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Lung adenocarcinoma (LUAD) is an essential pathological subtype of non-small cell
lung cancer and offers a severe problem for worldwide public health. There is
mounting proof that angiogenesis is a crucial player in LUAD progression.
Consequently, the purpose of this research was to construct a novel LUAD risk
assessment model based on genetic markers related to angiogenesis. We accessed
The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases for
LUAD mRNA sequencing data and clinical information. Based on machine algorithms
and bioinformatics, angiogenic gene-related risk scores (RS) were calculated. Patients
in the high-risk category had a worse prognosis (p < 0.001) in the discovery TCGA
cohort, and the results were confirmed by these three cohorts (validation TCGA
cohort, total TCGA cohort, and GSE68465 cohort). Moreover, risk scores for genes
involved in angiogenesis were independent risk factors for lung cancer in all four
cohorts. The low-risk group was associated with better immune status and lower
tumor mutational load. In addition, the somatic mutation study revealed that the low-
risk group had a lower mutation frequency than the high-risk group. According to an
analysis of tumor stem cell infiltration, HLA expression, and TIDE scores, the low-risk
group had higher TIDE scores and HLA expression levels than the high-risk group, and
the amount of tumor stem cell infiltration correlated with the risk score. In addition,
high-risk groups may benefit from immune checkpoint inhibitors and targeted
therapies. In conclusion, we developed an angiogenesis-related gene risk model to
predict the prognosis of LUAD patients, which may aid in the classification of patients
with LUAD and select medications for LUAD patients.
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1 Introduction

Lung cancer is a global health issue and one of the top causes of morbidity and death among
cancer patients, posing a severe danger to public health (Torre et al., 2012). There are several
histological subtypes of lung cancer, with lung adenocarcinoma (LUAD) being the most
common, accounting for around 40% of all lung malignancies (Ruiz-Cordero and Devine,
2020). The LUAD survival rate is just 4%–17% (Hirsch et al., 2017). In China, lung cancer
prevention is complicated by high smoking rates and exposure to secondhand smoke (Qiu et al.,
2021). Significant progress has been achieved in recent years as research into possible treatment
targets for LUAD has continued to increase (Hirsch et al., 2017). Several immunotherapies
targeting PD-1 and PD-L1 have been used clinically with significant survival benefits for LUAD
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patients (Steven et al., 2016). However, medication resistance and high
recurrence rates continue to be the primary causes of treatment failure,
resulting in unsatisfactory 5-year survival rates. To benefit more
LUAD patients, there is an urgent need to identify new therapeutic
targets and prognostic indicators to predict survival and guide clinical
treatment in LUAD patients.

The presence of pathological angiogenesis is essential for tumor
development and progression. On the one hand, these new blood
vessels provide oxygen and nutrients to sustain rapid tumor growth
and proliferation while helping tumor cells excrete metabolic waste.
On the other hand, they provide pathways for tumor cells to enter the
bloodstream and undergo distantmetastasis (Viallard and Larrivée, 2017).
Therefore, it is crucial for tumor cells’ survival, invasion, and metastasis
(Jiang et al., 2020). Numerous activating and inhibitory factors govern
tumor angiogenesis, control pathological angiogenesis, and impact patient
prognosis. The factors vascular endothelial growth factor (Liu et al., 2021;
Abdulazeem et al., 2022), platelet-derived growth factor (Zhang et al.,
2019), and fibroblast-derived growth factor all play essential roles in
angiogenesis (Eguchi and Wakabayashi, 2020). Serum VEGF promotes
proliferation and migration, inhibits apoptosis, and regulates endothelial
permeability (Ferrara et al., 2003). Anti-tumor angiogenic drugs such as
bevacizumab (Syrigos et al., 2021) are currently used to treat lung
adenocarcinoma. However, current research has focused on the impact
of individual angiogenic genes on lung adenocarcinoma development and
prognosis as a potential target for drug development. Few studies have
integrated multiple angiogenesis-related genes by high-throughput
biomarker sequencing and synthesized the relationship between these
genes and lung adenocarcinoma prognosis and survival.

This work used TCGA’s comprehensive genome-wide gene
expression profile to identify angiogenesis-related genes (AGRs)
strongly correlated with lung cancer prognosis. We constructed
and validated a diagnostic, prognostic, and recurrence model of
lung adenocarcinoma and the corresponding nomogram.
Corresponding data from GEO further validate these results. To
summarize the flow chart of this study is shown in Figure 1.

