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Background: Identifying DNA methylation sites that regulate the metabolome is
important for several purposes. In this study, publicly available GWAS data were
integrated to find methylation sites that impact metabolome through a discovery
and replication scheme and by using Mendelian randomization.

Results: The outcome of analyses revealed 107 methylation sites associated with
84 metabolites at the genome-wide significance level (p<5e−8) at both the
discovery and replication stages. A large percentage of the observed
associations (85%) were with lipids, significantly higher than expected (p =
0.0003). A number of CpG (methylation) sites showed specificity e.g.,
cg20133200 within PFKP was associated with glucose only and
cg10760299 within GATM impacted the level of creatinine; in contrast, there
were sites associated with numerous metabolites e.g., cg20102877 on the
2p23.3 region was associated with 39 metabolites. Integrating transcriptome
data enabled identifying genes (N = 82) mediating the impact of methylation
sites on the metabolome and cardiometabolic traits. For example, PABPC4
mediated the impact of cg15123755-HDL on type-2 diabetes. KCNK7 mediated
the impact of cg21033440-lipids on hypertension. POC5, ILRUN, FDFT1, and
NEIL2 mediated the impact of CpG sites on obesity through metabolic pathways.

Conclusion: This study provides a catalog of DNA methylation sites that regulate
the metabolome for downstream applications.
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Introduction

Metabolism is the process through which the body converts food into energy and
materials necessary to maintain life. At the molecular level, it is conducted by a network of
metabolites and is regulated in part by genomic regions known as epigenomic sites.
Understanding the relationship between epigenome and metabolome is important for
several purposes.

Imbalances in the level of a metabolite could lead to health abnormalities. Designing
medications for metabolites is one approach to correct metabolic abnormalities; however,
this approach is cumbersome (Sharma et al., 2021). A common workaround is to target the
underlying epigenomic sites using the newly developed CRISPR-based techniques that
enable precise epigenome editing (Nakamura et al., 2021). In this context, it is essential to
know the epigenome sites that regulate the level of a metabolite. Furthermore, it is important
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to know the phenotypical consequences of editing a site, as well as
the molecular path through which an epigenomic site exerts its
impact.

Complex disorders are age-dependent and develop over time as
abnormal changes at the molecular level accumulate. An important
mechanism in this regard is epigenomics and tracking changes at
epigenome sites is considered as a means to diagnose and prevent a
disease, from an earlier stage (Napoli et al., 2012). Besides,
epigenomic changes are reversible; therefore, if an abnormality is
detected, a change in lifestyle can provide a remedy to offset harmful
epigenomic changes and maintain the body in a healthy state
(Bacalini et al., 2014; Quach et al., 2017).

Considering the above rationales, this study was devised to
investigate epigenome sites that regulate the metabolome. The
relationship between epigenomics and metabolomics has been the
subject of a number of studies in the past (Frazier-Wood et al., 2014;
Rodriguez et al., 2016; Zaghlool et al., 2018; Gomez-Alonso et al.,
2021). The common approach in these studies is to measure the
DNA-methylation levels and metabolites in the same group of
individuals in order to identify CpG site-metabolite pairs that
show correlation; however, such a design cannot tell whether a
significant association indicates causation (CpG site → metabolite),
correlation (CpG site ← confounders → metabolite) or reverse
causation (metabolite → CpG site). Furthermore, limited sample
sizes hinder the power of such studies. In recent years, a new
approach called two-sample Mendelian randomization has been
developed that allows integrating data from independent large
GWAS consortia to investigate relations between biological
features (biomarkers, phenotypes) (Davey Smith and Hemani,
2014; Zhu et al., 2018). In the current work, this approach was
used to integrate GWAS data for DNA methylation sites and
metabolites in order to find CpG sites that have casual impacts
on the metabolites. The analyses were further extended to eQTLs
and GWAS data for cardiometabolic traits to obtain functional
insights.

Materials and methods

Data

This study was conducted using data from previous GWAS
studies that made their findings publicly available. To make data
comparable and control for population stratification, the search
was limited to studies carried out in European populations. The
majority of previous GWAS studies were conducted using blood
samples and blood appears to be a good proxy for other tissues
(Liu et al., 2017); therefore, only studies that used blood
specimens were considered for analysis.

