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Gastric cancer (GC) is highly heterogeneous andGCpatients have lowoverall survival
rates. It is also challenging to predict the prognosis of GC patients. This is partly
because little is known about the prognosis-related metabolic pathways in this
disease. Hence, our objective was to identify GC subtypes and genes related to
prognosis, based on changes in the activity of core metabolic pathways in GC tumor
samples. Differences in the activity of metabolic pathways in GC patients were
analyzed using Gene Set Variation Analysis (GSVA), leading to the identification of
three clinical subtypes by non-negative matrix factorization (NMF). Based on our
analysis, subtype 1 showed the best prognosis while subtype 3 exhibited the worst
prognosis. Interestingly, we observed marked differences in gene expression
between the three subtypes, through which we identified a new evolutionary
driver gene, CNBD1. Furthermore, we used 11 metabolism-associated genes
identified by LASSO and random forest algorithms to construct a prognostic
model and verified our results using qRT-PCR (five matched clinical tissues of GC
patients). This model was found to be both effective and robust in the GSE84437 and
GSE26253 cohorts, and the results from multivariate Cox regression analyses
confirmed that the 11-gene signature was an independent prognostic predictor
(p < 0.0001, HR = 2.8, 95% CI 2.1–3.7). The signature was found to be relevant to the
infiltration of tumor-associated immune cells. In conclusion, our work identified
significant GC prognosis-related metabolic pathways in different GC subtypes and
provided new insights into GC-subtype prognostic assessment.
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Introduction

Gastric cancer (GC) is a common malignancy and is considered a
main contributor to cancer-related deaths throughout the world
(Erratum, 2020). GC classification is typically done via the Lauren
or WHO classifications, as well as the TNM grading system, according
to the clinicopathologic characteristics. This, to a large degree, dictates
appropriate therapy (Ajani et al., 2016; Daum et al., 2020). GC is a
heterogeneous disease (Chia and Tan, 2016). Tumor heterogeneity
indicates the presence of differences between patients with one type of
malignancy or among the tumor cells of one patient, with variations in
both genotype and phenotype. As such, patient prognosis can vary
significantly, even when patients present with similar clinical
characteristics and receive similar treatments. This typically
signifies that the use of clinicopathologic factors and the current
classification systems are ineffective for accurate prognosis
prediction and risk-stratified analyses (Shah and Ajani, 2010; Noh
et al., 2014). Hence, it is of great importance to identify new signatures,
with higher accuracy of prediction, to improve the prognosis of GC
patients.

Metabolic reprogramming is a major feature of solid tumors, and
it contributes directly to the malignancy of tumors through the
processes of metastasis, invasion, and disease progression
(Boroughs and DeBerardinis, 2015; Sun et al., 2018). As described
above, GC tissues are highly heterogeneous. This applies also to
metabolic heterogeneity, which represents metabolic heterogeneity
and flexibility between tumors or even different regions of the same
solid tumor (Sathe et al., 2020; Sexton et al., 2020). Furthermore,
tumor metabolites can reshape the tumor microenvironment (TME)
mediated by various metabolic signaling pathways that promote
tumorigenesis (Jiang et al., 2019; Xiang et al., 2019). Brand et al.
(2016) discovered that LDHA-derived lactate reduced the ability of
T cells and NK cells to conduct immune surveillance of cancer cells.
Furthermore, Leone et al. (2019) reported the activation of different
metabolic pathways through the blockage of glutamine in cancer cells
to overcome immune invasion. Increasing evidence highlights the
profound significance of metabolic heterogeneity in GC, which may
explain the challenges faced by current therapeutics and in the
prediction of clinical outcomes of GC patients (Zhang et al., 2020a;
Zhu et al., 2021a). Given that there is still much to learn about the
metabolic heterogeneity of GC, it is critical to explore and identify new
potential metabolic signatures related to GC prognosis.

In our research, we established subtypes of GC based on genes
associated with a number of core metabolic pathways, including, but
not limited to, glycolysis, nucleic acid metabolism, amino acid
metabolism, and lipid metabolism in tumors, using normalized
RNA-Seq data from the public databases Gene Expression Omnibus
(GEO) and The Cancer Genome Atlas (TCGA). We further analyzed
the genomic distinctions of these molecular isoforms to assess their
potential roles in prognosis prediction. To achieve this, we generated a
model of risk prognostication using differentially expressed genes
(DEGs) between the different GC forms, with verification of selected
DEGs in clinical samples using qRT-PCR. Moreover, we explored the
relationship between immune cell infiltration and our newly
developed model and analyzed further biological characteristics and
functional enrichment of the DEGs. Lastly, the stability of the risk
model was validated using an external database. In summary, we
analyzed the metabolic features of GC, integrating these with the
current clinicopathologic characteristics and grading system for GC. A

predictive model based on specific genetic features was developed, and
the incorporated genes may serve as potential therapeutic targets for
GC as well for accurate prediction of patient outcomes.

Methods

Data sources and preprocessing

We collected the original gene expression profiling data of tumor
and adjacent normal tissues, as well as the clinical characteristics of GC
cohorts from the Gene Expression Omnibus (http://www.ncbi.nlm. nih.
gov/geo/) database (Barrett et al., 2013). After the removal of samples
without complete survival information, 865 GC samples and patient
information were included in the analysis. This included patients from
the GSE84437 and GSE26253 cohorts. We used the 865 GEO GC study
cohort with 865 patient information for validation of our prognostic
model. The GC RNA-Seq data, as well as corresponding clinical data
(415 tumor and 34 para-tumor samples), were extracted from The
Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov/) website
(Wang et al., 2016). The format of the downloaded data was HTSeq-
Counts and was normalized and preprocessed using uniform log2
(exprset+1). A filtered sample of 350 patients was included in the
study. The TCGA data filtering criteria were as follows: 1. complete
prognostic information; 2. survival time> 1 month; 3. patients with both
GC and healthy volunteer transcriptome data; 4. removal of duplicate
and normal samples. Genomics data were also obtained from the TCGA
database, and after the removal of unmatched patients, the genomic data
of 348 patients were included in our final analysis. Table 1 summarizes
the clinical baseline information of all cohorts used in this study.