2 Materials and methods

2.1 Selection of angiogenesis-related genes

AGRs were found on the GeneCards website (https://www.
genecards.org/) by searching for “angiogenesis.” Correlation scores
were used to indicate the strength of the correlation between genes and
angiogenic activity, ranging from 0 to 100. High scores indicate strong
correlations. For further analysis, we chose ARGs with correlation
coefficients more prominent than 5. We then downloaded
36 additional tumor angiogenesis genes (hallmark-angiogenesis
(Subramanian et al., 2005)) from Gene Enrichment Analysis
(GSEA). By eliminating overlapping genes, a total of
137 angiogenesis-related genes were found.

2.2 Acquisition of lung adenocarcinoma
datasets

TheTCGAdatabase (https://portal.gdc.cancer.gov/) was used to get the
mRNA, mutation, and clinical data. There are 594 samples in the mRNA
files (535 LUAD and 59 non-tumor samples). GSE68465, GSE50081 and
GSEGSE31210 are validation datasets from the Gene Expression Omnibus
Database (GEO, https://www.ncbi.nlm.nih.gov/geo/).

2.3 Differentially expressed gene screening
and gene mutation analysis

To find angiogenic genes associated with LUAD, RNA sequencing
data from the TCGA database was matched to a total of 137 ARGs.We
then used the R package “limma” to identify differentially expressed
genes (DEGs) with an absolute fold change (|logFC|) > 1 and an
adjusted p-value <0.05. Using the “pheatmap” package, a heatmap was
made to visualize differentially expressed genes. The protein-protein

FIGURE 1
Data gathering and processing flowchart.
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interaction (PPI) network is available on the STRING website (http://
string.embl.de/) (Szklarczyk et al., 2017).

2.4 Functional enrichment analysis

Using the “clusterProfiler” package, KEGG (Kyoto Encyclopedia
of Genes and Genomes) and GO (Gene Ontology) analyses were made
to determine which pathways and functions angiogenesis-related
genes are enriched in. DO (disease ontology) studies were also
conducted using the R package “DOSE” to determine if
angiogenesis-related genes are implicated in lung disorders,
particularly LUAD (Yu et al., 2015).

2.5 Construction and validation of a
prognostic signature based on angiogenesis-
related genes

On a 7:3 ratio, 503 samples were separated into training and
validation sets, with no samples designated as controls. Combining
ARGs mRNA expression levels and clinical data, Univariate Cox
regression analysis was used to find differentially expressed ARGs
with significant prognostic significance. A predictive polygenic model
was created using identified genes related to overall survival (OS). A
minimum absolute shrinkage and selection operator (LASSO) Cox
regression approach was used to construct multivariate models of
ARG using the “glmnet” package of R software (Sauerbrei et al., 2007).
Only genes with non-zero coefficients were chosen in LASSO
regression to construct risk scores (Kidd et al., 2018). The best
model was determined by maximizing the performance and using
the least number of genes.

Subsequently, a predictive risk score formula was established
based on a linear combination of expression levels and weighted
regression coefficients obtained by LASSO Cox regression analysis.
Risk score (RS) � ∑n

i�1(coef i * Xi). The median RS was used as the
cutoff value to separate the TCGA LUAD cohort into high-risk (HR)
and low-risk (LR) subgroups. Using univariate and multivariate Cox
regression analysis, the prognostic significance of the model in patients
with LUAD was evaluated. Kaplan drew the survival curve–Meier
(KM) method and the difference in survival rate between the HR
group and LR group was evaluated by log-rank test. Using the receiver
operating characteristic (ROC) curve, the prognostic accuracy of the
risk prediction model was evaluated. In addition, the clinical
significance of this model was evaluated. These results were then
tested in another LUAD cohort in the GEO dataset by survival analysis
and ROC curve analysis. Furthermore, the nomogram with calibration
plots was built using the rms R package to forecast the concordance
between actual and predicted survival.

2.6 Tumor mutation burden and gene
mutation analysis

Somatic mutations in the TCGA were studied using the R package
“maftools” to identify variations in somatic mutations between the HR
and LR groups (Mayakonda et al., 2018). Subsequently, we estimated
the two groups’ tumor mutation burden (TMB) per patient. Mutations

in signature genes were searched on the cBioPortal website (https://
www.cbioportal.org).

2.7 Immune microenvironment analysis

Immune cell infiltration was identified using timer 2.0
(cistrome.shinyapps.io/timer/) via the MCPCOUNTER,
CIBERSORT, QUANTISEQ, Timer, CIBERSORT-ABS, EPIC, and
XCELL algorithms. Infiltration levels of stromal and immune cells can
be calculated with the ESTIMATE algorithm (Yoshihara et al., 2013).
The enrichment score of genes in a particular gene set can be
calculated by ssGSEA (single-sample gene set enrichment analysis).
The process of ssGSEA includes ranking genes according to the
absolute expression of genes in the sample and then calculating the
enrichment score by integrating the differences between the empirical
cumulative distribution functions of gene ranking (Bindea et al., 2013;
Finotello and Trajanoski, 2018). Concentration scores of 16 immune
cells were calculated using “GSEABase” and “GSVA” packages. The
TIMER database studied six immune cells (B cells, macrophages,
neutrophils, dendritic cells, CD8+ T cells, and CD4+ T cells) infiltration
for its association with gene expression. Gene copy number variation
in the TIMER database was studied for its potential impact on immune
cell infiltration.