Based on these criteria, I obtained summary association
statistics for SNPs regulating methylation sites from McRae
et al. (McRae et al., 2018) in which the authors measured
DNA methylation using Illumina
HumanMethylation450 BeadChips in peripheral blood
lymphocytes obtained from 1,980 subjects. GWAS summary
statistics for metabolites were obtained from Julkunen et al.
study (Julkunen et al., 2021) in which the authors used
nuclear magnetic resonance spectroscopy to measure

metabolites in plasma samples of 105,146 individuals obtained
from the United Kingdom Biobank. GWAS summary statistics
for a total of 248 blood metabolites were available from this study
which includes 12 amino acids, 7 carbohydrates, 223 lipids, and
6 proteins.

mQTL data from Hannon et al. (Hannon et al., 2016; Hannon
et al., 2018) were used to replicate the findings from the discovery
stage. Here, the authors used Illumina
HumanMethylation450 BeadChips to measure methylation levels
in DNA samples extracted from whole blood in two separate studies.
To gain functional/clinical insights, eQTL summary statistics for
19,942 genes were obtained from the eQTLGen consortium which
represents a meta-analysis of 37 studies (a total of
31,684 individuals) conducted using blood samples. In addition,
GWAS summary statistics for major cardiometabolic conditions
including, coronary artery disease (CAD) (van der Harst and
Verweij, 2018), body mass index (BMI) (Pulit et al., 2018), type
2 diabetes (T2D) (Mahajan et al., 2018), and hypertension (Source:
United Kingdom Biobank) were obtained by surveying the recently
published studies.

Mendelian randomization

In the current study, the GSMR algorithm (Zhu et al., 2018)
implemented in GCTA software (version 1.92) (Yang et al., 2011)
was used to conduct Mendelian randomization (MR). As compared
to other methods for MR analysis, GSMR automatically detects and
removes SNPs that have a pleiotropic effect on both exposure and
outcome; in addition, it accounts for the sampling variance in beta
estimates and the linkage disequilibrium (LD) among SNPs. MR
analysis uses a set of SNPs known as the instrument to test the
relationship between exposure and outcome. Each set of SNPs must
meet a number of criteria:

a) SNPs must not be in LD. In this study, I used SNPs that are in
linkage equilibrium (r2 < 0.05) based on genotype data from the
1000 genomes (n = 503 individuals of European ancestry).

b) SNPs included in MR analysis must not show pleiotropic effect
(i.e., Exposure ← SNP → Outcome). Pleiotropic SNPs were
excluded from MR using the HEID test implemented in GCTA
software.

c) Each SNP must be significantly associated with the exposure.
Only SNPs that were associated with the exposure at the GWAS
significance level (P<5e−8) were selected for MR analysis.

Analysis plan

Figure 1 provides an overview of the analyses performed in
this study. The first step was to find epigenomic-metabolic
biomarkers that share at least a SNP associated with both at
GWAS significance level (P<5e−8). In this manner, 399,944 CpG
site-metabolite pairs were identified. Next, Mendelian
randomization was used to examine whether the change of
methylation at a site contributes to a metabolite. 3,0821 CpG
site-metabolite pairs reached GWAS significance that were
selected for the replication stage.
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Secondary independent mQTL data were used to replicate
the findings from the discovery stage. 1,105 pairs of epigenomic-
metabolite biomarkers reached GWAS significance. To exclude
the possibility of reverse causation (metabolite → CpG site,
p<=0.05), then I swapped the places of exposure and outcome
and re-examined the associations. Finally, given the complex
pattern of linkage disequilibrium within the HLA region, CpG
sites mapped to this region were also excluded from the results.
Following this scheme, a total of 553 biomarker pairs that
reached GWAS significance level (p-value < 5e−8) at both
discovery and replication stages remained which consist of
107 CpG sites associated with 84 metabolites.

To obtain functional insight, then I integrated eQTL data
from the eQTLGen consortium (Võsa et al., 2018) and used MR
analysis to find genes that mediated the impact of methylation
sites on metabolites. Namely, I looked for genes that met the
condition:

CpG site → gene expression → metabolite
Following MR analysis, 82 genes were identified that

mediated the impact of CpG sites on metabolites. Genes were
then entered into the STRING (Search Tool for the Retrieval of
Interacting Genes/Proteins) database (Version 11.5) (Szklarczyk
et al., 2018) to find whether they are functionally related. Finally,
for the purpose of clinical insight, a Unix package was devised
that allows investigating the contribution of the identified
biomarkers to a phenotype. In the following section, I describe
the package.