Moreover, the single-cell transcriptome dataset GSE184198 was
selected from the GEO Datasets of NCBI, and the tumor sample
GSM5580154 was extracted. The single-cell transcriptome data were
processed using the Seurat package. Firstly, the single-cell data were
subjected to cell quality control and low-quality cells were filtered out.
Cells with ribosomal gene expression percentage greater than 20% and
red blood cell gene expression percentage greater than 3% were
removed, and 9,383 cells that met the criteria were screened out.
The NormalizeData function was used to normalize the single cell
data, the FindVariableFeatures function was used to find
hypervariable genes, and the ScaleData function was used to
normalize the hypervariable genes. The principal component
analysis (PCA) was performed using the hypervariable genes. Cells
were clustered by the FindNeighbors function and FindClusters
function. The annotation results were divided into epithelial cells,
B cells, T cells and other cell types. Using the scMetabolism package,
each cell was scored using the VISION algorithm to derive activity
scores for different cell types in different metabolic pathways (Wu
et al., 2022).

Acquisition of metabolism-related genes

Metabolism-related genes were identified from the Molecular
Signatures Database (MSigDB) (https://www.gsea-msigdb.org/gsea/
msigdb/index.jsp) (Subramanian et al., 2005). Overall, 12 metabolic
gene sets were obtained, which included the reactome pyrimidine
catabolism, reactome pentose phosphate pathway, reactome purine
catabolism, reactome metabolism of amino acids and derivatives,
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reactome citric acid/TCA cycle and respiratory electron transport,
reactome glycogen metabolism, reactome metabolism of lipids,
reactome fatty acid metabolism, reactome glutamate and glutamine
metabolism, reactome pyruvate metabolism, reactome glucose
metabolism, and reactome metabolism of nucleotides.

Gene set variation analysis and functional
enrichment analysis

Evaluation of the relative enrichment of select genomes was
conducted using Gene set variation analysis (GSVA), which is
generally employed to reflect pathway variation across a sample

population (Hanzelmann et al., 2013). Functional enrichment and
pathway analyses, which cluster genes with similar functions and
correlate them with biological phenotypes, were executed with the R
package “cluster Profiler” (Yu et al., 2012).

Identification of DEGs

The “limma” package in R was used to examine DEGs between
tumors and adjacent normal tissues (Ritchie et al., 2015). The DEG
filter threshold was set at |log2 FC (fold-change)| >1 and p < 0.05. In
order to obtain more DEGs, we relaxed the DEG screening standards,
i.e., we chose the pre-correction p-value, because we could tolerate the

TABLE 1 Clinical baseline information of patients from TCGA and GEO.

Characteristic TCGA (n = 350) GSE84437 (n = 433) GSE26253 (n = 432)

Age (%)

<=65 6 283 NA

>65 344 150 NA

Sex (%)

Female 124 137 NA

Male 226 296 NA

Race (%)

Asian 72 NA NA

Black 10 NA NA

White 222 NA NA

Other 46 NA NA

Tumor_grade (%)

G1 9 NA NA

G2 125 NA NA

G3 207 NA NA

G4 9 NA NA

Pathologic_stage (%)

T1 16 NA 68

T2 74 NA 167

T3 161 NA 130

T4 95 NA 67

Stage_T (%)

T1 16 11 NA

T2 74 38 NA

T3 161 92 NA

T4 95 292 NA

TX 4 0 NA

Stage_M (%)

M0 312 NA NA

M1 23 NA NA

MX 15 NA NA

Stage_N (%)

N0 103 80 NA

N1 93 188 NA

N2 72 132 NA

N3 71 33 NA

NX 11 0 NA

Status (%)

Alive 204 224 255

Dead 146 209 177
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problem of excessive false positives, since this evaluation would be
followed up with more stringent gene screening criteria, such as,
univariate cox regression, random forest, and lasso regression to
identify the most critical DEG metabolism-related genes.

Evaluation of immune cell infiltration

The “Cell-type Identification By Estimating Relative Subsets Of
RNA Transcripts (CIBERSORT)” (Newman et al., 2015) (https://
cibersort.stanford.edu) algorithm was used to predict immune cell
infiltration in the GC samples. After entering the expression data of
the samples, the proportions of 22 types of infiltrating immune cells
were obtained. CIBERSORT was used to calculate the p-value, which
was dependent on the Monte Carlo permutation test. Lastly, p < 0.
05 was considered significant.

Consensusmolecular clustering of 1,489 core
metabolic regulators by NMF

We next assessed the 12 metabolic gene sets in MSigDB, including
reactome pyrimidine catabolism, reactome pentose phosphate pathway,
reactome purine catabolism, reactome metabolism of amino acids and
derivatives, reactome citric acid/TCA cycle and respiratory electron
transport, reactome glycogen metabolism, reactome metabolism of
lipids, reactome fatty acid metabolism, reactome glutamate and
glutamine metabolism, reactome pyruvate metabolism, reactome
glucose metabolism, and reactome metabolism of nucleotides. After
merging of the genes and removing duplicates, a total of
1,489 metabolism-related genes were selected. We conducted
consensus clustering using NMF to identify different metabolic
preference patterns, based on the expression of 1,489 regulators. The
expression of 1,489 metabolic regulators [Matrix V, Gene (F) × Patient
(N): 1,489 × 350] was factorized into 2 non-negative matrices W [Gene
(F) × Patient program (K): 1,489 × 3] and H [Expression program (K) ×
Patient (N): 3 × 350] (i.e., V ≈ WH). Specifically, we decompose the
matrix V into a basis matrix W and a coefficient matrix H. On the one
hand, the basismatrixW is characterized by patient programs: each one of
patient programs is a vector inW. On the other hand, each column vector
of the coefficient matrix H can be regarded as the coordinates obtained by
projecting the corresponding column vector of thematrix V ontoW: each
expression program is a row in H. Repeated factorization of matrix V was
performed, and its outputs were aggregated to obtain consensus clustering
of GC samples. The optimal number of clusters was then selected,
according to the cophenetic, dispersion, and silhouette coefficients.
The R package ‘NMF’ (version 0.23.0) with the brunet algorithm and
100 n runs were used to perform the consensus clustering.