The expression of multiple immune checkpoint molecules was
compared to determine whether there were differences in immune
checkpoint blockade (ICB) therapy between the HR and LR groups.
Immune checkpoints with differential expression between the two
groups were visualized. Additionally, TIDE (Tumor Immune
Dysfunction and Exclusion) score was calculated online following
the instructions (https://tide.dfci.harvard.edu/). An inverse correlation
was found between the TIDE score and ICB treatment success (Jiang
et al., 2018).

2.8 Antigen presentation analysis

Human leukocyte antigen (HLA), found on numerous immune
cells’ surfaces, is crucial for triggering cellular and humoral immunity
(Halpert et al., 2020). To determine whether or not there were
distinctions in antigen expression between the two groups, the
“limma” package was used to compare the HLA expression levels
of the two groups.

2.9 Cancer stem cell infiltration analysis

The UCSC Xena browser (http://xena.ucsc.edu/) was used to
extract the DNA methylation-based stemness scores (DNAss) and
RNA-based stemness scores (RNAss) of TCGA-LUAD patients. We
conducted a comparative study at the DNA and RNA levels to
examine the variations in stem cell infiltration between the two groups.

2.10 Gene set enrichment analysis (GSEA)

The c2. cp.kegg.v7.5.1. symbols and c5. go.v7.5.1. symbols
collection was used to explore the function annotation in HR and
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LR groups using the R package “org. Hs. eg. db”. Gene sets with
FDR <0.05 were considered statistically significant.

2.11 Predicting drug therapeutic response

Using the Cancer Immunome Atlas (https://tcia.at/),
immunophenoscore (IPS) was derived to predict the sensitivity to
immunotherapy. The IC50 of common chemotherapeutic agents in
the total TCGA cohort was calculated by the administered
“pRRophetic” software package to assess the predictive ability of AGRs
for drug treatment response. The IC50 differences between the HR and
LR groups were then compared using the Wilcoxon ranking test. Finally,
we applied the “ggplot” R package to draw the results into bar charts.

2.12 Verification of signature genes in
databases

The Cancer Cell Line Encyclopedia (CCLE) Line (http://www.
broadinstitute.org/ccle) provides downloadable information on the
mRNA expression levels of several LUAD cell lines. The Human
Protein Atlas (HPA) database was used to verify protein expression levels.

2.13 Quantitative real-time PCR (qPCR)

The expression of model genes in humans was confirmed using a
quantitative real-time PCR technique. Total RNA was isolated from
human tissues initially using the Trizol reagent. Then, reverse
transcription was used to transform the isolated RNA into cDNAs.
Finally, the quantitative real-time PCR technique was used to assess the
expression levels of model genes in human tissues. The primers are shown
in Supplementary Table S3. Relative expression values ofmodel genes were
calculated using the 2−ΔΔCT method and normalized with beta-actin. The
experiments were reviewed and approved by the authority (Ethics No:
WDRY2022-K041) and executed in accordance with relevant guidelines.

2.14 Statistical analysis

R was used for all statistical analysis and graphical creation (version
4.2.1). Volcano plots were drawn with the “ggplot2″ package. Violin
diagrams are drawnwith “ggpubr” packets. TheMann-Whitney test was
utilized for differentially expressed gene analysis, tumor mutation
burden analysis, ssGSEA score, immunological checkpoint analysis,
and HLA analysis. Cancer stem cell infiltration and drug sensitivity
tests were conducted using a correlation test. The log-rank test and
Kaplan-Meier analysis compared overall survival (OS) between groups.

3 Results

3.1 Identification and exploration of
angiogenesis-related differentially expressed
genes

Differential expression analysis found fifty-six genes to be
expressed differently between 539 cancers and 59 normal samples

(Figure 2A). Twenty-five genes were elevated, and 31 were
downregulated in tumor samples relative to normal samples
(Figure 2B). PPI revealed that the majority of genes are linked
(Figure 2C). According GO enrichment analyses, different ARGs
are crucial for LUAD angiogenesis and vascular growth
(Figure 3A). KEGG pathway enrichment analysis revealed that
differentially expressed ARGs were primarily implicated in tumor
angiogenesis pathways such as PI3K-Akt, MAPK, and Rap1
(Figure 3B). DO research revealed that they were linked to lung
illness, lung adenocarcinoma, non-small cell lung cancer, and other
conditions (Figure 3C, Supplementary Table S1).

