ) + 1
2
hif

2
m xi( )[ ] +Ω fm( ) (6)

where (xi, yi){ }Ni�1 is the training set, fm represents the spanning tree
model in the mth iteration. Let Fm be the prediction at the mth
iteration, we represent the first and second order gradient statistics on
the loss function as gi � zΨ(yi,Fm−1(xi))

zFm−1(xi) and hi � z2Ψ(yi,Fm−1(xi))
zFm−1(xi)2 ,

respectively. For the regularization part, both L1 and
L2 regularizations, as well as other approaches such as adding
weights to the boosting of the tree at each step and sampling
feature columns have been tested. The L2 regularization Ω(fm) �
γLm + 1

2 λ‖ωm‖22 is finally chosen to penalize the complexity of the
model, where Lm represents the number of leaf nodes of the spanning
tree model fm, ωm � (ωm1,ωm2, . . . ,ωmLm

) represents the output value
of each leaf node of fm. γ and λ are the regularization coefficients.

After implementing XGBoost, the feature dimension is reduced to
below 40. The number of features of each drug selected by each layer is
shown in Table 1. The heat maps of the correlation coefficients of the
feature matrices for the analyzed drugs are shown in Figure 2.

TABLE 1 Number of features selected by three-layer feature selection.

Drug Initial dimension Boruta mRMR XGBoost

Epirubicin 41× 49,149 41× 23,356 41× 500 41× 29

Cisplatin 46× 49,149 46× 23,551 46× 500 46× 28

Cyclophosphamide 42× 49,149 42× 23,353 42× 500 41× 33

Doxorubicin 45× 49,149 45× 23,476 45× 500 45× 32

Paclitaxel 46× 49,149 46× 23,531 46× 500 46× 27

All drugs — — 220× 2,370 220× 30
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The number of features retained after each step of feature
selections are included in Supplementary Material S1, and the
specific features are listed in Supplementary Material S1. It can be
seen from Supplementary Table S3 that the above table that Boruta
mainly screens the features of the RNA and CNV types, and retains
most of the features of the MUT type. mRMR further screens all three
types of features, with RNA and MUT types being more important.
XGBoost retains feature types dependent on specific drugs. Overall, for
the regression models, the RNA features contribute the most.

2.3 Regression models for drug response
prediction

Regression has been an important procedure to predict drug
response. In this study, two different machine learning methods are
selected namely gamma distribution based GLM and ANN, which are
particularly effective for data with non-linear and non-constant
variance structures. A GLM consists of three elements: a particular
distribution for modeling Y from among those which are considered

FIGURE 2
Heat map of correlation coefficients of extracted features. (A–E) Feature heat maps for Cisplatin, Cyclophosphamide, Paclitaxel, Doxorubicin, and
Epirubicin, respectively. (F) Heat map of combined feature extraction for all five drugs.
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exponential families of probability distributions, a linear predictor η =
Xβ, and a link function g such that E(Y|X) = μ = g−1(η). Since the drug
IC50 values are positive, we tested exponential distribution, gamma
distribution, and inverse Gaussian distribution on the reduced set of
features. To avoid overfitting, the optimal regression model is chosen
according to the Akaike information criterion (AIC), which can find
the best balance between model complexity and likelihood function.
With the minimal AIC among all the candidate models, the GLM with
the gamma distribution is finally chosen, whose probability density
function is as follows:

f x( ) � 1

Γ k( )θk x
k−1e−

x
θ (7)

where k is the shape parameter, θ is the scale parameter. γ(k) is the
gamma function with the following form:

Γ k( ) � ∫∞

0
μk−1e−μdμ (8)

ANN is a hierarchical feature learning approach, which has gained
attention in recent years mainly because of its solid performance for
supervised learning. Due to its ability to extract features from data

FIGURE 3
ANN structure for drug response prediction.

TABLE 2 Model performance evaluation. The bold values indicate the better results of the two approaches for each drug.