Identification of the 11-gene signature

To further identify prognosis-related genes in GC, we initially
screened 412 significant genes by univariate Cox proportional-hazards
regression analysis of NMF_corDEGs (1841 DEGs among 3 metabolic
subtypes) using the “coxph” function in the “survival” R package. To
eliminate multicollinearity among these candidate genes, we applied
LASSO regression with optimal penalty parameters and minimum 10-
fold cross-validation to screen 30 independent prognosis-related genes.

Subsequently, the “randomForestSRC” R package was used to reduce the
size of candidate genes based on their variable importance (VIMP) and
minimum depth (Ishwaran et al., 2014). Only genes with VIMP >
0.01 along with their correspondingminimumdepth were selected, and a
total of 26 genes were obtained after intersection with the LASSO
regression results. After further adjustment, multivariate Cox
regression (stepwise model) was performed to identify the pivotal
genes, and finally, 11 gene signatures were obtained. At this point,
glmnet package is used for lasso regression analysis, and My stepwise
package is used for Cox model building The coefficients obtained from
the regression algorithm were used to obtain the risk scores based on the
following formula: riskscore = valGene1*β1 + valGene2*β2 + /+
valGenen*βn. Furthermore, according to the above formula, the risk
scores of GC patients were calculated separately, and the patients were
divided into high-risk and low-risk groups using the median as the cut-
off value (Sullivan et al., 2004).

Clinical patient sample collection and gene
expression verification

Five matched GC tissue samples from patients who were diagnosed
at the Department of Gastrointestinal Surgery of the First Affiliated
Hospital of Wenzhou Medical University were obtained between
October 2021 and January 2022. The distance between the tumor
tissue and adjacent normal tissue was > 5 cm. This study received
approval from the Institutional Ethics Committees of the First Affiliated
Hospital of WenzhouMedical University and followed the guidelines of
the Declaration of Helsinki. The ethics ID number related to
experiments in this study is 2019–089. All participants were fully
informed and signed informed consent forms prior to participating
in this research. Total RNAs from the tumor and adjacent tissues of GC
patients were extracted using TRIzol reagent (Invitrogen). The cDNA
synthesis was done via Taq DNA Polymerase (Bio-Rad) and the qRT-
PCR was performed on the CFX96 optics module connected to a
C1000 thermocycler system (Bio-Rad). β-actin was used as internal
control, and fold change (2−△△CT) was used to express the relative gene
expression. The primer sequences are listed in Supplementary Table S1.

Statistical analysis

R software (version 4.0.1) was used for all statistical analyses, and
the χ2 test was used for analysis of differences between two groups of
categorical variables. Student’s t-test or Wilcoxon rank-sum test was
used for conducting differential comparisons. One-way analysis of
variance or the Kruskal–Wallis test was used to conduct differential
comparisons of multiple groups. The Kaplan–Meier method and the
log-rank test were used for survival analyses. p < 0.05 was considered
statistically significant.

Results

Identification of molecular isoform-based
metabolic signatures in GC, based on NMF

The detailed pipeline of the study design is illustrated in Figure 1A,
and a summary of the main work and findings is shown in Figure 1B.
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First, we investigated the activation and deactivation of 12 major
metabolic pathways in GC samples using GSVA. The 12 major
pathways included the reactome pyrimidine catabolism, reactome
pentose phosphate pathway, reactome purine catabolism, reactome
metabolism of amino acids and derivatives, reactome citric acid/TCA
cycle and respiratory electron transport, reactome glycogen
metabolism, reactome lipid metabolism, reactome fatty acid
metabolism, reactome glutamate and glutamine metabolism,
reactome pyruvate metabolism, reactome glucose metabolism, and
reactome nucleotide metabolism (Figure 2A). In addition, metabolic
analysis of these 12 pathways in the single-cell dataset showed that
most metabolic pathways were enriched in epithelial cell types
(Supplementary Figure S1D, E). These highlight the presence of
marked metabolic heterogeneity in GC samples.

Next, Consensus Cluster Plus was used to identify a variety of genes
derived from the above pathways. At present, this algorithm is widely

used in cancer research as a commonly used analysis method in NMF
typing and can be used to determine the optimal number of clusters K.
In our study, the clustering was deemed to be most robust at k = 3,
where the steepest drop-off of the cophenetic correlation coefficients
appeared (Figures 2B, C). The expression levels of these metabolism-
related genes in the three GC subtypes is shown in a heatmap
(Figure 2D). The three subtypes were distinguished using principal
component analysis (PCA) and clustering (Supplementary Figure
S1A). Additionally, it was clear that the prognoses associated with
these subtypes were distinct. In the NMF_3 subtype, patient prognosis
ranked the worst after two years (p = 0.046, Figure 2E) while the NMF_
1 subtype showed the best outcomes after two years (p = 0.011,
Figure 2E), with the NMF_2 group falling in between NMF_3 and
NMF_1. To ensure the reproducibility of the Consensus Cluster Plus
results, we validated the results using two external datasets, namely,
GSE66229 and GSE26253. In the GSE66229 cohort, GC patients were

FIGURE 1
Pipeline of the study design and a summary of main work and findings (A)Our detailed pipeline of the study design. (B) A summary of our main work and
findings.
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also found to be clustered into three categories, and the prognosis of
the three subtypes was significantly different (Supplementary Figure
S1B-1, 2, 3). In the GSE26253 cohort, the Kaplan-Meier curves of the
three subtypes showed slight differences in survival outcomes,
although the differences were non-significant possibly due to
insufficient sample size or the high heterogeneity of GC
(Supplementary Figure S1C-1, 2, 3).