3.2 Developing an RS prediction model for
angiogenesis-related genes

First, we took the intersection of the total TCGA cohort with
GSE68465 to obtain the common genes. Subsequently, the two
cohorts intersected with differentially expressed genes, and
51 genes were obtained for subsequent analysis. Thirteen of the
51 differentially expressed genes correlate with the overall survival of
LUAD patients in the TCGA cohort (Supplementary Figures
S1A–N). Then ten genes in these 13 genes were finally screened
by Lasso regression (Figures 4A, B). Finally, the multivariate cox
regression revealed six of these ten angiogenic-associated genes (MET,
PDGFB, TIMP1, PECAM1, CCND2, POSTN) as independent risk
variables to build risk models, the angiogenesis-related genes (ARGs)
risk model. And the ARGs risk score formula was as follows:
RS � 0.0996201384411945*MET + 0.416174488743696* PDGFB +
0.180348206385705*TIMP1 + (−0.398844301036605*PECAM1) +
(−309425270158878*CCND2) + 0.202128532193696*POSTN Four
patient cohorts’ risk scores were calculated, and the patients were
then split into high-and low-risk groups based on the median risk
score for each cohort. In the discovery cohort (p < 0.001), validation
cohort (p = 0.02), total TCGA cohort (p < 0.001), and
GSE68465 cohort (p = 0.021), GSE31210 cohort (p = 0.003),
GSE50081 cohort (p = 0.038), patients in the high-risk category
had inferior outcomes (Figures 5C, D, Supplementary Figures S2C,
D and Supplementary Figures S5C, D). Significant differences were
between the HR and LR groups in terms of the distribution of RS, the
health state of the patients, and the heatmap of the expression
profiles of the nine ARGs (Figures 5A, B, Supplementary Figures
S2A, B, and Supplementary Figures S5A, B). In addition, risk scores
for ARGs were demonstrated to be independent predictive
indicators for LUAD patients in all four cohorts (Figures 4C, D
and Supplementary Figures S3A–C). To predict overall survival in
LUAD patients, we created a nomogram based on patient age, TNM
stage, and the ARGs risk score (Figures 6A, B). In addition, the ROC
curves of 1-,3-, and 5-year OS demonstrated that our model has a
high predictive capacity (Figures 5E, F and Supplementary Figures
S2E, F). Calibration plots demonstrated a remarkable consistency
between the predicted and observed outcomes (Figures 6C, D).
Patients in the entire TCGA cohort were subsequently stratified
based on clinical traits in determining the relationship between RS
and OS in LUAD patients. The findings revealed that RS strongly
predicts outcomes in LUAD patients with various clinical
characteristics, particularly in early LUAD patients (Figures
7A–F). In order to demonstrate the predictive performance of
our model, we compared it with other models based on the
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TCGA-LUAD database, such as the published gene prediction
models of Duan et al. (2021), Zhang et al. (2022), Yang et al.
(2022), Xu and Chen, (2021), Gong et al. (2022). Our model has
the greatest c-index of nomogram compared to previously published
lung cancer models, as indicated by the findings. These results
indicate that our approach is superior to other models in
predicting patient prognosis (Supplementary Table S4). These
findings imply that a risk model based on six genes predicts OS
in individuals with LUAD.

3.3 Tumor mutation burden and gene
mutation analysis

Given that TMB is linked to immunotherapy effectiveness, we
calculated the difference in TMB value between the two groups. TMB
was considerably more remarkable in the HR group than in the LR
group (Figure 8B). However, those with elevated TMB had a favorable
survival advantage (Figure 8C). The utility of integrating risk scores
with TMB to predict patient outcomes was then investigated. The

FIGURE 2
A sum of 56 genes showed significant differential expression. (A) Heatmaps of differentially expressed angiogenesis-related genes. (B) Volcano plots of
differentially expressed angiogenesis-related genes. (C) PPI of 56 genes.

FIGURE 3
Functional enrichment analysis of differential genes. (A) GO. (B) KEGG. (C)DO.