Unix package

Phenome is vast and diverse, and examining associations
between the biomarkers identified in this study and each
phenotype is not practical. Therefore, findings from this study is
presented as a Unix package that allows a researcher to investigate
the contribution of the identified biomarkers to a phenotype by
specifying its identifier from the OpenGWAS database (Version
6.2.0), a repertoire of GWAS summary data for various phenotypic
features (Elsworth et al., 2020). The underlying algorithm that
carries out the task is written in the shell scripting language. This
allows the use of parallel computing and therefore the possibility to
examine a large volume of data. A guide on how to use the package is
provided through the corresponding GitHub page (please see the
data availability section).

Results

Following the analysis plan described in Figure 1, 553 pairs of
epigenomic-metabolite biomarkers were detected that reached
GWAS significance level (p-value < 5e−8) at both the discovery
and replication stages (Supplementary Table S1). This represents
107 CpG sites associated with 84 metabolites (Figure 2)
comprising 9 amino acids, 6 proteins, 66 lipids and
3 carbohydrates. A large percentage of the observed
associations (N = 469, 85%) was with lipids which is higher

FIGURE 1
Summary of the analyses performed in the current study to generate the results. Through a discovery and a replication stage, CpG site-metabolite
pairs that shared at least a SNP and showed causality (please see the methods section for details) were identified. Integrating eQTL data provided the
possibility to investigate the intermediary genes. Finally, by integrating the identified biomarkers with GWAS data for cardimetabolic traits, a search was
conducted to identify CpG sites that impact these traits through metabolic pathways and to investigate the underlying molecular mechanisms.
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(p = 0.0003, Binomial test) than expected (N = 435, 79%). This
suggests epigenomics possibly plays a more important role in
regulating lipids as compared to other categories of metabolites.
Given that dyslipidemia contributes to a number of disorders,
epigenomic intervention could theoretically be a reasonable
approach toward monitoring and treating dyslipidemia.

Most methylation sites were associated with multiple
metabolites; however, several CpG sites were specifically
associated with one metabolite (Supplementary Table S2).
For example, cg20133200 site within the phosphofructokinase
gene (PFKP) was associated with glucose only (β = 0.07, P =
2e−19) and cg10760299 within glycine amidinotransferase
(GATM) impacted the level of creatinine (β = 0.05, p =
1.5e−30). Targeting such methylation sites for therapeutic
applications is notable because they show specificity. A
number of CpG sites were associated with a large number of
metabolites (Figure 2). For example, methylation sites within
the 2p23.3 region (between NRBP1 and KRTCAP3) were
associated with 39 metabolites of various types. Methylation
of ABO locus impacted 32 metabolites; whereas, a methylation
site near PSRC1 was associated with 21 lipids.

Next, eQTL data from the eQTLGen consortium were
integrated in order to find genes that mediate the impact of
CpG sites on metabolites. Theoretically, a gene that mediates the
impact of a methylation site on a metabolite must fit in the
equation: CpG site → gene expression → metabolite. Namely, it
must be under the regulatory impact of the methylation site and
impact the level of the metabolite. Based on these criteria,
82 genes were identified (Figure 3). The majority of CpG sites
were associated with one gene; however, a few were associated

with a high number of genes (Supplementary Figure S1,
Supplementary Table S3). By subjecting the identified genes to
functional enrichment analysis, I noted they are related and share
a significantly higher number of functional interactions (P<1e−16)
than would be expected for a random set of genes of similar size,
drawn from the genome (Supplementary Figure S2).

The function of a number of these genes in metabolism is
well established. For example, FADS1, FADS2, LCAT, ABO,
PLTP, and FDFT1 are known to be involved in lipid
metabolism. FADS1 and FADS2 are fatty acid desaturases.
LCAT converts free cholesterol into cholesteryl ester in
lipoprotein particles. PLTP functions by transferring
phospholipids from triglyceride-rich lipoproteins to high-
density lipoproteins. FDFT1 is an enzyme involved in
cholesterol biosynthesis and MMAB helps break down
certain proteins, fats, and cholesterol. Some of these genes
such as ACADM, GATM, GNMT, LCAT, MMAB, PCCB,
PEX6, SLC22A4, SLC22A5, and SLC25A1 are known to cause
inborn errors of metabolism.