Comparing the inter-genomic differences
between GC molecular subtypes

In order to analyze and visualize mutation(s) in somatic cells of the
three GC subtypes, we utilized the R package “maftools”. The genomic
data of 348 patients were analyzed, including those of 135 NMF_
1 patients, 98 NMF_2 patients, and 115 NMF_3 patients. As depicted

FIGURE 2
Identification of molecular isoforms for metabolic signatures of gastric cancer based on NMF (A) Heatmap of enrichment score of 12 main metabolic
pathways gene sets in GC and adjacent non-tumor samples, which demonstrated metabolic heterogeneity among patients with gastric cancer. (B) The
optimal number of clusters was selected with factoextra package. (C) Classification of expression profiles into 3 categories based on signature levels using
NMF. (D) GC samples were clustered by non-negative matrix factorization (NMF) method. (E) Survival analysis was used to evaluate the different survival
patterns between metabolic subtypes.
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in the waterfall plot in Figure 3A, different colors were used to
distinguish between different types of mutations and show detailed
information on the mutants in each sample. The results showed that

the top three mutated genes in patients in the NMF_1 subtype were
TTN (66%), MUC16 (41%), and TP53 (41%), while those in NMF_
2 patients were TTN (47%), TP53 (44%), and LRP1B (31%), and those

FIGURE 3
Comparison of inter-genomic differences between molecular isoforms (A) Waterfall plot of the top 20 mutant genes in the 3 metabolic subtypes (A-1:
NMF_1, A-2: NMF_2, A-3: NMF_3). (B)Wordclouds were drawn with size of scripts bound up with amounts of samples containing certain mutant genes in the
3 metabolic subtypes (B-1: NMF_1, B-2: NMF_2, B-3: NMF_3). (C) Correlation heat map to show the degree of correlation between mutant genes in the
3 metabolic subtypes, suggesting that the worse the typing prognosis, the less correlated the mutation is (C-1: NMF_1, C-2: NMF_2, C-3: NMF_3). (D)
Volcano map used to demonstrate mutation driver genes in the 3 metabolic subtypes (D-1: NMF_1, D-2: NMF_2, D-3: NMF_3).
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in NMF_3 were TP53 (54%), TTN (40%), and MUC16 (20%). These
results also demonstrated that in the three groups, GC patient
prognosis was negatively correlated with increased incidence of
mutated TP53 and positively correlated with increased mutations
in TTN and MUC16. Meanwhile, word clouds were drawn with the
size of scripts reflecting the numbers of mutant genes in the samples
(Figure 3B). It was apparent that there were a greater number of
mutations in the NMF_1-subtype were counted the most while, while
NMF_3 had the fewest. Interestingly, patients carrying more
mutations had a more favorable prognosis while those with fewer
mutations tended to have unfavorable outcomes. This finding is
consistent with the results of a report from JAMA Oncology,
which concluded that MUC16 mutations were associated with
increased numbers of mutations in tumors together with better
survival outcomes in GC patients (Li et al., 2018). In addition, the
correlations between somatic cell mutations in the different groups
were analyzed. This showed that somatic cells of the NMF_1-subtype
showed the highest incidence of chain mutation and unique mutations
while the incidence of common and unique mutations was lowest in
the NMF_3 subtype (Figure 3C). These data suggest the potential for
analyzing mutations and their expression in developing treatments for
GC. At this point, we inferred that the ratio of subtype-unique mutations
to mutations in TP53, involving genes such asUSH2A, PIK3CA,KMT2D,
FAT4, and ARID1A, was positively related to patient prognosis. To
confirm this, we performed a more comprehensive analysis with
patient prognostic information. Associations between the most highly
mutated genes in the three subtypeswere then investigated. This identified
three genes that were exclusively correlated with mutations in p53,
namely, PIK3CA, KMT2D, and ARID1A (Supplementary Figure S2A).
As expected, these three genes were positively correlated with GC patient
prognosis, i.e., the higher the gene expression, the better the patient
prognosis (Supplementary Figures S2B–D). In addition, we further
explored the gene PIK3CA that was exclusively associated with
TP53 mutations and occurred only in subtype 1 (suggesting an
association with good prognosis). The GC patients were divided into
four groups, namely, TP53-/PIK3CA-, TP53-/PIK3CA+, TP53+/
PIK3CA-, and TP53+/PIK3CA+, and Kaplan-Meier analyses were
conducted to estimate the prognostic impact of TP53 and PIK3CA
mutations. This revealed that the patients in the TP53-/PIK3CA +
group had better outcomes compared with the TP53+/PIK3CA-group,
although the difference was non-significant on the log-rank test
(Supplementary Figure S2E). This may have been due to insufficient
sample size. In addition, we also identified the most common mutated
gene in GC, MUC16, which showed a potentially exclusive mutational
relationship with LRP1B. Hence, we divided the patients into the
MUC16-/LRP1B+ and MUC16+/LRP1B- groups and performed
survival analysis which showed that the former group experienced
worse outcomes (Supplementary Figure S2F, log-rank test, p = 0.066).
We also explored driver genes that drove mutations in the three subtypes
and identified a new driver gene termed CNBD1 (Figure 3D).
Interestingly, only a single evolutionary driver gene CNBD1 was
present in the NMF_3 subtype with the worst outcomes. This was
relevant to the malignancy and prognosis of GC. Survival analysis and
log-rank tests were performed for CNBD1, showing that it was, indeed,
associated with worse outcomes in patients with GC (Supplementary
Figure S2G, p= 3.5e−05, HR= 1.62, 95%CI 1.28–2.03, n= 631). The result
was also primarily intended to show that outcomes were ranked as
NMF1 > NMF2 > NMF3, and that the evolutionary driver genes for
the three subtypes also tended to vary from more to less in this process

(Figure 3D). This observation was very interesting and suggested that the
worse the prognosis of the patient, the greater the evolutionary pressure,
and, therefore, the less the expression of the evolutionary driver genes.
Furthermore, we carried out analyses on the druggability of the mutant
genes in these subtypes, as well as the crosstalk between genes and drugs,
thus displaying the latent classification of druggable genes
(Supplementary Figure S2H). The identification of the evolutionary
driver genes was mainly based on the Oncodrive CLUST (Tamborero
et al., 2013).