Frontiers in Genetics frontiersin.org05

Wang et al. 10.3389/fgene.2023.1092968

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1092968


Kaplan-Meier analysis suggested that LR scores and high TMB were
associated with more prolonged survival (Figure 8D). We analyzed
mutation rates between the HR and LR groups. The findings revealed a
higher frequency of mutational events within the HR group. The most
prevalent alterations in the HR group, TP53 and TTN were also
considerably more frequent than those in the LR group. The other six
LUAD mutated genes (MUC16, CSMD3, RYR2, LRP1B, ZFHX4, and
USH2A) also showed increasing trends to different degrees (Figures
8E, F). Using the LUAD cohort from the cBioportal database, we
analyzed the value of six angiogenic genes (MET, PDGFB, TIMP1,
PECAM1, CCND2, POSTN) in the development of diagnostic,
prognostic, and recurrence models. The study found that 19.6%
(566 LUAD samples) showed genetic alterations, of which 7%
occurred in MET, whose primary alteration was amplification, and
6% of mutations occurred in POSTN (Figure 8A). These genes may be
used as therapeutic targets, offering fresh avenues for treating LUAD.

3.4 Immune features analysis

We investigated the relationship between RS and the immune
status of patients in the TCGA cohort and found a significant change
in immune cells. From the results, the LR group had a better immune
status (Figure 9I). While there was a negative correlation between the
ESTIMATE score of immune cells and the risk score, there was a
positive correlation between the ESTIMATE score of stromal cells and
the risk score (Figures 9A, B). Next, we compared the immune cell

scores of the two patient groups. The total TCGA cohort showed that
the LR group’s infiltration scores of most immune cells were higher
than in HR groups, such as aDC, B cells, and T-helper cells
(Figure 9G). Considering the importance of checkpoint inhibitors
in clinical treatment, we further analyzed the differences in ICBs
expression and found substantial differences in CTLA4, CD28, ID02,
and CD27 between the two groups (Figure 9H). We next evaluated the
potential therapeutic effectiveness of immunotherapy in both patient
groups using TIDE. A higher TIDE prediction score, the higher the
likelihood of immune evasion, suggesting that patients are less likely to
benefit from ICI therapy. We found that patients in the HR group had
a lower TIDE score than those in the LR group, suggesting that the HR
patients might respond better to ICI therapy (Figure 9C). In addition,
we discovered that CAF and T-cell exclusion ratings were more
excellent in the HR group, whereas T-cell dysfunction scores were
higher in the LR group (Figures 9D–F).

Six signature genes were revealed to be linked with immune cell
infiltration. Positive correlations were seen between MET and CD4+

T cells, macrophages, dendritic cells, CD8+ T cells, and neutrophils,
but not B cells (Supplementary Figure S4B). PDGFB was associated
favorably with the other four immune cells and negatively with B cells,
but not with CD8+ T cells (Supplementary Figure S4C). POSTN was
negatively connected to B cells and favorably related to the other four
immune cells, but not to CD4+ T cells (Supplementary Figure S4E).
Positive correlations were seen between TIMP1 and CD4+ T cells,
macrophages, dendritic cells, and neutrophils, but not CD8+ T cells
and B cells (Supplementary Figure S4F). Positive correlations were

FIGURE 4
Establishment of an ARGs prognostic model about LUAD’s prognosis using a lasso regression model. (A) A LASSO coefficient profile of the 13 ARGs. (B) A
coefficient profile plot was generated against the log(lambda) sequence. (C) Univariate COX regression analysis for RS in TCGA training cohort patients with
LUAD. (D) Multivariate Cox regression analysis for RS in TCGA training cohort patients with LUAD.

Frontiers in Genetics frontiersin.org06

Wang et al. 10.3389/fgene.2023.1092968

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1092968


seen between CCND2 and PECAM1 and all six immune cells
(Supplementary Figures S4A, D). Copy number variation in genes
may affect immune cell infiltration compared to the diploid/normal
group. As PECAM1 was not available in the database, we analyzed the

copy number variation of the remaining 5 cell types about immune
cells. MET copy number variants were significantly associated with
decreased levels of three immune cell types (B cells, neutrophils, and
macrophages), POSTN copy number variants were significantly

FIGURE 5
Development of RS based on the 6 ARGs signature of patients with LUAD in the TCGA training and TCGA validation cohorts. (A, B) The heatmap of the
6 ARGs expression profiles between the high-risk and low-risk groups in the training or validation cohort, together with the RS distribution and patient vital
status. (C, D) Kaplan-Meier analysis of the prognostic model in training or validation cohort. (E, F) The ideal AUC of the gene signature in the two cohorts was
determined using a time-dependent ROC analysis.
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FIGURE 6
Construction of a predictive nomogram. (A, B) The nomogram for OS prediction in LUAD patients at 1, 3, and 5 years. (C, D) Calibration curves of the
nomogram for OS prediction at 1, 3, and 5 years.