Understanding the link between the identified biomarkers
and the phenome is important for clinical purposes. In this
regard, cardiometabolic traits are notable because they are a
direct consequence of abnormalities at the metabolic level. For
this purpose, I obtained GWAS summary statistics for coronary
artery disease (CAD) (van der Harst and Verweij, 2018), body
mass index (BMI) (Pulit et al., 2018), type 2 diabetes (T2D)
(Mahajan et al., 2018), and hypertension (Source:
United Kingdom Biobank) and examined their associations
with biomarkers identified in this study. Below, I review the
findings:

FIGURE 2
Distribution of the identified CpG sites across the genome and their associations with metabolites. X-axis represents physical positions of CpG sites
(based on the hg19), y-axis indicates the number of metabolites associated with each site. A total of 107 CpG sites associated with 84 metabolites were
identified. Most methylation sites were associated with more than one metabolite. CpG sites with the highest number of associated metabolites are
annotated by their underlying genes (according to the ANNOVAR software). CpG sites on adjacent chromosomes are colored differently to aid
viewing.
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T2D

PABPC4
Epidemiological evidence indicates higher levels of HDL lower

the risk of T2D (Femlak et al., 2017). Here the analysis revealed
methylation site cg15123755 (on chromosome 1p34.3) contributes
to this effect through PABPC4 gene. The results indicated as
cg15123755 site becomes methylated, the expression of PABPC4
increases (β = 0.20, P = 2e−48, Supplementary Table S3). This in
return has a positive impact on the level of HDL and consequently
lowers the risk of T2D (Figure 4).

A previous report by the international knockout mouse consortium
also documented PABPC4mutantmice show impaired glucose tolerance
(GERDIN, 2010). PABPC4 is a poly(A)-binding protein as such it can
impact various mRNAs. Therefore, by putting these data together, one
may conclude PABPC4 targets mRNAs involved in metabolic processes.
In this regard, a previous study reported depletion of PABPC4 in
erythroblasts impacts a subset of mRNAs involved in developmental
pathways includingmRNAs critical to cell growth, andmetabolism (Kini
et al., 2014). Xie et al. recently reported PABPC4 regulates the level of
MYC which is involved in several processes including metabolism (Xie
et al., 2021).

2p23.3 locus
The methylation site cg20102877 within KRTCAP3 was

associated with T2D (Supplementary Table S4). Higher
methylation at this site lowers the risk of T2D through a
diverse set of metabolites. The underlying genes were NRBP1
and KRTCAP3 which are situated alongside each other. Both
genes are under the regulatory impact of cg20102877; however,
in an antagonistic pleiotropic manner. As presented in
Figure 5A, mQTLs for cg20102877 showed congruence with
eQTLs for NRBP1 but not with eQTLs for KRTCAP3. As a result,
higher methylation at cg20102877 site contributes to the risk of
T2D by increasing the expression of NRBP1 but lowering the
level of KRTCAP3 (Figure 5B).

Previous studies indicated KRTCAP3 is implicated in food
intake, adiposity, and insulin sensitivity (Szalanczy et al., 2022).
Less is known about NRBP1, it is involved in endoplasmic reticulum
to Golgi vesicle-mediated transport. It modulates the expression of
uric acid transporter, ABCG2 which is involved in transport of
various molecules across extra- and intra-cellular membranes
(Zhang et al., 2021). Nonetheless, our findings indicate
KRTCAP3 and NRBP1 are functionally related, and are possibly
components of the same molecular pathway.

FIGURE 3
Overview of the genes identified in this study and their relations withmetabolites. The analyses revealed 82 genes associatedwith 84metabolites. To
better visualize the findings, the metabolites were classified into four categories (amino acids, proteins, lipids and carbohydrates). 40 of the genes were
specifically associated with lipids. Several genes were associated with multiple categories of metabolites. Notably, KRTCAP3 andNRBP1 on chromosome
2p23.3 region, that were associated with all 4 categories of metabolites. Detailed information on the nature of association of the identified genes
with metabolites and underlying CpG sites are provided in the Supplementary Table S3.
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CAD

PSRC1
The methylation site cg00908766 within 1p13.3 contributed

to CAD by changing the expression of PSRC1 gene (Figure 6). We
noted higher methylation at this site lowers the level of PSRC1
(β = −0.24, p = 3.7e−192, Supplementary Table S3) and as the
expression of this gene decreases the risk of dyslipidemia and
CAD increases (Figure 6). It is reported PSRC1 functions in the
molecular path that mediates the impact of a TMAO-rich diet on
atherosclerosis (Luo et al., 2022a). Recently, Luo et al.
documented higher level of TMAO in blood lowers the
expression of PSRC1 by hypertmethylating the promoter of
this gene. This consequently impairs reverse cholesterol
transport and enhances cholesterol uptake and inflammation
(Luo et al., 2022b). This site is also implicated in regulating
the levels of several blood proteins pertinent to CAD
pathogenesis (Nikpay et al., 2022). Therefore, resetting the

methylation level at this site is anticipated to have a vast
impact on atherosclerosis.