Construction of a prognostic risk model
based on metabolism-related genes

Using the limma package in R with a threshold of p < 0.05 and
absolute of |log2 FC| > 2, intersections in the expression of DEGs
between two of the three subtypes were obtained (Figure 4A). This
identified 1841 commonDEGs which were analyzed by univariate Cox
regression analysis to select meaningful genes to generate models
(Figure 4B). Next, the glmnet package was used to conduct LASSO-
Cox regression analysis. As shown in Figure 4C, the plot depicts the
tracks of each independent variable. The results revealed that with a
decrease in λ (lambda value), the number of coefficients of the
independent variable close to 0 increased. We next used a 10-fold
cross-validation to determine the best λ, and we observed that the
regression coefficients of most of the variables stabilized when the λ
was around −3.324. Hence, it was considered that the λ can be set
to −3.324. Using this parameter, 29 genes were selected for subsequent
analyses. The confidence intervals of each λ are displayed in Figure 4D.
To identify genes with high prognostic importance in GC, we
employed the randomForest R package to include prognostically
relevant DEGs in the model, identifying 176 genes with high
prognostic impact from 412 genes, and the intersection of these
with the results of the LASSO regression was determined
(Figure 4E). Additionally, stepwise multivariate Cox regression was
used to further refine the number of relevant genes from 26 to 11.
These 11 genes were SERPINE1, MEF2B, S100Z, AXIN2, IGFBP1,
GRP, ADH4, APOH, KRT15, ADTRP, and ADRA1B (Figure 4F). After
the final determination of the relevant genes, the risk scores of each
sample in the training cohorts, based on their expression levels, were
calculated and the patients were classified into high-risk or low-risk
groups, according to the corresponding median scores. The overall
survival (OS) rates of patients with high-risk scores were significantly
lower than those with low-risk scores, indicating the association of
high-risk scores with poor prognosis (Figure 4G). The performance of
the prognostic prediction model was then analyzed using receiver
operating characteristic (ROC) curves using the time ROC package. As
shown in Figure 4H, the areas under the ROC curve (AUCs) were 0.71
(at 1 year), 0.77 (at 3 years), and 0.73 (at 5 years). The expression of the
11 signature genes was then verified using qRT-PCR (five matched
clinical tissues of GC patients). The expression of these genes was
found to be highly heterogeneous in GC samples (expression levels
vary greatly across samples, Figure 4I). In addition to this, we also
calculated the coefficient of variation for 5 matched clinical tissues of
GC patients in cancerous and paraneoplastic tissues, which showed
that these genes were more stably expressed in paraneoplastic tissues,
but very unstably expressed in cancerous tissues (Figure 4J). These
results further demonstrated the high heterogeneity of the expression
of these genes in GC tissues.
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FIGURE 4
Construction of a prognostic risk model based on metabolism-related genes (A) The differential enrichment score of gene sets was calculated between
each of the two subgroups and intersected them. Subtype 1, subtype 2 and subtype 3 had 1,098, 662 and 647 distinct gene sets, respectively. (B) Batch Cox
regression analyses screening for prognosis-related differential genes. (C) The dotted vertical lines represent the optimal values of λ. The top x-axis has the
numbers of gene sets, whereas the lower x-axis revealed the log (λ). (D) Least absolute shrinkage and selection operator (LASSO) coefficient profiles
(y-axis) of the gene sets and the optimal penalization coefficient (λ) via 10-fold cross-validation based on partial likelihood deviance. (E) Take the intersecting
genes after lasso and random-forest screening. (F) Constructing a stepwise Cox proportional hazards model. (G) Kaplan–Meier OS curves with difference
detection by log-rank test for patients from the training datasets. (H)ROC curve analyses based on the 11 gene signature. (I) Relative expression levels ofmRNA
for 11 gene signature. (J) Coefficient of variation of 11 gene signature in cancer and paracancerous tissues.
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FIGURE 5
Risk models are associated with genomic instability (A) Comparing low and high risk group tumor sectors (top), bar chart showing the altered genome
fraction (second top), heatmap showing differential copy number variations (CNV) level (middle) and copy number status of the selected genes showing
significant deletion or amplification (bottom). (B)Waterfall plot of the top 20 mutant genes in the high and low risk groups (B-1: high risk group, B-2: low risk
group). (C) Wordclouds were drawn with size of scripts bound up with amounts of samples containing certain mutant genes in the high and low risk
groups (C-1: high risk group, C-2: low risk group). (D) Correlation heat map to show the degree of correlation between mutant genes in the high and low risk
groups (D-1: high risk group, D-2: low risk group). (E) Volcano map used to demonstrate mutation driver genes in the high and low risk groups (E−1: high risk
group, E−2: low risk group).
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Risk models are associated with genomic
instability