FIGURE 7
Subgroup study of various clinical characteristics using the RS formula. (A) Age>65 years and age≤65 years. (B) FEMALE andMALE. (C)M0 andM1. (D)NO
and N1-3. (E) Stage I-II and stage III-IV. (F) T1-2 and T 3-4.
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associated with decreased levels of three immune cell types (B cells,
CD4 + T cells, and macrophages), TIMP1 copy number variants were
significantly associated with decreased levels of six immune cell types
(B cells, CD4 + T cells, CD8 + T cells, neutrophils, CD4+ T cells, CD8+

T cells, neutrophils, macrophages, and dendritic cells), PDGFB copy
number variation was significantly associated with decreased levels of

three immune cells (B cells, CD4+ T cells, and macrophages), and
CCND2 copy number variation was significantly associated with
decreased levels of five immune cells (B cells, CD4+ T cells,
neutrophils, macrophages, and dendritic cells) (Figures 10A–E).
These results suggest that changes in model gene copy number can
significantly modulate immune cell infiltration.

FIGURE 8
Tumormutation burden and genemutation analysis. (A)Genetic alteration analysis of the ARGs in the TCGA LUAD cohort. (B) TMB between the low- and
high-risk subgroups based on RS. (C) Survival study of the various TMB stratification groups. (D) Analysis of the survival of various groups stratified by TMB and
RS. (E, F) Assessment of the differences in the mutational landscape between high- and low-risk.
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3.5 Cancer stem cell infiltration analysis

We used DNAss and RNAss to compare tumor stemness amongst
distinct risk patterns. The results demonstrated a positive relationship

between risk scores and DNAss (r = 0.11, p = 0.019) and RNAss (r =
0.15, p = 0.0017) values (Figures 11C, D). This shows that the HR
group’s LUAD cells exhibited a more marked stem cell profile and a
lower degree of cell differentiation.

FIGURE 9
Immune features analysis. (A) Correlation analysis of the risk score and immune score. (B) Correlation analysis of the risk score and stromal score. (C)
Comparison of TIDE and risk score. (D) Comparison of CAF and risk score. (E) Comparison of T-cell exclusion and risk score. (F) Comparison of T-cell
dysfunction and risk score. (G) Infiltration score of immune cells. (H) Expression of immune checkpoints. (I)Heatmap of immune response in high and low-risk
groups based on multiple algorithms. *p < 0.05, **p < 0.01, ***p < 0.001.
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3.6 Gene set enrichment analyses

According to KEGG, pathways enriched in the HR group
included the cell cycle, DNA replication, proteasome, and focal
adhesion, whereas pathways enriched in the LR group included
asthma, linoleic acid metabolism, systemic lupus erythematosus,

and alpha-linolenic acid metabolism (Figures 11A, B).
Additionally, GO revealed that genes in the LR group were
engaged in complement activation, antigen binding,
immunoglobulin complexes, and other processes, whereas genes in
the HR group were enriched in chromosome segregation, condensed
chromosomes, and nuclear chromosome segregation (Figures 11E, F).

FIGURE 10
Association between CNV and immunity in 5 model genes. (A) CCND2. (B) MET. (C) PDGFB. (D) TIMP1. (E) POSTN. *p < 0.05, **p < 0.01, ***p < 0.001.

FIGURE 11
Exploration of possible reasons for differences between high and low-risk groups. (A, B) KEGG Enrichment Analysis. (C, D) Tumor stem cell analysis. (E, F)
GO Enrichment Analysis. (G) Expression of HLA. *p < 0.05, **p < 0.01, ***p < 0.001.
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3.7 Antigen presentation analysis

There was a substantial variation in HLA expression associated with
antigen presentation between the HR and LR groups. The expression of
numerous HLA classes I and II was more significant in the LR group
than in the HR group in the total TCGA cohort (Figure 11G).

3.8 Drug sensitivity analysis

Through TCIA, we specifically looked at the impact of risk scores on
the efficacy of immunotherapy. The results demonstrated that the HR
group was more likely to respond to CTLA4-positive/PD-L marker-
positive treatment than the LR group (Figures 12C, D). This shows that