Obesity

The outcome of analyses revealed four loci that contributed to
obesity through the epigenome-lipid path (Figure 7). Below, I review
these loci and their relations with obesity.

POC5
SNPs within this gene are reported to be associated with obesity

(Pulit et al., 2018). Here, I found these SNPs impact the methylation
level at cg00601450 site, expression of POC5, and the levels of several
lipid metabolites. I found as cg00601450 site becomes methylated,
the expression of POC5 increases (B = 0.15, P = 3e−81) and this leads
to higher levels of lipids and obesity (β = 0.01, P = 8e−12). The protein
encoded by POC5 is a component of cilium/centriole; therefore, it

FIGURE 4
The mechanism whereby cg15123755 site impacts the risk of T2D. Higher methylation at cg15123755 site lowers the risk of T2D by changing the
levels of PABPC4 and HDL. As cg15123755 site becomes methylated the expression of PABPC4 increases, this leads to higher level of HDL and
consequently lowers the risk of T2D. Plots provide a graphical display of Mendelian randomization results. Each point on a plot represents a SNP. The
x-value of the SNP is its effect size on the exposure, and the horizontal error bar represents the standard error around the effect size. The y-value of
the SNP is its effect size on the outcome, and the vertical error bar represents the standard error around the effect size. The dashed line represents the line
of best fit (i.e., a line with an intercept of 0 and slope of the effect size (β) from theMendelian randomization test). A positive slope (+β) indicates as the level
of exposure increases the level of outcome increases as well, whereas a negative slope (-β) indicates a negative association.
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remains to be investigated how this protein contributes to obesity
through lipids.

ILRUN
The outcome of analyses revealed methylation site,

cg17674042 at 6p21.31 region contributes to obesity
(β = −0.02, p = 4.3e−16) through lipids (Supplementary Table
S1). The underlying gene appears to be ILRUN which was
significantly associated with cg17674042 (β = −0.4, p =
1.2e−50), BMI (β = 0.06, p = 2.3e−25) and lipid metabolites
(Supplementary Table S3).

ILRUN, formerly known as C6orf106, is a gene with
cardiometabolic functions. It encodes a protein that contains
a ubiquitin-associated–like domain and is shown to bind to
ubiquitinylated proteins including PPARα. Mice deficient for
ILRUN display significantly lower plasma cholesterol levels
resulting from reduced liver lipoprotein production (Bi et al.,
2020). The gene is also known to act as an inhibitor of antiviral
and proinflammatory cytokine transcription and as a regulator
of the renin-angiotensin-aldosterone system (RASS). ILRUN is
considered as an inhibitor of p300/CBP transcriptional
coactivators. It has been suggested that the impact of ILRUN

on lipids and obesity may be via its transcription regulatory
effect on components of RAAS (Tribolet et al., 2021).

FDFT1-NEIL2
We found the methylation site, cg12568669 within FDFT1 gene

contributes to obesity by changing the expression of FDFT1 and the
nearby gene NEIL2 (Supplementary Table S4). These genes appear
to be coexpressed as their eQTLs show congruence (β = 0.1,
p <0.001). Lower methylation at cg12568669 contributed to
higher expression of FDFT1 (β = 0.4, P = 8e-118) and NEIL2
(β = 0.3, P = 8e-110) and this, in turn, contributed to higher
BMI by impacting the levels of creatinine and unsaturated fatty
acids (Figure 7, Supplementary Table S4). A previous study in a
sample of US Caucasians found SNP, rs7001819 located in the
intergenic region betweenNEIL2 and FDFT1 shows association with
BMI (Liu et al., 2008). We noted this SNP is also an eQTL for both
NEIL2 and FDFT1 (based on eQTLGen data).