Firstly, the waterfall plot in Figure 5A depicts a variety of color
annotations that distinguish distinct mutation types and themutations
associated with groups with different risk scores. It was found that
missense mutations, single nucleotide polymorphisms (SNPs), and
C > T mutations were most common in the different categories
(Supplementary Figure S3A, B). The frequencies of variants in the
different samples were then illustrated using boxplots, finding that
frameshift mutations were more common in groups with high-risk
scores, compared with groups with lower risk scores (Supplementary
Figure S3C, D). As shown in Supplementary Figure S3E, F, there
appeared to be differences in gene druggability between patients with
different risks, and in the crosstalk between drugs and genes in these
patient samples. Next, we investigated DNA copy number variations
(CNVs) in tumors to elucidate whether the characteristics of our risk
models can serve as signatures for tumor development. The results
demonstrated that the incidence of CNVs was higher in groups with
high-risk scores, compared with those with low-risk scores, indicating
lower genome-wide stability and higher mutation loads in groups with
high risks (Figures 5B–1, 2). In addition, word clouds were used with
script sizes reflecting the frequencies of mutant genes in the different
samples (Figures 5C–1, 2). The word clouds showed that the groups
with low-risk scores harbored the greatest numbers of mutant genes,
while groups with high risk scores contained the fewest. Additionally,
we also analyzed the correlation between different mutations in the
somatic cells of patients with different risks. This revealed that in the
somatic cells of low-risk patients, the incidence of chain mutation and
mutually exclusive mutations accounted for the most mutated genes,
while in the high-risk patients, the incidence of co-mutations and
mutually exclusive mutations accounted for the fewest mutated genes
(Figures 5D–1, 2). This was consistent with the conclusion of
Figure 3C and highlighted the relationship between the number of
mutant genes and the prognosis of GC patients. Apart from the above,
we also observed that patients with different risks possessed different
numbers of driver mutations (Figures 5E–1, 2).

Correlations between infiltration of tumor-
associated immune cells and risk modeling

To identify the correlation between infiltration of immune cells
and risk scores, the ESTIMATE-package was utilized to assess stromal,
immune, and estimate scores. We first generated bar plots to show the
proportions of 22 types of immune cells in GC samples
(Supplementary Figure S4A). Next, we displayed the levels of these
immune cells in samples with different risk scores using a heatmap
(Supplementary Figure S4B). This showed marked differences in the
infiltration scores of the immune cells between these samples,
particularly, in terms of type Ⅱ macrophages, resting mastocytes,
monocytes, resting NK cells, follicular helper T cells, and
regulatory T cells (Figure 6A). Pearson correlations were analyzed
using the cor. test function. Groups with high risks showed greater
concentrations of M2 and mastocytes, implying deprivation of the
immune microenvironment. To explore the tumor-associated
immune cell crosstalk between high- and low-risk patients, a
correlation heatmap of the 22 immune cell types was constructed.
This showed differences in the immune microenvironments of groups

with different risks (Figures 6B–1, 2). Meanwhile, we further probed
the relationship between gene expression and infiltration of tumor-
associated immune cells (TAICs) (Figure 6C). In addition, to ensure
the reliability of the results, other immune scoring methods, namely,
ssGSEA and MCP were also used to explore the differences in the
immune microenvironment between the two groups (Supplementary
Figure S4C, D). The results revealed that the two groups indeed had
different microenvironments and immune cell interaction patterns.
The levels of resting NK cells were positively associated with genes
such as MEF2B, APOH, ADTRP, and ADH4, while the level of Tregs
was negatively correlated with genes such as SERPINE1, S100Z,
ADRA1B, and ADH4. Furthermore, we investigated the
relationships between the risk models and immune checkpoints.
The results showed that there were profound differences in CD274
(PD-L1) and HAVCR2 expression between the two groups (p < 0.05;
Figure 6D). Importantly, the level of PD-L1 checkpoint was lower in
the high-risk group, thus indicating that it is not appropriate to treat
high-risk patients with PD-L1 inhibitors.

Functional annotation and enrichment
analyses of GC samples with different risks

Enrichment analyses were then performed to investigate the
underlying biological processes that affect the risk scores. Using the
TCGA cohorts, 1,183 upregulated and 138 downregulated genes were
identified between the high and low-risk subgroups (with a threshold
of p < 0.05 and absolute of |log2 FC|> 2, Supplementary Figure S5A).
KEGG and GO analyses indicated that these genes were primarily
enriched in pathways such as neuroactive ligand-receptor interaction,
cAMP signaling pathway, pancreatic secretion, olfactory transduction,
and calcium signaling pathway, amongst others (Figure 7A). In
addition, GO annotations revealed enrichment in the regulation of
membrane potential, collagen-containing extracellular matrix,
receptor-ligand activity, and signaling receptor activator activity,
amongst others (Figure 7B). The functional networks between the
DEGs were constructed using Cytoscape, and the potential biological
networks affecting risk scores are shown in Figure 7C. Consistent with
these findings, the results from GSEA demonstrated that samples with
high risks were correlated with activation of typical carcinogenic
characteristics, involving the EMT and the KRAS and MYC
pathways, suggesting the underlying mechanisms associated with
poor prognosis in the high-risk samples (Figure 7D). Furthermore,
we constructed a gene-related network based on the risk scores-related
DEGs. This showed that the expression of genes such as ALB, F2,
APOA1, APOA2, APOA3, and AHSG was affected by risk scores
(Figure 7E). The expression of these genes in terms of high and
low-risk scores in tumor and normal tissues are shown in
Supplementary Figure S5C, while the correlations between these
genes and patient prognosis are shown in Supplementary Figure S5D.