FIGURE 12
Immunotherapeutic responses of the ARGs prognostic signature and drug sensitivity analysis. (A–D) Comparison of the immunophenoscore (IPS)
between the low- and high-risk groups stratified by both CTLA4 and PD-1. (E–L) Drug sensitivity analysis. (M) Multiple drugs for six signature genes.
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patients in the HR group may respond better to CTLA4-positive/PD-L
marker-positive immunotherapy, leading to a better clinical outcome.
Patients in the HR group were more responsive to docetaxel, erlotinib,
etoposide, gemcitabine, and cisplatin, as evidenced by their lower IC50s
compared to those in the LR group (Figures 12H–L). The IC50 of
ABT.888 (also known as veliparib), axitinib, and ATRA was higher in
the HR group than in the LR group (Figures 12E–G). We examined the
association between six signature genes and medication effectiveness in
NCI-60 cell lines, including the LUAD cell line, to guide gene-targeted
treatment. The findings of the first sixteen studies were shown based on
the order of the p-values, from smallest to most lavish. PECAM1 was
sensitive to bendamustine and methylprednisolone, and zalcitabine,
MET was sensitive to auranofin, lomustine, and arsenic trioxide, and
CCND2 was sensitive to amiodarone hydrochloride (Figure 12M).
POSTN was sensitive to zoledronic acid and caffeic acid
(Figure 12M). Supplementary Table S2 also lists the names of the
medicines and genes along with their connection coefficients.

3.9 Verification of signature genes

The IHC data for six proteins in the HPA database were evaluated.
Despite the inability to precisely assess the differences between normal
lung tissue and malignancies, the preliminary findings suggest
increased expression of CCND2 and PDGFB in tumor tissues
(Figure 13G). Meanwhile, PECAM1 and POSTN levels may be
lowered in tumorous tissues (Figure 13G). There was no
discernible variation in the levels of MET and TIMP1 expression
(Figure 13G). In several LUAD cell lines, the same gene is expressed

differently (Figures 13A–F). We employed a quantitative real-time
PCR technique to measure the expression levels of model genes in
human tissues to confirm our prognostic model’s validity further. The
findings revealed that MET, PDGFB, PECAM1, POSTN, and
TIMP1 expression differed in human tissues and were consistent
with the TCGA database (Supplementary Figures S6A–E). In human
tissues, however, there was no variation in CCND2 expression
(Supplementary Figure S6F).

4 Discussion

The vast majority of cases of NSCLC are LUAD (Bade and Dela
Cruz, 2020). LUAD has a poor prognosis due to a lack of knowledge of
its pathogenesis (Peng et al., 2021). Targeted treatment and
immunotherapy for LUAD have made significant strides in recent
years due to researchers examining the etiology of LUAD from various
routes and biological processes. Despite this progress, it remains
difficult for doctors to assess the risk of LUAD and make
prognostic predictions for their patients. Since the numerous
scoring methods now used in clinical practice, such as the TNM
staging system, have more or fewer limitations, there is an urgent need
for novel molecular biomarkers to predict the survival of LUAD
patients. Angiogenesis plays a crucial role in tumor formation;
hence, we developed and validated a risk model to predict the
prognosis of LUAD patients based on angiogenesis-related genes in
this study. This study is the first to our knowledge to develop
predictive indicators using a collection of angiogenesis-related
genes in patients with LUAD.

FIGURE 13
HPA database and compare gene expression in LUAD cell lines. (A) CCND2. (B) MET. (C) PDGFB. (D)PECAM1. (E) POSTN. (F) TIMP1. (G)
Immunohistochemical results of 6 model genes in the HPA database.
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Angiogenesis is essential for tissue repair, reproduction,
embryonic development, and wound healing, among other
physiological functions (Cui et al., 2014). In the normal resting
state, endothelial cells can sense angiogenic signals and remain
highly plastic under controlled conditions to participate in
angiogenesis. However, in many disease states, such as cancer,
rheumatoid arthritis, and atherosclerosis, uncontrolled angiogenesis
will further promote disease progression and become a hallmark of
these disease states (Carmeliet and Jain, 2011). Metastasis and growth
of LUAD are similarly dependent on the process of angiogenesis. In
hypoxic and energy-deficient conditions, tumor cells and their
surroundings produce significant quantities of angiogenic factors,
promoting pathological angiogenesis. These new blood vessels will
offer oxygen and energy to the tumor and carry metabolic waste
generated by the tumor cells, boosting tumor development.

In this study, we collected transcript expression data and
corresponding clinical data from TCGA and GEO databases. We
determined the differential expression of ARGs in tumor and normal
tissues using the TCGA database. GO annotation and KEGG
enrichment analysis revealed that these differential genes are
primarily engaged in angiogenesis and vascular development and
are enriched in the P13K-Akt, Rap1, and MAPK pathways. PI3K/
AKT is an essential intracellular signal transduction molecule involved
in the control of cell proliferation, apoptosis, and differentiation, and it
can affect the production of VEGF and hypoxia-inducible factor (HIF-
1) through activation of p70S6K1 and Hdm2 (Skinner et al., 2004). A
vascular endothelial growth factor is an essential regulator in tumor
angiogenesis, and hypoxia increases the release of angiogenic factors.
Furthermore, the PI3K-Akt pathway is critical in K-ras signaling
pathway-mediated hematopoiesis and angiogenesis (Liu et al.,
2008). The MAPK signaling pathway is one of the essential
signaling systems in living creatures, and it is crucial for cell
survival, proliferation, and angiogenesis (Teng et al., 2018).
Numerous studies have demonstrated that RAP1 is activated in
numerous malignancies, including leukemia and solid tumors
(Minato, 2013; Shah et al., 2019). aRAP1 plays a role in the
invasion and metastasis of various tumor cells by regulating
adhesive junctions and cytoskeletal remodeling. DO analysis has
shown that these differential genes are associated with lung
adenocarcinoma, non-small cell lung cancer, and lung disease.