Input Approach Drug R2 RMSE PICP

Gene expression GLM Epirubicin 0.823 1.12 0.81

Cisplatin 0.947 0.36 1

Cyclophosphamide 0.884 0.32 1

Doxorubicin 0.849 1.43 0.87

Paclitaxel 0.745 1.61 0.77

ANN Epirubicin 0.83 0.95 1

Cisplatin 0.938 2.55 0.75

Cyclophosphamide 0.811 1.88 0.74

Doxorubicin 0.842 1.62 0.84

Paclitaxel 0.948 1.97 0.76

Gene expression+
Morgan fingerprint

GLM
ANN

All drugs
All drugs

0.874
0.36

0.57
1.33

0.91
0.99
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through a series of hidden layers with non-linear transformations, the
first two layers of pre-feature selection are adopted. The ANN is
implemented in R using the H2O package (LeDell et al., 2018). For the
number of hidden layers of ANN, we have tried from three layers to six
layers. For the number of nodes, multiple combinations from
100–2000 have been tried. According to the R2 and RMSE values,
the optimal ANN includes four hidden layers with 1,000, 800, 500,
100 notes, respectively. A regularization term is added in order to
prevent overfitting. The activation function is TanhWithDropout, and
RMSE is used as the loss function. The ANN framework is shown in
Figure 3.

3 Results

In order to assess the ability of the proposed framework to predict
drug response, ten-fold cross-validation is applied to the trained
gamma distribution based GLM and ANN. For each model based
on five drugs, three evaluation metrics are used, namely root mean
square error (RMSE), coefficient of determination (R2) and prediction
interval coverage probability (PICP). Among them, RMSE is more
sensitive to errors and is more suitable for measuring the quality of
drug sensitivity models. R2 is also a common statistic reflecting model

fit. PICP is an evaluation criterion for interval estimation, which is
used to assess the confidence interval for drug response. Table 2 shows
the evaluation criteria of different methods for different drugs under
different input data types. Using gene expression data and drug
structure as input, our model performs well on all criteria.

Figure 4 shows the true value-predicted value scatter plots of
three-layer feature selection-GLM. Among the five drugs, the average
R2 is 0.849, with Cisplatin reaching the highest R2 value of 0.947, which
is slightly better than the ANN model, indicating that the proposed
models reveal solid performance for drug sensitivity prediction.

The interval prediction results for five drugs are shown in
Figure 5 indicating that the predicted and true values of the drugs
generally fall within the prediction interval calculated by the
model (see Table 2 for the specific prediction interval
coverage). In addition, Figure 4F and Figure 5F indicate that
the model performance does not deteriorate after combining the
inputs, with an R2 value of 0.874. The advantage of adding
molecular Morgan fingerprint is that after a new drug is
invented, the Morgan molecular fingerprint can be calculated
to obtain a similarity matrix with existing drugs, then the
IC50 value can be calculated by using the prediction model,
which provides new options for the development and
performance testing of new drugs.

FIGURE 4
(A–E) Scatter plots of true and predicted values of Epirubicin, Cisplatin, Cyclophosphamide, Doxorubicin and Paclitaxel. (F) Scatter plot of true and
predicted values for all 220 samples.
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To further illustrate the effectiveness of the three-layer feature
selection-generalized linear regression model, we compare three
existing algorithms, including RF-XGBoost (Fang et al., 2018),
ANN-RF (Menden et al., 2013) and RF-SVM (Hejase and Chan,
2015), as shown in Table 3. Among them, RF-XGBoost is

primarily modeled on drug synergy data to predict synergy
scores of each cell line. ANN-RF method takes genomic
features and medicinal chemical descriptors (including
physicochemical features such as body weight, lipophilicity and
fingerprints) as input, and the neural network can impute missing

FIGURE 5
(A–E) Prediction intervals (blue lines represent predicted values, red lines represent true values, pink areas represent prediction intervals with 95%
confidence level) of Epirubicin, Cisplatin, Cyclophosphamide, Doxorubicin and Paclitaxel. (F) Interval prediction results for all 220 samples.
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values, using eight-fold cross-validation to obtain R-square and
RMSE. The RF-SVM method sets the trees in the forest to 100,
using mean square error as the criterion for evaluating the split
quality, and then uses ten-fold cross-validation and grid search to
optimize the parameters.

Beyond that, we have done a series of extra experiments, including
a cross experiment to test the reliability of the model when facing new
datasets, as well as predicting with one and two layers of feature
selections. The results are included in Supplementary Material S1.
According to the Supplementary Figure S1; Supplementary Table S1,
although the performances of our proposed models slightly degrade
due to the inconsistency between databases, the models are still reliable
when applied to new data. It can be seen from Supplementary Figure
S2, S3; Supplementary Table S2 that the performances of the
regression models using single or double-layer feature selections
are unsatisfactory, indicating that using multiple feature selections
based on different principles can better eliminate redundancy and
screen out key features.