Risk model validation and nomogram
construction

To identify the robustness of the model, the same models and
coefficients from the training cohorts were applied to the external
cohorts. The risk scores of each sample were calculated according to
their gene expression, and the distributions of the risk scores were
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analyzed. In the independent validation cohort GSE84437, the best
cutoff point was employed for grouping. As shown in Figure 8A, the
prognosis of high-risk patients (59 samples) was significantly worse
than that of low-risk patients (374 samples) (p = 0.006). Meanwhile,
the same analysis was conducted with the independent validation
cohort GSE26253, and resulted in the same conclusion, i.e., the
prognosis of the high-risk patients (349 samples) was significantly
worse than that of low-risk patients (83 samples) (p = 0.0081;
Figure 8B), thus, confirming the reliability of the model. The risk
scores were then incorporated with the corresponding clinical

characteristics, and the results from the univariate Cox regression
analyses revealed a strong correlation between the risk scores and GC
patient prognosis (Figure 8C). Multivariate Cox regression analysis
further revealed that the risk score (p < 9.4e-13, HR = 2.8, 95%
CI2.1–3.7) can serve as an independent risk factor for GC patient
prognosis (Figure 8D). Interestingly, the multivariate analysis, in
conjunction with the signature, showed that the originally
meaningful TNM staging was no longer significant (p > 0.05). This
suggests that the association between TNM staging and patient
prognosis was influenced by metabolic signature, i.e., the effect of

FIGURE 6
Correlations between infiltration of tumor-associated immune cells and risk modeling (A) Differential analysis of the level of infiltration of 22 immune
cells in the high and low risk groups. (B)Different correlation patterns among 22 immune cell subsets in the high and low risk groups (B-1: high risk group, B-2:
low risk group). (C) Heat map of the correlation between 11 gene signature and 22 immune cells. Red is used to represent the positive correlation between
genes and immune cells, and blue is used to represent the p-value of the correlation between the two. (*p < 0.05; **p < 0.01; ***p <0.001). (D) Expression
of common immune checkpoints in high and low risk groups.
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TNM staging on tumor prognosis may be acting through the
metabolic signature. Apart from this, we also constructed a
nomogram using the most essential variables in the multivariate

analyses (Figure 8E). The nomogram showed that the risk score
had the greatest impact on GC patient prognosis. This indicated
that the risk model, based on 11 signature genes, was highly

FIGURE 7
Functional annotation, genomic enrichment analysis of gastric cancer samples with different risks (A) KEGG enrichment analysis shows the top
20 pathways in high and low risk groups. (B) Dot plot shows enriched GO terms of upregulated 11 gene signature. (C) Functional access network shows
transcriptome profiles of different risk groups. (D) GSEA enrichment analysis shows the 9 hallmarks gene sets in the high and low risk groups. (E) The
protein–protein interaction network of the high and low risk groups.

Frontiers in Genetics frontiersin.org13

Chen et al. 10.3389/fgene.2023.1094838

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1094838


effective for prognostic prediction. Lastly, results from the calibration
curve analyses showed that the calibration curve for prediction closely
resembled the standard curves of survival at the 1-, 3-, and 5-year

follow-ups, confirming the above conclusion (Figure 8F). Compared
to nomograms for GC prognosis developed in previous studies, the
present model was more accurate for prognosis prediction at the 1 and

FIGURE 8
Risk model validation and nomogram construction (A,B) Kaplan–Meier OS curves with difference detection by log-rank test for patients from the
validation datasets (GSE84437 andGSE26253). (C,D) Multivariate analysis of clinical and biological variables using Cox proportional hazards regressionmodels,
suggesting that 11 gene signature is the independent risk factors of prognosis of patients. (E) Composite nomogram prediction of 1-year, 3-year, and 5-year
OS. (F) Calibration curves of observed and predicted probabilities for the nomogram.
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3-year time points but, unfortunately, had worse predictive efficacy at
the 5-year time point (Cai et al., 2020).

Discussion

Metabolic reprogramming promotes tumor occurrence and
progression (Boroughs and DeBerardinis, 2015; Pavlova and
Thompson, 2016). Metabolic phenotypes can aid in tumor imaging,
prognosis determination, and cancer treatment (Vander Heiden and
DeBerardinis, 2017). However, the application of tumor metabolism
as one an indicator of clinical behavior requires clarification of the
metabolic pathways that restrict cancer progression, as well as
ascertaining the metabolic characteristics and heterogeneity of each
patient with GC (Li et al., 2019).

While GC is known to be a highly heterogeneous disease, few
studies have investigated its specific molecular subtypes. Zhang et al.
(2016) reported 53 mutations in the microRNA-related molecular
subtypes of GC but did not investigate the functional characteristics
associated with these subtypes. Yang et al. (2021) described subtypes
associated with high microsatellite instability but did not use multi-
omics analysis, which is more meaningful for risk stratification of
cancer patients. Jiang et al. reported ferroptosis-related molecular
subtypes but did not further investigate the microenvironmental and
genomic differences of these subtypes (Yang et al., 2021). Metabolism-
related subtypes have been reported in other tumors, such as breast
and colon cancer, but no metabolism-related molecular subtypes were
previously reported in GC (Chong et al., 2021; Gong et al., 2021). In
2021, Gong et al. (2021) reported on the identification of metabolic
subtypes of triple negative breast cancer, based on the core metabolic
pathways of lipid metabolism, glycolysis, and nucleic acid metabolism.
This demonstrated the metabolic heterogeneity of breast cancer.

Metabolic heterogeneity is one of the future trends in tumor
research. However, there are reports on the metabolic heterogeneity
of GC based on molecular typing (Kim and DeBerardinis, 2019;
Martinez-Reyes and Chandel, 2021). In our study, we
comprehensively analyzed core metabolic activities related to
signature genes in GC samples. This helped broaden our insight
into the metabolic characteristics and heterogeneity of each GC
patient. Hence, it is essential to emphasize the distinctions between
metabolic adaptations in individual GC patients. To begin our
research, we clustered the patients into three subtypes, based on
their expression of GSEA-signature genes related to various
metabolic pathways, including glycolysis, lipid metabolism, amino
acid metabolism, and nucleic acid metabolism. We observed that
subtype-1 patients showed the best prognosis, while the other two
subtypes had worse prognosis. Besides, we also discovered significant
differences in genomic characteristics among the three subtypes and
identified a new driver gene, CNBD1, that drove mutations in GC. The
subtypes were ranked as NMF1 to NMF2 to NMF3 in terms of
increasingly poor prognosis, and the evolutionary driver genes for
the three subtypes also showed the same pattern of variation. This
observation is very interesting and suggests that the worse the patient
prognosis, the greater the evolutionary pressure and, therefore, the less
the expression of evolutionary driver genes.