Subsequently, we used 6 ARGs (MET, CCND2, PDGFB, POSTN,
PECAM1, TIMP1) to establish model equations for risk assessment.
TIMP1 is a natural inhibitor of matrix metalloproteinases, and the
imbalance between TIMP1 and matrix metalloproteinases in
gastrointestinal cancers is a crucial element in colon cancer (Song
et al., 2016). The interaction of TIMP1 protein’s C-terminal structural
domain with tetraspanin CD63 stimulates conformational activation of
integrin b1 and activates MAPK signaling, resulting in cancer (Jung et al.,
2006). Through the TIMP-1/CD63 signal, TIMP1 can activate fibroblast-
like hepatic stellate cells (HSCs) and release SDF-1 to attract neutrophils
that promote metastasis. In this process, TIMP1 significantly increases
the sensitivity of the liver to circulating tumor cells and creates a tumor
microenvironment that promotes tumor liver metastasis (Seubert et al.,
2015; Grünwald et al., 2016). A transmembrane receptor tyrosine kinase,
MET is the hepatocyte growth factor receptor.When it binds to ligands, it
activates several downstream channels that govern cell growth, survival,
and migration, among other things (Trusolino et al., 2010). It has been
demonstrated that MET interacts with vascular endothelial growth
factors to promote neovascularization (Eder et al., 2009). POSTN

promotes angiogenesis in colorectal malignancies by preventing stress-
induced apoptosis and increasing endothelial cell survival, thereby
promoting colon cancer metastasis, leading to poor prognosis (Bao
et al., 2004). In some tumors, such as glioma (Hermanson et al., 1992;
Guo et al., 2003) and ovarian cancer (Czekierdowska et al., 2017), PDGFB
plays a crucial role in promoting angiogenesis and stimulating malignant
cell proliferation. PECAM-1 (also referred to as a cluster of differentiation
31, CD31) is primarily regarded as an adhesionmolecule that participates
in cell proliferation, apoptosis, migration, and cellular immunity.
PECAM-1 is expressed in some tumor cells and has been linked to
tumor invasion (Ranamukhaarachchi et al., 2019; Gong et al., 2020).
CCND2 encodes cell cycle protein D2, which regulates cell cycle protein-
dependent kinases 4 and 6 (CDK) 4/6 in G1-S (Ortega et al., 2002).
Although CCND2 dysregulation is a significant source of medication
resistance in breast cancer endocrine treatment (Kwapisz, 2017), its
significance in LUAD remains unknown. The role of these genes in
LUAD needs to be further investigated. Subsequently, through a series of
validations and exploration of possible related mechanisms, we
demonstrated that the risk model we constructed could predict the
prognosis of LUAD patients.

Our study certainly has some limitations. To some extent, intra-
tumor or intra-patient tumor heterogeneity is unavoidable, given that
our study cohort was compiled from a wide variety of high-throughput
sequencing platforms and public databases. Several studies
demonstrate that the heterogeneity of tumors impacts the
effectiveness of immunotherapy and chemotherapy. We must
disregard the considerable heterogeneity of lung adenocarcinoma
due to data constraints. Second, although it has been discovered
that angiogenesis-related genes influence immunological
interactions and survival in LUAD patients, the scientific or
medical processes behind these occurrences are not fully
understood. To validate and explain the significance of
angiogenesis-related genes in LUAD, therefore, large-scale
prospective research and functional and mechanistic tests are
required. Third, while the median RS cut-off point was utilized to
categorize LUAD samples into HR andHR groups, the ideal RS cut-off
point may be a preferred technique for stratifying LUAD patients. Due
to the lack of comprehensive clinicopathological data, we finally
compiled and adjusted certain clinical data for survival analysis
and Cox regression. However, this may introduce bias and
uncertainty regarding whether RS is an independent predictive factor.

Non-etheless, our research identifies genes and pathways
implicated in LUAD angiogenesis and develops a valid predictive
model that correlates with immune infiltration features and treatment.
The RS model contributes to a greater understanding of the prognosis
of LUAD patients and opens up new perspectives for targeted therapy.
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