4 Discussion

In contrast to the commonly used point predictions, confidence
intervals can give a range that includes a high probability of drug
response and assess reliability by the interval length. At a given
confidence level, a shorter confidence interval indicates less fluctuation
in the drug response,meaning that the efficacy of the drug ismore reliable.
Although the assessment of drug efficacy based on the length of the
confidence interval is relatively intuitive, it is not statistically rigorous, thus
the homogeneity test of drug response variance is applied to providemore
reliable statistical proofs. To better explain, an example of the CCLE
dataset is given, in which the potential treatment options for two cell lines
are explored among Epirubicin, Doxorubicin and Paclitaxel, as shown in
Figure 6. It can be seen in Figure 6A that Doxorubicin and Paclitaxel show
little difference in point prediction. However, in terms of confidence
interval prediction, Paclitaxel shows a shorter interval compared to
Doxorubicin, and the p-value for the homogeneity of variance test for
the two drugs is 4.996 × 10−8. In addition, the true IC50 values of

TABLE 3 Model performance comparison. The bold values indicate the best results of the models.

Model Input data type R2 RMSE

XGBoost + RF Drug synergy data + medicinal chemical characterization 0.74 —

ANN + RF Genomic features + drug smiles fingerprints 0.64 0.97

RF + SVM Genome features + drug compound structure 0.78 0.52

Three-layer feature selection + GLM Genomic features + drug Morgan fingerprints 0.87 0.51

FIGURE 6
The 95% prediction intervals and point predictions of Epirubicin, Doxorubicin and Paclitaxel for cell lines (A) BT20 and (B) BT483 (the open red dots
represent the point prediction of drug response, and the two solid red dots represent the upper and lower bounds of the 95% prediction interval).
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Doxorubicin and Paclitaxel for this sample are 1.03 and 0.024,
respectively. Therefore, Paclitaxel is optimal for treatment, which is
more effective and stable.

In the second case, according to Figure 6B, Doxorubicin is the best
choice based on the point prediction results. However Paclitaxel,
which has the second lowest point predicted value, gives a shorter
prediction interval than Doxorubicin. Therefore, considering the
stability of the treatment effect, Paclitaxel should be a better choice.
Furthermore, in both cases, Epirubicin has higher upper and lower
predictive bounds compared to Doxorubicin and paclitaxel, meaning
that Epirubicin is a more aggressive option with higher risks. In
general, Paclitaxel is suitable for conservative treatment, while
choosing Doxorubicin or Epirubicin take more risks. Based on the
analysis of this example, it can be concluded that the confidence
intervals provide more information for drug response prediction,
meanwhile providing more sensible recommendations for treatments.

5 Conclusion

In this paper, a three-layer feature selection-GLM and a two-layer
feature selection-ANN are proposed to give point and confidence
interval predictions of drug responses, which are based on the genomic
features as well as the chemical structure of drugs. The results indicate
that the proposed models reveal solid performance for drug sensitivity
prediction. In order to evaluate the difference between the two
prediction intervals, we also propose a homogeneity test of the
variance between patients, and illustrate the reliability of the
prediction confidence interval through the homogeneity test. We
hold the opinion that this study makes a valuable contribution to
the field in three aspects. First and foremost, as predicting models for
drug response, the practicality of the models has been proved by
experiments. Secondly, the proposed models help realize precision
medicine by not only predicting the point values, but also calculating
the confidence intervals of drug responses, which provide additional
information for treatment selections. Thirdly, in the promissing field
of drug repositioning, which explores new indications of drugs by
using existing drugs or drugs with failed clinical trials, machine
learning methods have obvious advantages in terms of time and
cost (Yang et al., 2022). Our proposed models are able to provide
strong support by giving reliable predictions of drug responses.

Admittedly, there are still some deficiencies for future research.
First of all, although the neural network we used reveals decent
accuracy, it loses the interpretability of the features, which may be
the cause of the high RMSE values. Thus, finding interpretable

predictors for drug response will be our future goal. In addition, in
this work, we mainly compare the reliability of drug response
prediction intervals through statistical inference, while lacking
corroboration of clinical experiments. In the future, with the
support of clinical medical data, the completeness and credibility of
our research can be increased.
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