Most investigations into tumor metabolism have focused on a
specific metabolic process in the patients (Huang et al., 2020; Xu et al.,
2020), thus, ignoring the differences in combinations of metabolic
preferences in each GC patient. For instance, a seven-gene signature

was established, based only on glycolysis (Yu et al., 2020), and Zhou
Zhu et al. identified six GC subtypes according to the cholesterol
metabolism and glycolytic pathways (Zhu et al., 2021b). Apart from
these, signatures based on lipid metabolism pathways have been
shown to play important roles in the prognosis prediction of GC
patients (Hu et al., 2020). In this study, we established three subtypes
based on the distinct activity of core metabolic processes such as
glycolysis, lipid metabolism, amino acid metabolism, and nucleic acid
metabolism in GC samples. Of these three subtypes, subtype 1 was
associated with good prognosis, while the remaining two subtypes
were linked with poor prognosis. The differences between the poor-
prognosis subtypes were apparent after two years, when it was clear
that subtype 3 offered the worst outcome.

Tumors are complex regulatory systems, and the limitations of
studies based on a single set of histological data are apparent. Thus,
integrated analysis of high-throughput, multi-omics data, using
multiple levels and sources, is imperative. Moreover, like other
investigators, we also investigated the potential of the three
metabolic subtypes in terms of genomics (Su et al., 2020). Our
results were truly interesting in that they revealed that driver genes
were more common in subtype 1 although subtype 1 was associated
with the best prognosis. In contrast, subtype 3 patients experienced the
worst prognosis, while having only one driver gene, CNBD1, with
subtype 2 falling between subtypes 1 and 3 in both aspects. According
to Li Qiangchun et al.’s work, CNBD1 drives a high incidence of
mutations, including non-synonymous mutations, in genes, which is
relevant to the prognosis of GC patients (Li et al., 2016). However, we
demonstrated the role of CNBD1 in GC, where it functions as an
evolutionary driver gene, resulting in metabolic changes leading to
malignant changes and poor prognosis in GC patients. In addition, we
also demonstrated that the patients with more mutations exhibited
better prognosis while patients with fewer mutations had the opposite
outcome, which is consistent with the results from JAMA Oncology (Li
et al., 2018). PRIM1may be associated with this mutation pattern (Zhu
et al., 2021c). Furthermore, we examined the correlations between
mutations in the somatic cells of the three subtypes. This showed that
patients with more chain mutation and mutually exclusive mutations
had a better prognosis, highlighting the relevance of the signatures in
GC patient prognosis. Subsequently, we identified 412 prognosis-
related DEGs in the different metabolic subtypes using gap
analyses and univariate Cox regression. These genes were then
incorporated into LASSO regression analysis and a random forest
model, leading to the selection of 11 genes in the metabolism-related
prognostic signature, including SERPINE1, MEF2B, S100Z, AXIN2,
IGFBP1, GRP, ADH4, APOH, KRT15, ADTRP, and ADRA1B. The
model based on these genes was found to be both effective and robust
in different patient cohorts, and multivariate Cox regression showed
that the model could serve as an independent predictor of prognosis in
GC patients. Additionally, we constructed a nomogram for the
prediction of patient OS, and the efficacy of the nomogram was
further confirmed using calibration curve analyses. In terms of the
KEGG enrichment analysis, the 11 signature genes were found to be
mainly enriched in pathways associated with neuroactive ligand-
receptor interaction, cAMP signaling, pancreatic secretion, olfactory
transduction, and calcium signaling. Moreover, GO analysis showed
enrichment in the regulation of membrane potential, collagen-
containing extracellular matrix, receptor-ligand activity, and
signaling receptor activator activity, amongst others (Kanehisa and
Goto, 2000).
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Furthermore, a variety of cells, cytokines, exosomes, and
chemotactic factors are able to interact and communicate with
cancer cells in the TME, especially TAICs which display anti-
tumor functions (Gajewski et al., 2013; Hinshaw and Shevde, 2019;
Zhang et al., 2021). TME fibroblasts are recognized as tumor targets
and play an integral role in tumor growth and metastasis (Zhang et al.,
2020b). In our study, we observed significant differences in the
proportions of infiltrating immune cell types between patients with
high and low-risk scores, specifically, type Ⅱ macrophages, resting
mastocytes, monocytes, resting NK cells, follicular helper T cells, and
regulatory T cells. This was consistent with the subsequent finding that
the immune microenvironment differed in groups with different risk
scores. High-risk groups showed greater concentrations of
M2 macrophages and mastocytes, suggesting depletion of the
immune microenvironment (Liu et al., 2011; Liao et al., 2018). We
also explored the correlation between TAIC infiltration and the
expression of risk model-related genes. The results showed that the
proportion of resting NK cells was positively associated with genes
such as MEF2B, APOH, ADTRP, and ADH4, while the Treg level was
negatively correlated with SERPINE1, S100Z, ADRA1B, and ADH4.
This is consistent with the findings of other studies (Feske et al., 2015;
Chu et al., 2020; Huang et al., 2021). Furthermore, we investigated the
relationships between the risk models and immune checkpoints,
finding significant differences in the levels of CD274 (PD-L1) and
HAVCR2 between high- and low-risk patients. Notably, the level of
PD-L1 was lower in the high-risk patients, suggesting that high-risk
patients should not be treated with PD-L1 inhibitors. Additional
investigations into the precise mechanisms of tumor-associated
immune cells and their association with GC prognosis are still
required in the future.

Conclusion

Taken together, we identified three GC subtypes based on core
metabolic pathways and constructed a prognostic model using
11 signature genes that were differentially expressed in the three
metabolic subtypes. The model was found to be both effective and
robust in different patient cohorts and was shown by multivariate Cox
regression to be an independent predictor of GC patient prognosis.We
also investigated the genomic characteristics of the three subtypes, as
well as our models, observing an association between GC-associated
immune cells and the 11 signature genes.
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