FDFT1 is a gene with well-established metabolic function, it
encodes an enzyme of the mevalonate pathway that is responsible
for producing various metabolites including cholesterol. Mevalonate
pathway is vital to maintain adipocyte survival and obesity is
essentially the outcome of an increase in adipose tissue mass

FIGURE 5
cg20102877 methylation site impacts the risk of T2D by changing the expression of NRBP1 and KRTCAP3. (A) These plots illustrate the co-
localization of eQTLs for NRBP1, KRTCAP3 with mQTLs for cg20102877. mQTLs for cg20102877 showed congruence with eQTLs for NRBP1 but
incongruence with eQTLs for KRTCAP3. This indicates higher methylation at cg20102877 increases the expression of NRBP1 but lowers the level of
KRTCAP3 (please see Supplementary Table S3 for statistical evidence). Each point represents a SNP. The color of the point indicates its association
with cg20102877 in reverse logarithmic scale. i.e., −log10(PmQTL). The x-coordinate indicates the physical position of SNP in 2p23.3 region; whereas, the
y-coordinate indicates the association of SNP with gene expression in reverse logarithmic scale. The plots were generated with the eQTpLot R package.
(B) Mendelian randomization plots indicate change in expression of these genes consequently impacts the risk of T2D. Higher expression of NRBP1
decreases (-β) the risk of T2D; whereas, higher expression of KRTCAP3 increases (+β) the risk of T2D. Additional information on a Mendelian
randomization plot is provided in the Figure 4 description.
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(Yeh et al., 2018). NEIL2 encodes an enzyme involved in base
excision repair of DNA damage by oxidation. Unrepaired DNA
damages or defects in DNA repair pathways can lead to cellular
dysfunction, and metabolic disturbances. Mutations of genes related
to DNA repair are reported to cause obesity (Komakula et al., 2018;
Włodarczyk and Nowicka, 2019).

Hypertension

The analyses revealed positive associations between the
expression of KCNK7, FDFT1-NEIL2 locus and hypertension
(Supplementary Table S3).

KCNK7
The methylation site cg21033440 upstream of KCNK7

contributed to hypertension (β = 0.01, p = 3.8e−11, Supplementary
Table S4) by increasing the expression of this gene (β = 0.14, p =
8.9e−8, Supplementary Table S3). KCNK7 is a member of potassium
channels known as weak inward rectifiers. They conduct outward K+

currents that maintain the resting membrane potential and

modulate action potential repolarization. A member of this gene
family, KCNK6 is known to contribute to hypertension (Pandit et al.,
2014). It remains to be investigated how KCNK7 contributes to
hypertension through lipids. However, inward-rectifier potassium
channels are known to be regulated by a variety of different stimuli
including lipid metabolites.

NEIL2 and FDFT1
The methylation site cg12568669 which was reported in the

previous section to be associated with obesity also impacted blood
pressure in a similar pattern, namely, by changing the expression of
NEIL2 and FDFT1 genes. A hypomethylated cg12568669 site, was
associated with higher expression of NEIL2 (B = −0.3, p = 8.3e-110)
and FDFT1 (B = −0.4, p = 8.3e-118) and these changes in expression
consequently raised blood pressure by impacting the levels of fatty
acids and triglycerides (Supplementary Table S4). The association
between FDFT1 and hypertension could be attributed to its
involvement in cholesterol biosynthesis. Cholesterol plaque
causes arteries to narrow and as a result, blood pressure
increases. Furthermore, hypercholesterolemia is associated with
higher oxidative DNA damage and increased level of DNA repair

FIGURE 6
Higher methylation at cg00908766 site increases the risk of CAD through PSRC1-lipids path (A) Regional association plots for mQTLs of
cg00908766, and eQTLs of PSRC1 overlap. (B) MR analysis revealed, as cg00908766 becomes hypermethylated, the expression of PSRC1 decreases.
Additional information on a Mendelian randomization plot is provided in the Figure 4 description. (C) Lower expression of PSRC1 contributes to higher
levels of lipids and consequently higher risk of CAD.
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(Martinet et al., 2001). This could also explain why FDFT1 and
NEIL2 have coordinated expression.

Connection with lifestyle factors

CpG sites undergo change in response to an individual’s lifestyle
and consequently impact downstream processes such as
metabolome. Therefore, it is important to elucidate the relation
of CpG sites with lifestyle factors. Here, I searched the content of
publicly available EWAS databases (Li et al., 2018; Battram et al.,
2022) and identified a number of lifestyle habits (Supplementary
Table S5) that influence the CpG sites presented in this study. Such
findings could aid personalized medicine approaches. For example,
according to data in Supplementary Table S1, ABO appears to play a
key role in metabolism. Therefore, if a person has a cardiometabolic
disorder and shows highmethylation atABO locus. Themain trigger
could be exposure to smoking or pesticides (Supplementary Table
S5). Conversely, cg10760299 withinGATM gene was only associated
with creatinine. Therefore, if a person has abnormal creatinine level
and abnormal methylation level at cg10760299, the drinking

behavior could be the cause. By recording and indexing this
information in a database, in the long term, it is possible to give
personalized lifestyle recommendations to an individual based on
the degree of alterations in her/his epigenome, in order to keep the
body on track and prevent health problems.

Discussion

Over the past two decades, numerous studies have been
conducted to find genomic variants (SNPs) that contribute to
phenotypes (traits and functional features). Findings from these
studies have expanded our knowledge in several domains including
disease diagnosis, risk assessment, and molecular biology of diseases
(Nikpay et al., 2017; Uffelmann et al., 2021). The outcome of these
studies has provided the research community with an
unprecedented volume of data known as GWAS summary
statistics that outline the nature of association between SNPs and
phenotypes. These data are now being combined to understand the
nature of association between functional features and the traits
(Nikpay et al., 2020; Akiyama, 2021; Nikpay and McPherson,

FIGURE 7
Genes that mediate the impact of methylation sites on obesity through lipid pathways. I identified methylation sites that contributed to obesity by
changing the levels of several metabolites. By integrating eQTL data, the underlying genes were identified as POC5, ILRUN, FDFT1 and NEIL2. Higher
expression of FDFT1, NEIL2, and ILRUN was associated with higher risk of obesity; however, higher expression of POC5 protected against obesity.
Additional information on a Mendelian randomization plot is provided in the Figure 4 description.
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2021). This study is another attempt in this direction. By integrating
epigenome and metabolome data, here I reported 107 CpG sites
associated (P<5e−8) with 84 metabolites through a two stages,
discovery/replication analysis; furthermore, by including eQTL
data, I investigated genes that mediate the impact of CpG sites
on metabolites.

The human metabolome database (HMDB) is a publicly
available database containing detailed information about small
molecule metabolites found in the human body (Wishart et al.,
2021). Several of the genes identified in the current study were also
indexed in HMDB (version 5.0) database. These include ACADM,
GSTM1, GSTM4, SARS, EIF2B4, PPM1G, SLC5A6, PCCB, ADH5,
SLC22A4, SLC22A5, DEF6, GNMT, BLK, FDFT1, MSRA, ABO, CD6,
BEST1, FADS1, FADS2, MMAB, GATM, LCAT, DHX38, HP,
PHLPP2, PLEKHM1, PLTP, CLTCL1, and SLC25A1. A number
of CpG sites identified in this study are previously reported to
impact the blood proteome. This includes cg00908766 (PSCR1),
cg21160290 (ABO), cg26840970 (HP), cg07404485 (PON1),
cg21280719 (GNMT) (Nikpay et al., 2022). Secolin et al. (Secolin
et al., 2021) reported a region on chromosome 8 (8p23.1) that has
been positively selected in the Brazilian population because it had
offered metabolic advantage in the early stages of population
admixture. I identified a number of methylation sites within this
region that impacted the levels of several metabolites, notably lipids
(Supplementary Table S1).

The identified biomarkers were tested with regard to
cardiometabolic traits by including GWAS summary statistics of
these phenotypes into the analyses (Figure 1). Nine genes were
identified that contributed to cardiometabolic disorders by
mediating the impact of CpG sites on metabolites. The functions
of a number of these genes in metabolism have been documented
including ILRUN, FDFT1, and PSRC1; however, the metabolic
functions of PABPC4, NRBP1, KRTCAP3, POC5, NEIL2 and
KCNK7 remain less understood and further research is required.
Previously, Pividori et al. (Pividori et al., 2020) used a Bayesian
colocalization approach to construct a database (PhenomeXcan) of
causal gene-trait associations by integrating transcriptomic data
from 49 tissues in GTEX and GWAS summary statistics of
phenotypes. By examining their findings, I found concordance
with their results. As presented in Supplementary Table S6, the
genes identified in the current study showed consistent and
significant direction of association with cardiometabolic traits in
the PhenomeXcan database as well. I noted genes under the
regulatory impact of a CpG site are not consistently contributing
to a trait. For example, cg00908766 on 1p13.3 chromosome band
impacted the levels of 5 genes but among them only PSRC1
contributed to the risk of CAD. Therefore, considering the
pleiotropic effect of a CpG site is important in studies that aim
to target an epigenomic site.

To assess the contribution of biomarkers identified in this
study to other phenotypes. Data from this study was made
publicly available as a Unix package that can test the
association between biomarkers and a phenotype. This is
important because phenome is diverse and vast and testing the
association between the identified biomarkers and phenotypes is
cumbersome. A detailed user guide of how to conduct a search is
provided on the corresponding GitHub page (please see the data
availability section).

In summary, a search can be executed as:
bash wrapper.sh ID1 ID2

Where ID1 is the metabolite identifier and ID2 is the phenotype
identifier from the OpenGWAS database (Elsworth et al., 2020)
which is a repertoire of GWAS summary data for various phenotypic
features. A search example would be:

bash wrapper.sh met-d-Total_FA ieu-b-30
Which investigates the association between fatty acid levels

and white blood cell count (WBC) after obtaining the relevant
data from the OpenGWAS. The results indicate higher levels of
fatty acids contribute to higher values of WBC (β = 0.04, p =
6.3e−13); furthermore, it reveals cg12568669 as a methylation site
that contributes to this effect (Supplementary Table S7).

Cardiovascular disease (CVD) in its common form is age
dependent. A likely mechanism in this regard is epigenomic
modifications because the sequence of DNA remains stable
throughout life; however, it actively undergoes modifications
at the epigenome level. Findings from GWAS studies also
indicate SNPs contributing to cardiovascular disease are
enriched in epigenomic sites associated with transcriptional
activity (Nikpay et al., 2017). As it was reviewd before (Napoli
et al., 2012), understanding the epigenetic bases of CVD could
provide novel and early markers for diagnosis. This is important
because CVD progresses gradually and epigenomic biomarkers
allow the detection of abnormalities years before the
manifestation of major cardiometabolic outcomes.
Furthermore, epigenomic modifications are reversible,
therefore, if an abnormality is observed, as described in the
results section (Supplementary Table S5), a change in lifestyle
can provide a remedy to prevent a disease before establishing its
roots (epigenomic signature) (Bacalini et al., 2014; Quach et al.,
2017; Gensous et al., 2019). Therefore, more research with regard
to the interplay of lifestyle, epigenomics and diseases can provide
a solid foundation for personalized preventive medicine.

Several epigenome-editing therapeutics are already in use to
treat complex disorders; however, the major drawback
associated with them is non-specificity and therefore
undesirable side effects; because they target epigenome-
editing enzymes such as DNA methyltransferase that impacts
the expression of various genes. The newly developed CRISPR-
based epigenome editing technology circumvents this issue
because it enables the epigenome-editing enzyme to bind
specifically to the site of interest (Nakamura et al., 2021;
Ansari et al., 2022). Findings from this study indicate CpG
sites are not equal regarding their impact on a process and
therefore care should be taken in choosing the correct sites for
editing. While some sites showed specificity and only impacted
a particular type of a metabolite (e.g., cg10760299 within GATM
gene). There were also sites that impacted the levels of
numerous metabolites (e.g., cg21160290 within ABO gene).

Mendelian randomization is traditionally used to identify risk
factors for a disease. Here, this approach was used to obtain
molecular insight by understanding the connection between
biomarkers and phenotypes. MR appears to be more suited for
this purpose because a biomarker is under the regulatory impact
of fewer SNPs as compared to a complex trait. As such MR is less
likely to suffer from weak-instrument bias when the exposure
(outcome) is a biomarker. As compared to gene knockout
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experiments, MR provides a non-invasive path to understand the
function of a locus directly in human (Nikpay et al., 2021; Nikpay
and McPherson, 2021). Moving in this direction requires
generating GWAS data for a more diverse set of functional
features and ultimately creating a web portal that outlines
biomarkers behind a disease and their connections for
downstream applications.

In this study, stringent statistical criteria were applied at
each step to lower the likelihood of false positives. In addition,
the inclusion of data from studies with lower sample sizes, also
impacts the power of the analyses. Therefore, biomarkers
identified in this study must be considered as low-hanging
fruits. Future studies that utilize data from larger studies will
be able to provide a better picture of the epigenomics of
metabolome.

In summary, this study reports the outcome of a genome-
wide search for methylation sites that regulate the metabolome.
The analyses revealed 107 CpG sites associated with
82 metabolites; furthermore, by including eQTL data, 82 genes
were identified that mediated the impact of methylation sites on
metabolites. By integrating these findings with GWAS data for
T2D, CAD, obesity and hypertension, 9 genes were found that
contributed to these traits through metabolic pathways. I also
described a notion whereby measuring changes at the epigenome
level and adjusting lifestyle accordingly could provide a path for
early diagnosis and prevention of disorders. Findings from this
study are publicly available as a freeware that allows investigating
the contribution of the identified biomarkers to other
phenotypes.
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